Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Literature Search
2.1.1. Phytochemicals
Phenolic Content
Organic Acids
Carotenoids
Lipid and Volatile Components
Origin | Description | Total Carotenoids | Reference |
---|---|---|---|
Algeria | Orange fruit pulp | 503 μg/L | [79] |
Algeria | Orange fruit pulp | 108.8 μg/100 g f.w | [42] |
Italy | “Sulfarina” | 1.48 μg/100 g f.w | [89] |
“Sanguinos” | 3.47 μg/100 g f.w | ||
“Muscareda” | 1.45 μg/100 g f.w | ||
Mexico | “Naranjona” | 85 mg /100 g f.w | [90] |
“Blanca Cristalina” | 400 μg/100 g f.w | ||
“Esmeralda” | 700 μg/100 g f.w | ||
Morocco | Fruit juice | 20.8 μg/L | [82] |
Morocco | “Akria” Fruit pulp | 110 μg/100 g f.w | [84] |
“Drbana” Fruit pulp | 121.1 μg/100 g f.w | ||
“Mlez” Fruit pulp | 150 μg/100 g f.w | ||
Spain | “Sanguinos” Whole fruit | 478.1 μg/100 g f.w | [9] |
“Sanguinos” Pulp | 255.9 μg/100 g f.w | ||
“Sanguinos” Peel | 1.69 mg/100 g f.w | ||
“Verdal” Whole Fruit | 444.9 μg/100 g f.w | ||
“Verdal” Pulp | 379.4 μg/100 g f.w | ||
Turkey | Whole fruit Fresh | 1.2 mg/100 g d.w | [91] |
Whole Fruit Frozen | 1.2 mg/100 g d.w | ||
Whole Fruit Sun-dried | 454 μg/100 g d.w | ||
Whole Fruit Microwave-dried | 554 μg/100 g d.w | ||
USA | Green Skinned | 290 μg/100 g f.w | [14] |
2.1.2. Betalains
2.1.3. Biological Activities
Biochemical Assays
Biological Assays
Oxidative Stress
Lipid Metabolism
Anti-Microbial
Anti-Inflammatory
Cytotoxic
Neuroprotector
Blood Sugar Regulation
Cardiovascular
Antigenotoxic
Others
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phenolic Compounds from O. ficus-indica Fruit | ||
---|---|---|
Compounds | Reference | |
1 | 1-O-feruloyl-β-D-glucopyranoside | [178] |
2 | 2-Feruloyl piscidic acid | [75] |
3 | Androsin, Aromadendrin | [172] |
4 | Benzoic acid | [157] |
5 | Benzyl-O-β-D-glucopyranoside | [178] |
6 | Betanin, Betaxanthin | [75,112] |
7 | Caffeic acid | [11,75,157] |
8 | Caffeic acid 4-O-glucuronide | [179] |
9 | Caffeine, Catechol, Chlorogenic acid, Cinnamic acid | [157] |
10 | Dihydroferulic acid 4-O-glucuronide | [179] |
11 | Ellagic acid | [157] |
12 | Eucomic acid | [45,150,179] |
13 | Ferulic acid | [157] |
14 | Ferulic acid glucoside | [75] |
15 | Gallic acid | [132,157] |
16 | Hydroxybenzoic acid, Isobetanin | [75] |
17 | Isorhamentin-O-(deoxyhexosyl-hexoside), Isorhamentin-O- (deoxyhexosyl-pentosyl-hexoside), Isorhamentin-O-(pentosyl- hexoside) | [150,171] |
18 | Isorhametin-3-O-glucoside | [11,180] |
19 | Isorhamnetin | [75,178,181] |
20 | Isorhamnetin 3-O-β-D-glucopyranoside | [178] |
21 | Isorhamnetin 3-O-galactoside 7-O-rhamnoside, Isorhamnetin 3-O- glucoside 7-O-rhamnoside | [148,179] |
22 | Isorhamnetin glucoside, Isorhamnetin glucosyl-di-rhamnoside, Isorhamnetin pentosyl-glucoside, Isorhamnetin pentosyl- rhamnoside, Isorhamnetin pentosyl-rutinoside | [75] |
23 | Isorhamnetin rutinoside | [75,180] |
24 | Isorhamnetin-O-(di-deoxyhexosyl-hexoside) | [150] |
25 | Kaempferol | [157,178] |
26 | Piscidic acid | [181] |
Appendix B
O. ficus-indica Fruit Antioxidant Power | |||||
---|---|---|---|---|---|
Origin | Variety | Sample Type | Outcome | Reference | |
1 | Saudi Arabia | Red/Purple and Orange/Yellow | Juice | Red peel and pulp presented, in general, higher antioxidant activity than orange juices, DPPH70.17 and 81.90 mg AA equivalent/100 mL red juice, respectively, while 234.96 and 391.90 mg AA equivalent/100 mL orange juice, phosphomolybdenum method 760.61 and 735.35 mg AA equivalent/100 mL red juice and 228.57 and 204.31 mg AA equivalent/100 mL orange juice and reducing power assay 149.49 and 123.23 mg AA equivalent/100 mL red juice and 83.12 and 81.38 mg AA equivalent/100 mL orange juice | [10] |
2 | Egypt | Not specified | Aqueous isopropyl (80%) | Peel extract showed EC50 values 15 µg/mL for DDPH assay and 22.5 µg/mL for hydroxyl radical scavenging assay | [46] |
3 | Italy | Red/Purple and Orange/Yellow | Methanol: formic acid: water (50:5:45) | TEAC values of red cultivar were higher than orange ones (0.61 vs. 0.37 mmol/100 g f.w), while ORAC assays have similar values between red and orange extracts (1.28 vs. 0.98 mM/100 g f.w) | [32] |
4 | Tunisia | Purple | Juice | After 30 min of incubation, juice samples were able to scavenge 10.3% of DPPH solution | [165] |
5 | Spain | Not specified | Methanol:water (80:20) 1% HCL | Mean EC50 values of pulp and peel for DPPH 59.35 and 56.58, ABTS 21.1 and 32.4 and FRAP 22 and 58.3 mM Trolox/kg d.w | [34] |
6 | Mexico | Red/Purple | Edible films with aqueous peel extracts 2% and 4% | Samples exert reducing power of 196.8 and 382.1 mg AA equivalents and DPPH values of 46.8 and 52.5 mg GA equivalents | [182] |
7 | South Africa | Not specified | Ethanol, methanol, water, hexane | DPHH and FRAP activity were higher following the solvent sequence, hexane > acidified methanol > ethanol > water. Additionally, oven dried samples were more active than freeze dried samples | [148] |
8 | Mexico, Chile & Brazil | Selenium tolerant | Not specified | Selenium tolerant samples, Red and Orange had, on average, 2,8-fold higher ABTS activity than cultivar growth in normal conditions | [66] |
9 | Turkey | Not specified | Methanol | DPPH scavenging % of fruits collected on different locations ranged from 52.21 to 53.31 | [38] |
10 | Mexico | Pelon Red and Alfajacuyan Green | Methanol:water (50:50) and acetone:water (70:30) | By-product (spines, glochids and epidermis) Pelon extract showed 47.35 and 65.76 for µM Trolox/g d.w for FRAP and ABTS assays, meanwhile Alfajacuyan extract showed 40.39 and 66.33 Trolox/g d.w respectively | [17] |
11 | Tunisia | Inermis | Seed cake protein | 0.2 mg/mL of protein showed 60% of scavenging activity for DPPH assay, the ability to reduce iron of the protein increased with increasing concentrations (1–5 mg/mL), additionally, increasing concentration (1–5 mg/mL) increased the ability of chelate iron with a maximum of 80%. | [183] |
12 | Tunisia | Orange | Peel fluor | DPPH scavenge activity was 274.7 mmol/g equiv Trolox | [60] |
13 | Algerian | Not specified | Vinegar | Vinegar reduces the hepatic and serum levels of T-BARS, AST, ALT and Alk-p in acute liver injury caused by free radical reactions | [133] |
14 | Italy | Red/Purple, Orange/Yellow and Withe | Methanol | Antioxidant potential of pulp extracts showed 5.31 (yellow), 4.36 (withe) and 4.20 (Red) µM Trolox/g of edible pulp for ABTS assay | [80] |
15 | Spain | Sanguinos Red, Verdal Orange | Methanol and Water | DPPH activity of Sanguinos and Verdal of analyzed tissued did not show differences, mean values were 129.78 (whole fruit), 115.66 (pulp) and 141.7 (peel) µM Trolox/100 g f.w. On the other hand, only peel tissue showed differences among verities for ORAC assay, mean values were 37.37 (whole fruit), 29.40 (pulp), 88.31 (Sanginos peel) and 48.35 (Verdal peel) µM Trolox /100 g f.w | [9] |
16 | Italy | Yellow | Depeptinazed Juice | Total antioxidant activity in depeptinazed juice was 5.21 mM Trolox | [184] |
17 | Mexico | Pelon Red | Juice | Pelon juice showed 21.0 mM Trolox/ juice liter for the ORAC assay | [13] |
18 | Algerian | Orange/Yellow | Methanol:water (70:30) | Peel extracts showed mean EC50 values of 1.03 mg/mL and 77.81 mg/mL for reducing power activity and DPPH | [43] |
19 | Argentina | Dark/Purple, Purple and white | Methanol | DPPH scavenging potential of fruits were expressed as vitamin C equivalent antioxidant capacity (VCEAC), purple cultivar showed higher values than dark purple and white; 0.57 mg/g, 0.53 mg/g and 0.48 mg/g VCEAC respectively | [185] |
20 | Mexico | Roja Lisa | Juice | Storage at 10 °C greatly increased 2.8-fold ABTS, 2.0-fold DPPH, 2.42 FRAP and 1.22-fold ORAC activity than fresh juice | [27] |
21 | Mexico | Pelon Red and Reyna Green | Blended Juice Red and Green (6:4) | Processing and storage juice parameters affect the antioxidant potential of juices, ABTS, DPPH and ICA values ranged from 110 to 341 µM Trolox/juice L, 1.93 to 2.27 µM Trolox/juice and 58 to 66% chelating activity | [186,187] |
22 | Tunisia | Not specified | Syrup | Concentrated syrup (74° Brix) exhibited high DPPH scavenging 3.63 µM Trolox/g f.w and 4.70 µM Trolox/g f.w for ABTS | [11] |
23 | Italy | Sanguino | Fruit puree | Fruit puree fermented with Leuconostoc mesenteroides showed a DPPH scavenging potential of 45–50%, considerably higher than raw juice, with 32.5%. | [152] |
24 | Mexico | Not specified | Methanol:water (1:2) | Peel flour extract showed 69% of ABTS scavenging corresponding to 2.9 µM Trolox | [188] |
25 | South Africa | Orange Ofer and Gymnocarpo, Red-pink Meyers and Sicilian Red- purple Nudosa | Aqueous | Evaluated cultivars showed average DPPH scavenging and iron chelating activity values of 70.78% and 93.86%, respectively | [189] |
26 | South Africa | Gymnocarpo, Meyers, Nepgen | Aqueous | Aqueous extracts of fresh and dried fruit, juice, preserves and chutney showed average values of 87,33% for iron chelating activity and 87.86% DPPH scavenge | [190] |
27 | Egypt | Not specified | Ethanolic and ethyl acetate | EC50 values of ethanolic pulp and peel extracts were 25.75 and 20.45 µg/mL, respectively, on the other hand, ethyl acetate extracts showed values of 39.77 and 35.77 µg/mL, respectively | [157] |
28 | Spain | Not specified | Methanol | Fruit extracts showed 6.70 µM Trolox/g f.w for DPPH assay and 5.22 µM Trolox/g f.w for ABTS assay | [12] |
29 | Spain | Yellow | Juice | Yellow juice showed 4.8 µM Trolox/g for DPPH assay and 5.9 µM Trolox/g for ABTS assay | [110] |
30 | Italy | Yellow 95% + Red 5% blend | Juice and aqueous extract | Fruit juice and aqueous extract showed EC50 values for DPPH scavenging of 6.75 µL/mL and 7.68 µL/mL, respectively | [81] |
31 | Morocco | Not specified | Juice | Fruit juice showed EC50 values for DPPH scavenging of 13.20 µL/mL | [191] |
32 | Mexico & Spain | Morada, Sanguino and Verdal | Methanol:water (1:1) | Peel extracts showed the highest ORAC activity, around 67.8 mM Trolox/L, Sanguinos, Verdal and Pelota whole fruit extracts presented high antioxidant activity of 42.2, 41.4, 45.0 mM Trolox/L | [192] |
33 | Mexico | Pelota and Sanguino | Methanol:water (1:1) | Samples treated with high hydrostatic pressure (HHP) showed ORAC values of 297.6 (peel) and 81.4 (pulp) for Pelota; 192.3 (peel) and 56.9 (pulp) µM Trolox/g d.w | [193] |
34 | Australia | Purple, Orange and White | Methanol:water (7:3) | Results indicated that there are differences in antioxidant activity not only among varieties, but sample preparation and type of tissue also have a great impact on total antioxidant capacity | [35] |
35 | Portugal | Orange, Green, Gialla and Rossa | Not specified | Peel and pulp extract average values were 3.34 and 2.93 µM Trolox/g f.w for ABTS, on the other hand, they showed 0.60 and 0.30 µM Trolox/g f.w for DPPG activity | [194] |
36 | Pakistan | Not specified | Methanol:water (1:1) | All fruit extracts showed mean EC50 values of 2.32 mg/mL, 2.68 mg/mL and 2.88 mg/mL for DPPH, reducing power activity and iron chelating activity | [195] |
37 | San Martin & Cristal | Mexican Cultivar | Juice | High hydrostatic pressure (HHP) increased antioxidant activity for ORAC of juices between 30–75% depending on the cultivar | [113] |
38 | Italy | Yellow-green and Red-Orange | Juice | Yellow-green Messina juices showed a maximum of 75.63% and red-orange Lakonia 69.90% DPPH scavenging activity | [196] |
39 | Tunisia | Not specified | Juice | DPPH scavenging activity of juice after 30 min of incubation was 10.3% | [165] |
40 | Italy | Yellow, Orange and Red | Aqueous | Red variety showed the highest antioxidant activity followed by orange and yellow varieties for DPPH, ABTS and FRAP assays | [40] |
41 | USA | Green | Not specified | Fruit extract showed 26.3 µM Trolox equivalent for ORAC, with 0.78 correlation coefficients between ORAC and flavonoid | [14] |
41 | Italy | Bastardoni and Agostani Red, Yellow and white | Methanol | Altitude has a great influence in antioxidant activity, Agostani varieties showed a maximum value of 17 µM Trolox/g at 480 mt, whereas Bastardoni varieties were not influenced by altitude, with mean values around 25 µM Trolox/g for ORAC assay | [150] |
43 | Italy | Gialla Orange-Red and Sanguigna | Ethanol:water (8:2) | Gialla and Sanguigna” skin extract showed EC50 values of 4.6 and 4.1 mg/mL DPPH scavenging, 2.65 and 2.08 mg/mL reducing power activity and 3.87 and 6.49 mg/mL β-carotene, respectively | [150] |
44 | Egypt | Red and Yellow- Orange | Methanol:water (7:3) | Peel extract showed average values almost two-fold higher than pulp extracts for ABTS 8.3 µM Trolox/100 mg), the same pattern was observed for the Fremy’s salt assay | [33] |
45 | Mexico | Huatusco, Copena, Jade, Solferino and Roja Villaneuva | Methanol | DPPH EC50 average values of peel extracts ranged from 20 to 160 µg d.w/mL and 30 and 100 µg d.w /mL | [197] |
46 | Portugal | White, Yellow, Orange & Red | Juice | Juice showed different EC50 values for DPPH, ranging from 0,65 g/L white to 1.12 g/L orange, antioxidant activity is influenced by the location where samples were collected | [198] |
47 | Iran | Not specified | Aqueous | Antioxidant activity of gum extract is dependent on concentration, showing a maximum activity of 80% at 400 µg/mL | [199] |
48 | India | Not specified | Methanol | Summer season extracts showed barely higher activities than winter season extracts for DPPH, ICA, NO, SOD, OH¯ scavenging, FRAP, H2O2 Scavenging and ABTS | [151] |
49 | Portugal | Not specified | Juice | Tramagal and Beja juice antioxidant activity was 33.4 and 27.8 mM Trolox for ORAC, 13.9 and 11.5 mM Trolox for HORAC, 14.9 and 11.4 mM Trolox for HOSC assay | [57] |
50 | South Korea | Not specified | Methanol:acetic acid (8:2) | Fruit extracts at maximum tested concentration 0.5 mg/mL showed 71.6% of DPPH, 63.6% of OH¯ and 78.8% alkyl radical scavenging activity | [168] |
50 | Italy | Orange, Red and Yellow | Methanol:water (9:1) | Pulp and peel extracts of orange cultivar showed approximately two-fold more activity for DPPH, ABTS, FRAP, ORAC and β-carotene than the yellow cultivar and 0.5-fold than the red cultivar | [104] |
52 | South Korea | Saboten | Ethanol:water (7:3) | Antioxidant activity of fractioned extracts measured by DPPH and ABTS were higher following the solvent sequence ethyl acetate > chloroform > n-butanol > water > n-hexane | [136] |
53 | USA | Red, purple, green and orange | Juice | Antioxidant activity of juice and pulp extracts of tested cultivars were: green 3.31 mM/L, 2.24 mM/kg ABTS and 5.45 mM/L, 3.68 mM/kg ORAC; orange 3.1 mM/L, 2.32 mM/kg ABTS and 5.83 mM/L, 4.36 mM/kg ORAC; red 3.71 mM/L, 2.60 mM/kg ABTS and 6.35 mM/L, 4.44 mM/kg ORAC; Purple 4.99 mM/L, 3.6 e mM/kg ABTS and 11.2 mM/L 8.16 mM/kg ORAC | [112] |
54 | South Korea | Not specified | Different solvent | After enzymatic hydrolysis, autoclaved and water extracts showed approximately 1-fold lower antioxidant activity for DPPH than ethanolic extracts. On the other hand, ethanolic extract was approximately 1.2-fold higher than autoclaved and water extract | [200] |
55 | Tunisia | Spiny (green-yellow and yellow) and Thornless (green and purple) | Methanol:acetic acid (9.0:0.1) | Peel and pulp extracts showed similar EC50 values for DPPH scavenging of 0.54 and 0.51 mg/mL and spiny and thornless of 0.57 and 0.56 mg/mL, respectively | [180] |
56 | Mexico | Purple | Juice | Antioxidant activity after sonication treatments at 60% and 80% amplitude levels for 15 min were similar to the control value of 26.3 mg VCEAC/100 mL juice, on the other hand, juice subjected to sonication treatments had an antioxidant activity similar to control 4.368 μM Trolox/L. The highest antioxidant activity was observed in juice treated at 80% amplitude level for 15 min 4.88 μM Trolox/L | [201] |
57 | Algeria | Not specified | Methanol:water (7:3) | Ec50 values of juice extracts were 3.52 mg/mL for DPPH, 0.80 mg/mL for ABTS, 8.04 for FRAP and 1043 μM Trolox/g d.w | [63] |
58 | Mexico | Pelon | Juice | Juice showed total antioxidant activity of 4.38 μM Trolox/g d.w and 4.91 μM FeSO4 Trolox/g d.w | [202] |
59 | Egypt | Not specified | Methanolic extract | DPPH IC50 values of peel and pulp extracts were 16.5 and 10.6 µg/mL | [45] |
60 | Portugal | Yellow | Ethanolic extract | Ohmic, high pressure extraction and combination of both techniques increased the antioxidant activity by 63%, 18% and 41%, respectively | [58] |
61 | Spain | Yellow | Methanol:water (8:2) | Hydrophilic total antioxidant activity increased during storage conditions. Meanwhile lipophilic total antioxidant activity remained constant during storage conditions | [40] |
62 | Saudi Arabia | Not specified | Different solvent | Solvent polarity and extraction procedure exert influence on the antioxidant activity. In a general way, samples with soxhlet extraction were more active than maceration ones. Additionally, for the DPPH assay, the acetone solvent was the most active, whereas the methanolic extract showed better activity for the reducing power and carotene assays | [59] |
63 | Tunisia | Yellow and red | Different solvent | Acetone fraction from yellow peel fruit with an EC50 of 784 μg/mL for the DPPH assay. Broadly. peel extracts were more active than pulp extract for the ABTS assay regardless of the solvent; all extracts showed ec50 values lower than 40 μg/mL. From all the tested samples, the yellow peel acetone extract was the most active with the highest reducing power of 1.23 mg/mL | [61] |
References
- De Leo, M.; De Abreu, M.B.; Pawlowska, A.; Cioni, P.; Braca, A. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem. Lett. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Abascal, K.; Yarnell, E. A Review of Prickly Pear the Upscale Medicinal Food. Altern. Complement. Ther. 2000, 6, 265–271. [Google Scholar] [CrossRef]
- Kluge, M.; Ting, I.P. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 30. [Google Scholar]
- Ayadi, M.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Ind. Crop. Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Rocchetti, G.; Pellizzoni, M.; Montesano, D.; Lucini, L. Italian Opuntia ficus-indica Cladodes as Rich Source of Bioactive Compounds with Health-Promoting Properties. Foods 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Lamine, M.; Damergi, B.; Ezahra, F.; Feres, N.; Jallouli, S.; Hammami, M.; Khammassi, S.; Selmi, S.; Elkahoui, S.; et al. Natural colourants analysis and biological activities. Association to molecular markers to explore the biodiversity of Opuntia species. Phytochem. Anal. 2020, 31, 892–904. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Chaalal, M.; Louaileche, H.; Parrado, J.; Heredia, F.J. Betalain Profile, Phenolic Content, and Color Characterization of Different Parts and Varieties of Opuntia ficus-indica. J. Agric. Food Chem. 2014, 62, 8491–8499. [Google Scholar] [CrossRef]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica). Arab. J. Chem. 2016, 9, S278–S281. [Google Scholar] [CrossRef] [Green Version]
- Cano, M.; Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J. Characterization of carotenoid profile of Spanish Sanguinos and Verdal prickly pear (Opuntia ficus-indica, spp.) tissues. Food Chem. 2017, 237, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, E.-S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef]
- Dhaouadi, K.; Raboudi, F.; Funez-Gomez, L.; Pamies, D.; Estevan, C.; Hamdaoui, M.; Fattouch, S. Polyphenolic Extract of Barbary-Fig (Opuntia ficus-indica) Syrup: RP–HPLC–ESI–MS Analysis and Determination of Antioxidant, Antimicrobial and Cancer-Cells Cytotoxic Potentials. Food Anal. Methods 2013, 6, 45–53. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic Composition, Antioxidant Capacity and In Vitro Cancer Cell Cytotoxicity of Nine Prickly Pear (Opuntia spp.) Juices. Plant Foods Hum. Nutr. 2009, 64, 146–152. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Castellar, R.; Obón, J.M.; Almela, L. Screening and mass-spectral confirmation of betalains in cactus pears. Chromatographia 2002, 56, 591–595. [Google Scholar] [CrossRef]
- Bensadón, S.; Hervert-Hernández, D.; Sáyago-Ayerdi, S.G.; Goñi, I. By-Products of Opuntia ficus-indica as a Source of Antioxidant Dietary Fiber. Plant Foods Hum. Nutr. 2010, 65, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gutiérrez, M.G.; Amaya-Guerra, C.A.; Quintero-Ramos, A.; de Jesús Ruiz-Anchondo, T.; Gutiérrez-Uribe, J.A.; Baez-González, J.G.; Lardizabal-Gutiérrez, D.; Campos-Venegas, K. Effect of soluble fiber on the physicochemical properties of cactus pear (Opuntia ficus indica) encapsulated using spray drying. Food Sci. Biotechnol. 2014, 23, 755–763. [Google Scholar] [CrossRef]
- Zenteno-Ramirez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Ortiz-Pérez, M.D.; Zamora-Pedraza, C.; Rendón-Huerta, J.A. Evaluation of Sugars and Soluble Fiber in the Juice of Prickly Pear Varieties (Opuntia Spp.). Agrociencia 2015, 49, 141–152. [Google Scholar]
- Cano, M.P.; Gómez-Maqueo, A.; Fernández-López, R.; Welti-Chanes, J.; García-Cayuela, T. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food Res. Int. 2019, 123, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Mörsel, J.-T. Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem. 2003, 83, 447–456. [Google Scholar] [CrossRef]
- Aregahegn, A.; Chandravanshi, B.; Atlabachew, M.; Ababa, A. Mineral contents of fruits of cactus pear (Opuntia ficus indica) grown in ethiopia. Acta Hortic. 2013, 979, 117–126. [Google Scholar] [CrossRef]
- Ali, H.S.M.; Al-Khalifa, A.S.; Brückner, H. Taurine is absent from amino components in fruits of Opuntia ficus-indica. Springerplus 2014, 3, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugler, F.; Graneis, S.; Schreiter, P.P.-Y.; Stintzing, F.C.; Carle, R. Determination of Free Amino Compounds in Betalainic Fruits and Vegetables by Gas Chromatography with Flame Ionization and Mass Spectrometric Detection. J. Agric. Food Chem. 2006, 54, 4311–4318. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Morreale, V.; Pecoraino, M.; Pagliaro, M. Solar air drying for innovative Opuntia ficus-indica cladode dehydration. 4open 2019, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Valero-Galván, J.; González-Fernández, R.; Sigala-Hernández, A.; Núñez-Gastélum, J.A.; Ruiz-May, E.; Rodrigo-García, J.; Larqué-Saavedra, A.; del Rocio Martínez-Ruiz, N. Sensory attributes, physicochemical and antioxidant characteristics, and protein profile of wild prickly pear fruits (O. macrocentra Engelm., O. phaeacantha Engelm., and O. engelmannii Salm-Dyck ex Engelmann.) and commercial prickly pear fruits (O. ficus-indica (L.) Mill.). Food Res. Int. 2021, 140, 109909. [Google Scholar] [CrossRef]
- Cruz-Bravo, R.K.; Guzmán-Maldonado, S.H.; Araiza-Herrera, H.A.; Zegbe, J.A. Storage alters physicochemical characteristics, bioactive compounds and antioxidant capacity of cactus pear fruit. Postharvest Biol. Technol. 2019, 150, 105–111. [Google Scholar] [CrossRef]
- Alimi, H.; Hfaeidh, N.; Bouoni, Z.; Sakly, M.; Ben Rhouma, K. Protective effect of Opuntia ficus indica f. inermis prickly pear juice upon ethanol-induced damages in rat erythrocytes. Alcohol 2012, 46, 235–243. [Google Scholar] [CrossRef]
- Cho, D.-W.; Kim, D.-E.; Lee, D.-H.; Jung, K.-H.; Hurh, B.-S.; Kwon, O.W.; Kim, S.Y. Metabolite profiling of enzymatically hydrolyzed and fermented forms of Opuntia ficus-indica and their effect on UVB-induced skin photoaging. Arch. Pharmacal Res. 2014, 37, 1159–1168. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Matwijczuk, A.; Dib, A.; Markut-Miotła, E. Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products. Molecules 2020, 25, 916. [Google Scholar] [CrossRef] [Green Version]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; El-Hady, E.-S.A.A.; Omran, H.T.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Res. Int. 2014, 64, 864–872. [Google Scholar] [CrossRef]
- Andreu, L.; Nuncio-Jáuregui, N.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J. Sci. Food Agric. 2018, 98, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Gouws, C.A.; D’Cunha, N.M.; Georgousopoulou, E.N.; Mellor, D.D.; Naumovski, N. The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian-grown prickly pears (Opuntia ficus indica). J. Food Process. Preserv. 2019, 43, e13900. [Google Scholar] [CrossRef]
- Karunanithi, A.; Venkatachalam, S. Ultrasonic-assisted solvent extraction of phenolic compounds from Opuntia ficus-indica peel: Phytochemical identification and comparison with soxhlet extraction. J. Food Process. Eng. 2019, 42, e13126. [Google Scholar] [CrossRef]
- Surano, B.; Leiva, G.; Marshall, G.; Maglietti, F.; Schebor, C. Pulsed electric fields using a multiple needle chamber to improve bioactive compounds extraction from unprocessed Opuntia ficus-indica fruits. J. Food Eng. 2022, 317, 110864. [Google Scholar] [CrossRef]
- Belviranlı, B.; Al-Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Alsawmahi, O.N. Effect of location on some physico-chemical properties of prickly pear (Opuntia ficus-indica L.) fruit and seeds. J. Food Process. Preserv. 2019, 43, e13896. [Google Scholar] [CrossRef]
- Herrera, M.D.; Zegbe, J.A.; Melero-Meraz, V.; Cruz-Bravo, R.K. Functional Properties of Prickly Pear Cactus Fruit Peels Undergoing Supplemental Irrigation and Fruit Storage Conditions. Plant Foods Hum. Nutr. 2021, 76, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Coll, L.; García-Pastor, M.; Valero, D.; Amorós, A.; Almansa, M.S.; Legua, P.; Hernández, F. Influence of Storage on Physiological Properties, Chemical Composition, and Bioactive Compounds on Cactus Pear Fruit (Opuntia ficus-indica (L.) Mill.). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Antunes-Ricardo, M.; Welti-Chanes, J.; Cano, M.P. Digestive Stability and Bioaccessibility of Antioxidants in Prickly Pear Fruits from the Canary Islands: Healthy Foods and Ingredients. Antioxidants 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Mazari, A.; Yahiaoui, K.; Fedjer, Z.; Mahdeb, A. Physical characteristics, phytochemical content and antioxidant activity of cactus pear fruits growing in northeast Algeria. J. Prof. Assoc. cactus Dev. 2018, 20, 178–188. [Google Scholar] [CrossRef]
- Chougui, N.; Djerroud, N.; Naraoui, F.; Hadjal, S.; Aliane, K.; Zeroual, B.; Larbat, R. Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem. 2015, 173, 382–390. [Google Scholar] [CrossRef]
- Benattia, F.K.; Arrar, Z. Antioxidative and Antiradical Activities of Bioactive Compounds of Extracts from Algerian Prickly Pear (Opuntia ficus-indica. L.) Fruits. Curr. Nutr. Food Sci. 2018, 14, 211–217. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, A.G.; Shehata, M.G.; Badr, A.; Gromadzka, K.; Stępień, L. The Effect of Chemical Composition of Wild Opuntia ficus indica Byproducts on its Nutritional Quality, Antioxidant and Antifungal Efficacy. Egypt. J. Chem. 2019, 62, 47–61. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Prodromiti, M.; Gatzias, I.; Badeka, A. Bio-functional alcoholic beverage preparation using prickly pear juice and its pulp in combination with sugar and blossom honey. Food Biosci. 2020, 35, 100591. [Google Scholar] [CrossRef]
- Palmeri, R.; Parafati, L.; Arena, E.; Grassenio, E.; Restuccia, C.; Fallico, B. Antioxidant and Antimicrobial Properties of Semi-Processed Frozen Prickly Pear Juice as Affected by Cultivar and Harvest Time. Foods 2020, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Bouzoubaâ, Z.; Essoukrati, Y.; Tahrouch, S.; Hatimi, A.; Gharby, S.; Harhar, H. Phytochemical study of prickly pear from southern Morocco. J. Saudi Soc. Agric. Sci. 2016, 15, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Ettalibi, F.; Elmahdaoui, H.; Amzil, J.; Gadhi, C.; Harrak, H. Drying impact on physicochemical and biochemical criteria of prickly pear fruit peels of three varieties of Opuntia spp. Mater. Today: Proc. 2020, 27, 3243–3248. [Google Scholar] [CrossRef]
- Bourhia, M.; Elmahdaoui, H.; Ullah, R.; Ibenmoussa, S.; Shahat, A. Physicochemical evaluation of the fruit pulp of Opuntia spp. growing in the Mediterranean area under hard climate conditions. Open Chem. 2020, 18, 565–575. [Google Scholar] [CrossRef]
- Monter-Arciniega, A.; Hernández-Falcón, T.A.; Cruz-Cansino, N.D.S.; Ramírez-Moreno, E.; Alanís-García, E.; Arias-Rico, J.; Ariza-Ortega, J.A. Functional Properties, Total Phenolic Content and Antioxidant Activity of Purple Cactus Pear (Opuntia ficus-indica) Waste: Comparison with Commercial Fibers. Waste Biomass Valorization 2019, 10, 2897–2906. [Google Scholar] [CrossRef]
- Gonzalez, F.P.H.; Saucedo, V.C.; Guerra, R.D.; Suarez, E.J.; Soto, H.R.M.; Lopez, J.A.; Garcia, C.E.; Hernández, R.G. Post-harvest quality and quantification of betalains, phenolic compounds and antioxidant activity in fruits of three cultivars of prickly pear (Opuntia ficus-indica L. Mill). J. Hortic. Sci. 2021, 16, 91–102. [Google Scholar] [CrossRef]
- Martínez, E.; Sandate-Flores, L.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Parra-Arroyo, L.; Antunes-Ricardo, M.; Serna-Saldívar, S.; Iqbal, H.; Parra-Saldívar, R. Underutilized Mexican Plants: Screening of Antioxidant and Antiproliferative Properties of Mexican Cactus Fruit Juices. Plants 2021, 10, 368. [Google Scholar] [CrossRef]
- Ordoñez, E.; Leon-Arevalo, A.; Rivera-Rojas, H.; Vargas, E. Cuantificación de Polifenoles Totales y Capacidad Antioxidante En Cáscara y Semilla de Cacao (Theobroma cacao L.), Tuna (Opuntia ficus indica Mill), Uva (Vitis vinífera) y Uvilla (Pourouma cecropiifolia). Sci. Agropecu. 2019, 10, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Morales, N.X.C.; Gómez, K.Y.V.; Schweiggert, R.M.; Delgado, G.T.C. Stabilisation of betalains and phenolic compounds extracted from red cactus pear (Opuntia ficus-indica) by spray and freeze-drying using oca (Oxalis tuberosa) starch as drying aid. Food Sci. Technol. Int. 2021, 27, 456–469. [Google Scholar] [CrossRef]
- Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res. Int. 2013, 54, 892–901. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Coelho, M.C.; Ozcan, K.; Pinto, C.A.; Teixeira, J.A.; Saraiva, J.A.; Pintado, M. Emergent Technologies for the Extraction of Antioxidants from Prickly Pear Peel and Their Antimicrobial Activity. Foods 2021, 10, 570. [Google Scholar] [CrossRef]
- Atiya, A.; Majrashi, T.; Abdul Qadir, S.F.; Alqahtani, A.S.; Ali Alosman, A.S.; Alahmari, A.A.; Mesfer Al Aldabsh, A.N.; Alshahrani, A.T.; Alshahrani, R.R.M. Influence of solvent selection and extraction methods on the determination of polyphenols, antioxidant, lipoxygenase and tyrosinase inhibition activities of Opuntia ficus-indica fruits peel and pulp collected from the Kingdom of Saudi Arabia (KSA). Nat. Prod. Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. Lwt 2020, 124, 109155. [Google Scholar] [CrossRef]
- El Mannoubi, I. Effect of extraction solvent on phenolic composition, antioxidant and antibacterial activities of skin and pulp of Tunisian red and yellow–orange Opuntia ficus indica fruits. J. Food Meas. Charact. 2021, 15, 643–651. [Google Scholar] [CrossRef]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Ben Amor, N.; Vecchio, G.L.; Nava, V.; Rando, R.; Ben Mansour, H.; Turco, V.L. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. [Google Scholar] [CrossRef]
- Zeghad, N.; Ahmed, E.; Belkhiri, A.; Heyden, Y.V.; Demeyer, K.; Zeghad, N.; Ahmed, E.; Belkhiri, A.; Heyden, Y.V.; Demeyer, K. Antioxidant activity of Vitis vinifera, Punica granatum, Citrus aurantium and Opuntia ficus indica fruits cultivated in Algeria. Heliyon 2019, 5, e01575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Maqueo, A.; Ortega-Hernández, É.; Serrano-Sandoval, S.N.; Jacobo-Velázquez, D.A.; García-Cayuela, T.; Cano, M.P.; Welti-Chanes, J. Addressing key features involved in bioactive extractability of vigor prickly pears submitted to high hydrostatic pressurization. J. Food Process. Eng. 2020, 43, e13202. [Google Scholar] [CrossRef]
- Manzur-Valdespino, S.; Ramírez-Moreno, E.; Arias-Rico, J.; Jaramillo-Morales, O.A.; Calderón-Ramos, Z.G.; Delgado-Olivares, L.; Córdoba-Díaz, M.; Córdoba-Díaz, D.; Cruz-Cansino, N.D.S. Opuntia ficus-indica L. Mill Residues—Properties and Application Possibilities in Food Supplements. Appl. Sci. 2020, 10, 3260. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Stushnoff, C.; Walse, S.S.; Zuber, T.; Yang, S.I.; Pickering, I.; Freeman, J.L. Biofortified, selenium enriched, fruit and cladode from three Opuntia Cactus pear cultivars grown on agricultural drainage sediment for use in nutraceutical foods. Food Chem. 2012, 135, 9–16. [Google Scholar] [CrossRef]
- Ortega-Hernández, E.; Welti-Chanes, J.; Jacobo-Velázquez, D.A. Effects of UVB Light, Wounding Stress, and Storage Time on the Accumulation of Betalains, Phenolic Compounds, and Ascorbic Acid in Red Prickly Pear (Opuntia ficus-indica cv. Rojo Vigor). Food Bioprocess Technol. 2018, 11, 2265–2274. [Google Scholar] [CrossRef]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef]
- Tsao, G.T.; Cao, N.J.; Du, J.; Gong, C.S. Production of Multifunctional Organic Acids from Renewable Resources. In Recent Progress in Bioconversion of Lignocellulosics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 65, pp. 243–280. [Google Scholar] [CrossRef]
- Goldberg, I.; Rokem, J.S.; Pines, O. Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Johnston, C.S.; Steinberg, F.M.; Rucker, R.B. Ascorbic Acid. In Handbook of Vitamins; CRC Press: Boca Raton, FL, USA, 2007; Volume 4, pp. 489–520. [Google Scholar]
- Marques, C.; Sotiles, A.R.; Farias, F.O.; Oliveira, G.; Mitterer-Daltoé, M.L.; Masson, M.L. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels. Arab. J. Chem. 2020, 13, 9118–9129. [Google Scholar] [CrossRef]
- Hossain, F.; Akhtar, S.; Anwar, M. Nutritional Value and Medicinal Benefits of Pineapple. Int. J. Nutr. Food Sci. 2015, 4, 84–88. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.; Semedo, C.; Serra, T.; Duarte, C.; Bronze, M. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Maamoun, A.A.; Ehrlich, A.; Fahmy, S.; Wesjohann, L.A. Assessment of sensory metabolites distribution in 3 cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques. LWT 2017, 80, 145–154. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, A.; Sharma, R. Pharmacological actions of Opuntia ficus indica: A Review. J. Appl. Pharm. Sci. 2012, 2, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Kristbergsson, K.; Otles, S. Functional Properties of Traditional Foods; Springer: Cham, Switzerland, 2016; Volume 12, ISBN 1489976620. [Google Scholar]
- Lamia, I.; Zouhir, C.; Youcef, A. Characterization and transformation of the Opuntia ficus indica fruits. J. Food Meas. Charact. 2018, 12, 2349–2357. [Google Scholar] [CrossRef]
- Butera, D.; Tesoriere, L.; Di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Kohen, R.; Livrea, M.A. Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus indica) Fruit Extracts and Reducing Properties of Its Betalains: Betanin and Indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [Green Version]
- Galati, E.M.; Mondello, M.R.; Giuffrida, D.; Dugo, G.; Miceli, N.; Pergolizzi, S.; Taviano, M.F. Chemical Characterization and Biological Effects of Sicilian Opuntia ficus indica (L.) Mill. Fruit Juice: Antioxidant and Antiulcerogenic Activity. J. Agric. Food Chem. 2003, 51, 4903–4908. [Google Scholar] [CrossRef]
- El Kharrassi, Y.; Mazri, M.A.; Benyahia, H.; Benaouda, H.; Nasser, B.; El Mzouri, E.H. Fruit and juice characteristics of 30 accessions of two cactus pear species (Opuntia ficus indica and Opuntia megacantha) from different regions of Morocco. LWT Food Sci. Technol. 2016, 65, 610–617. [Google Scholar] [CrossRef]
- Bourhia, M.; Elmahdaoui, H.; Ullah, R.; Bari, A.; Benbacer, L. Promising Physical, Physicochemical, and Biochemical Background Contained in Peels of Prickly Pear Fruit Growing under Hard Ecological Conditions in the Mediterranean Countries. BioMed Res. Int. 2019, 2019, 9873146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourhia, M.; Elmahdaoui, H.; Moussa, S.I.; Ullah, R.; Bari, A. Potential Natural Dyes Food from the Powder of Prickly Pear Fruit Peels (Opuntia spp.) Growing in the Mediterranean Basin under Climate Stress. BioMed Res. Int. 2020, 2020, 7579430. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Maqueo, A.; Soccio, M.; Cano, M.P. In Vitro Antioxidant Capacity of Opuntia spp. Fruits Measured by the LOX-FL Method and its High Sensitivity Towards Betalains. Plant Foods Hum. Nutr. 2021, 76, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Carotenes and xanthophylls as antioxidants. In Handbook of Antioxidants for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 17–50. [Google Scholar] [CrossRef]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatti, P.; Peluso, G.; Nicolai, R.; Calvani, M. Polyunsaturated Fatty Acids: Biochemical, Nutritional and Epigenetic Properties. J. Am. Coll. Nutr. 2004, 23, 281–302. [Google Scholar] [CrossRef]
- Tesoriere, L.; Fazzari, M.; Allegra, M.; Livrea, M.A. Biothiols, Taurine, and Lipid-Soluble Antioxidants in the Edible Pulp of Sicilian Cactus Pear (Opuntia ficus-indica) Fruits and Changes of Bioactive Juice Components upon Industrial Processing. J. Agric. Food Chem. 2005, 53, 7851–7855. [Google Scholar] [CrossRef]
- Hernández-Pérez, T.; Carrillo-López, A.; Guevara-Lara, F.; Cruz-Hernández, A.; Paredes-López, O. Biochemical and Nutritional Characterization of Three Prickly Pear Species with Different Ripening Behavior. Plant Foods Hum. Nutr. 2005, 60, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Bakar, B.; Çakmak, M.; Ibrahim, M.S.; Özer, D.; Saydam, S.; Karatas, F. Investigation of Amounts of Vitamins, Lycopene, and Elements in the Fruits of Opuntia ficus-indica Subjected to Different Pretreatments. Biol. Trace Element Res. 2020, 198, 315–323. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, A.; Legua, P.; Hernández, F. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Elsawi, S.A.; Radwan, R.R.; Elbatanony, M.M.; El-Feky, A.M.; Sherif, N.H. Prophylactic Effect of Opuntia ficus indica Fruit Peel Extract against Irradiation-Induced Colon Injury in Rats. Planta Medica 2020, 86, 61–69. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Louppis, A.; Badeka, A.; Kontominas, M.G.; Papastephanou, C. Valorization of Prickly Pear Juice Geographical Origin Based on Mineral and Volatile Compound Contents Using LDA. Foods 2019, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Agozzino, P.; Avellone, G.; Ceraulo, L.; Ferrugia, M.; Filizzola, F. Volatile Profiles of Sicilian Prickly Pear (Opuntia ficus-indica) by SPME-GC/MS Analysis. Ital. J. food Sci. 2005, 17, 341–348. [Google Scholar]
- Andreu-Coll, L.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Volatile composition of prickly pear fruit pulp from six Spanish cultivars. J. Food Sci. 2020, 85, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Arena, E.; Campisi, S.; Fallico, B.; Lanza, M.C.; Maccarone, E. Aroma Value of Volatile Compounds of Prickly Pear (Opuntia ficus indica (L.) Mill., Cactaceae). Ital. J. Food Sci. 2001, 13, 311–319. [Google Scholar]
- Karadağ, A.E.; Demirci, B.; Polat, D.Ç.; Okur, M.E. Characterization of Opuntia ficus-indica (L.) Mill. Fruit Volatiles and Antibacterial Evaluation. Nat. Volatiles Essent. Oils 2018, 5, 35–38. [Google Scholar]
- Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juices. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Mondragon-Jacobo, C.; Yahia, E.M.; Castellanos, E. Identification and Quantification of Pigments in Prickly Pear Fruit. In VI International Postharvest Symposium 877; International Society for Horticultural Science: Leuven, Belgium, 2009; pp. 1129–1136. [Google Scholar] [CrossRef]
- Dantas, R.L.; Silva, S.M.; Santos, L.F.; Dantas, A.L.; Lima, R.P.; Soares, L.G. Betalains and Antioxidant Activity in Fruits of Cactaceae from Brazilian Semiarid. In VIII International Congress on Cactus Pear and Cochineal 1067; International Society for Horticultural Science: Leuven, Belgium, 2013; pp. 151–157. [Google Scholar] [CrossRef]
- Cova, A.M.; Crascì, L.; Panico, A.; Catalfo, A.; De Guidi, G. Antioxidant capability and phytochemicals content of Sicilian prickly fruits. Int. J. Food Sci. Nutr. 2015, 66, 881–886. [Google Scholar] [CrossRef]
- Smeriglio, A.; Bonasera, S.; Germanò, M.P.; D’Angelo, V.; Barreca, D.; Denaro, M.; Monforte, M.T.; Galati, E.M.; Trombetta, D. Opuntia ficus-indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. Phytother. Res. 2019, 33, 1526–1537. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Steurer, D.; Welti-Chanes, J.; Cano, M.P. Bioaccessibility of Antioxidants in Prickly Pear Fruits Treated with High Hydrostatic Pressure: An Application for Healthier Foods. Molecules 2021, 26, 5252. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dye. Pigment. 2012, 95, 465–472. [Google Scholar] [CrossRef]
- Mejia, J.; Yáñez-Fernandez, J. Clarification Processes of Orange Prickly Pear Juice (Opuntia spp.) by Microfiltration. Membranes 2021, 11, 354. [Google Scholar] [CrossRef]
- Moßhammer, M.R.; Rohe, M.; Stintzing, F.C.; Carle, R. Stability of yellow-orange cactus pear (Opuntia ficus-indica [L.] Mill. cv. ‘Gialla’) betalains as affected by the juice matrix and selected food additives. Eur. Food Res. Technol. 2007, 225, 21–32. [Google Scholar] [CrossRef]
- El Gharras, H.; Hasib, A.; Jaouad, A.; Schoefs, B.; El-Bouadili, A. Stability of vacuolar betaxanthin pigments in juices from Moroccan yellow Opuntia ficus indica fruits. Int. J. Food Sci. Technol. 2008, 43, 351–356. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Roca, M.J.; Angosto, J.M.; Obón, J.M. Betaxanthin-Rich Extract from Cactus Pear Fruits as Yellow Water-Soluble Colorant with Potential Application in Foods. Plant Foods Hum. Nutr. 2018, 73, 146–153. [Google Scholar] [CrossRef]
- Moßhammer, M.R.; Stintzing, F.C.; Carle, R. Cactus Pear Fruits (Opuntia Spp.): A Review of Processing Technologies and Current Uses. J. Prof. Assoc. Cactus Dev. 2006, 8, 1–25. [Google Scholar]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aguilar, D.M.; Avellaneda, Z.J.E.; Martín-Belloso, O.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; García, R.M.; Torres, J.A.; Welti-Chanes, J. Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages. Food Eng. Rev. 2015, 7, 198–208. [Google Scholar] [CrossRef]
- Santos, R.P.; Souza, L.M.; Balieiro, A.L.; Soares, C.M.F.; Lima, Á.S.; Souza, R.L. Integrated process of extraction and purification of betanin from Opuntia ficus-indica using aqueous two-phase systems based on THF and sodium salts. Sep. Sci. Technol. 2018, 53, 734–744. [Google Scholar] [CrossRef]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Rastija, V.; Lucic, B.; Trinajstic, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef]
- Abou-Elella, F.M.; Ali, R.F.M. Antioxidant and Anticancer Activities of Different Constituents Extracted from Egyptian Prickly Pear Cactus (Opuntia ficus-indica) Peel. Biochem. Anal. Biochem. 2014, 3, 1009–2161. [Google Scholar] [CrossRef] [Green Version]
- Handique, J.; Baruah, J. Polyphenolic compounds: An overview. React. Funct. Polym. 2002, 52, 163–188. [Google Scholar] [CrossRef]
- Azeredo, H.M. Betalains: Properties, sources, applications, and stability—A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Terzo, S.; Attanzio, A.; Calvi, P.; Mulè, F.; Tesoriere, L.; Allegra, M.; Amato, A. Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants 2021, 11, 80. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, Y.; Guo, T.; Veeraraghavan, V.P.; Wang, X. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K /Akt/ mTOR signaling pathway. Environ. Toxicol. 2021, 36, 1011–1020. [Google Scholar] [CrossRef]
- Naselli, F.; Tesoriere, L.; Caradonna, F.; Bellavia, D.; Attanzio, A.; Gentile, C.; Livrea, M.A. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16INK4a gene in human colorectal carcinoma (Caco-2) cells. Biochem. Biophys. Res. Commun. 2014, 450, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramovič, H.; Grobin, B.; Ulrih, N.P.; Cigić, B. Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. [Google Scholar] [CrossRef] [Green Version]
- Schaich, K.; Tian, X.; Xie, J. Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays”. J. Funct. Foods 2015, 18, 782–796. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; El Hady, S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci. 2013, 58, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-Y.; Li, Q.; Bi, K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Arnao, M.B. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alimi, H.; Hfaeidh, N.; Bouoni, Z.; Sakly, M.; Ben Rhouma, K. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes. Exp. Toxicol. Pathol. 2013, 65, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm. Biol. 2016, 54, 260–265. [Google Scholar] [CrossRef]
- Bisson, J.-F.; Daubié, S.; Hidalgo, S.; Guillemet, D.; Linarés, E. Diuretic and antioxidant effects of Cacti-Nea®, a dehydrated water extract from prickly pear fruit, in rats. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 24, 587–594. [Google Scholar] [CrossRef]
- Souid, S.; Brahmi, D.; Lepesant, J.-A.; Zourgui, L. Cactus (Opuntia ficus indica) extract improves endoplasmic reticulum stress in Drosophila melanogaster. Afr. J. Biotechnol. 2011, 10, 14699–14705. [Google Scholar] [CrossRef]
- Son, J.-E.; Lee, B.H.; Nam, T.G.; Im, S.; Chung, D.K.; Lee, J.M.; Chun, O.K.; Kim, D.-O. Flavonols from the Ripe Fruits of O puntia ficus-indica Var. saboten Protect Neuronal PC-12 Cells against Oxidative Stress. J. Food Biochem. 2014, 38, 518–526. [Google Scholar] [CrossRef]
- Tesoriere, L.; Butera, D.; Pintaudi, A.M.; Allegra, M.; Livrea, M.A. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: A comparative study with vitamin C. Am. J. Clin. Nutr. 2004, 80, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Khouloud, A.; Abedelmalek, S.; Chtourou, H.; Souissi, N. The effect of Opuntia ficus-indica juice supplementation on oxidative stress, cardiovascular parameters, and biochemical markers following yo-yo Intermittent recovery test. Food Sci. Nutr. 2018, 6, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellafiore, M.; Pintaudi, A.M.; Thomas, E.; Tesoriere, L.; Bianco, A.; Cataldo, A.; Cerasola, D.; Traina, M.; Livrea, M.A.; Palma, A. Redox and autonomic responses to acute exercise-post recovery following Opuntia ficus-indica juice intake in physically active women. J. Int. Soc. Sports Nutr. 2021, 18, 43. [Google Scholar] [CrossRef]
- Alimi, H.; Hfaeidh, N.; Mbarki, S.; Bouoni, Z.; Sakly, M.; Ben Rouma, K. Evaluation of Opuntia ficus indica f. inermis fruit juice hepatoprotective effect upon ethanol toxicity in rats. Gen. Physiol. Biophys. 2012, 31, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Bounihi, A.; Bitam, A.; Bouazza, A.; Yargui, L.; Koceir, E.A. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. Pharm. Biol. 2017, 55, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Galati, E.M.; Mondello, M.R.; Lauriano, E.R.; Taviano, M.F.; Galluzzo, M.; Miceli, N. Opuntia ficus indica (L.) Mill. fruit juice protects liver from carbon tetrachloride-induced injury. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 796–800. [Google Scholar] [CrossRef]
- Al-Kubaisy, K.N.; Al Essa, L.Y.; Shawagfeh, M.T. Stimulation of Hepatocytes Repair by Fruit Juice of Opuntia ficus indica in Anti Cancer Drug Cyclophosphamide (CP)-Induced Liver Toxicity in Mice. Annu. Res. Rev. Biol. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Sung, S.; Kim, J.; Kim, T.; Kim, H.; Park, S.; Kim, H. Hepatoprotective flavonoids in Opuntia ficus-indica fruits by reducing oxidative stress in primary rat hepatocytes. Pharmacogn. Mag. 2017, 13, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Oguogho, A.; Efthimiou, Y.; Iliopoulos, J.; Stomatopoulos, J.; Ahmadzadehfar, H.; Schmid, P.; Steinbrenner, D.; Sinzinger, H. Prickly Pear Changes 111indium–LDL and 111indium–HDL Platelet Binding Correlating to Improvement of Platelet Function in Hypercholesterolemia. J. Prof. Assoc. Cactus Dev. 2010, 12, 67–79. [Google Scholar]
- Bargougui, A.; Tag, H.M.; Bouaziz, M.; Triki, S. Antimicrobial, Antioxidant, Total Phenols and Flavonoids Content of Four Cactus (Opuntia ficus-indica) Cultivars. Biomed. Pharmacol. J. 2019, 12, 1353–1368. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Aruwa, C.; Amoo, S.; Kudanga, T. Extractable and macromolecular antioxidants of Opuntia ficus-indica cladodes: Phytochemical profiling, antioxidant and antibacterial activities. South Afr. J. Bot. 2019, 125, 402–410. [Google Scholar] [CrossRef]
- Bargougui, A.; Champy, P.; Triki, S.; Bories, C.; Le Pape, P.; Loiseau, P. Antileishmanial activity of Opuntia ficus-indica fractions. Biomed. Prev. Nutr. 2014, 4, 101–104. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I. By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Ind. Crop. Prod. 2017, 107, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, A.; Ganesh, M.; Peng, M.M.; Aziz, A.S.; Jang, H.T. Comparative antioxidant and antimycobacterial activities ofOpuntia ficus-indica fruit extracts from summer and rainy seasons. Front. Life Sci. 2015, 8, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, R.; Filannino, P.; Vincentini, O.; Lanera, A.; Cavoski, I.; Gobbetti, M. Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. Food Microbiol. 2016, 59, 176–189. [Google Scholar] [CrossRef]
- Allegra, M.; Tesoriere, L.; Livrea, M.; Ianaro, A.; Panza, E. Cactus pear fruit extract exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. In VIII International Congress on Cactus Pear and Cochineal 1067; International Society for Horticultural Science: Leuven, Belgium, 2013; pp. 19–25. [Google Scholar] [CrossRef] [Green Version]
- Park, E.-H.; Kahng, J.-H.; Paek, E.-A. Studies on the pharmacological action of cactus: Identification of its anti-inflammatory effect. Arch. Pharmacal Res. 1998, 21, 30–34. [Google Scholar] [CrossRef]
- Attanzio, A.; Tesoriere, L.; Vasto, S.; Pintaudi, A.M.; Livrea, M.A.; Allegra, M. Short-term cactus pear [Opuntia ficus-indica (L.) Mill] fruit supplementation ameliorates the inflammatory profile and is associated with improved antioxidant status among healthy humans. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Barrick, B.J.; Bruce, A.J.; Kalaaji, A.N.; Bauer, B.A. Clinical Improvement of Recalcitrant Cutaneous Sarcoidosis with Regular Nutritional Supplementation with Extract of the Prickly Pear Cactus. Explore 2013, 9, 377–378. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Elmelegy, A.A.; Eldesoky, S.E.; Safwat, G. Phytochemical Screening, Antimicrobial, Antiaxidant, Anticancer Activities and Nutritional Values of Cactus (Opuntia ficus indicia) Pulp and Peel. Fresenius Environmental and Advances in Food Sciences. 2019, 28, 1545–16562. [Google Scholar]
- Briffa, M.; Ghio, S.; Neuner, J.; Gauci, A.J.; Cacciottolo, R.; Marchal, C.; Caruana, M.; Cullin, C.; Vassallo, N.; Cauchi, R.J. Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies. Neurosci. Lett. 2017, 638, 12–20. [Google Scholar] [CrossRef]
- Peña, I.J.I.D.; Yoon, S.Y.; Kim, H.J.; Shim, H.; Kim, J.H.; Cheong, N.; Paek, S.H.; Seo, Y.K.; Park, S.J.; Moon, B.S.; et al. Alleviating effects of Opuntia ficus indica extracts on psychomotor alterations induced by ethanol in rats. Food Sci. Biotechnol. 2014, 23, 2063–2068. [Google Scholar] [CrossRef]
- Butterweck, V.; Semlin, L.; Feistel, B.; Pischel, I.; Bauer, K.; Verspohl, E.J. Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytother. Res. 2011, 25, 370–375. [Google Scholar] [CrossRef]
- Deldicque, L.; Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Sievers, H.; Hespel, P. Additive insulinogenic action of Opuntia ficus-indica cladode and fruit skin extract and leucine after exercise in healthy males. J. Int. Soc. Sports Nutr. 2013, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Hespel, P. Opuntia ficus-indica Ingestion Stimulates Peripheral Disposal of Oral Glucose Before and After Exercise in Healthy Men. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 284–291. [Google Scholar] [CrossRef]
- Godard, M.P.; Ewing, B.A.; Pischel, I.; Ziegler, A.; Benedek, B.; Feistel, B. Acute blood glucose lowering effects and long-term safety of OpunDia™ supplementation in pre-diabetic males and females. J. Ethnopharmacol. 2010, 130, 631–634. [Google Scholar] [CrossRef]
- Schmitt, L.; Fouillot, J.-P.; Nicolet, G.; Midol, A. Opuntia ficus indica Increases Heart-Rate Variability in High-Level Athletes. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 169–178. [Google Scholar] [CrossRef]
- Aloui, K.; Abedelmalek, S.; Boussetta, N.; Shimi, I.; Chtourou, H.; Souissi, N. Opuntia ficus-indica juice supplementation: What role it plays on diurnal variation of short-term maximal exercise? Biol. Rhythm. Res. 2017, 48, 315–330. [Google Scholar] [CrossRef]
- Gouws, C.A.; McKune, A.; Tee, N.; Somerset, S.; Mortazavi, R. Prickly pear juice consumption after fat intake affects postprandial heart rate variability but not traditional risk factors of cardiovascular disease in healthy men. Nutrition 2021, 96, 111555. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Wiczkowski, W.; Sawicki, T.; Bartoszek, A. The comparison of betalain composition and chosen biological activities for differently pigmented prickly pear (Opuntia ficus-indica) and beetroot (Beta vulgaris) varieties. Int. J. Food Sci. Nutr. 2019, 70, 442–452. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Shahidi, F.; Jeon, Y.-J. Potential antioxidative effects of cactus pear fruit (Opuntia ficus-indica) extract on radical scavenging and dna damage reduction in human peripheral lymphocytes. J. Food Lipids 2006, 13, 445–458. [Google Scholar] [CrossRef]
- Wiese, J.; McPherson, S.; Odden, M.C.; Shlipak, M.G. Effect of Opuntia ficus indica on Symptoms of the Alcohol Hangover. Arch. Intern. Med. 2004, 164, 1334–1340. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeon, B.J.; Kim, D.H.; Kim, T.I.; Lee, H.K.; Han, D.S.; Lee, J.-H.; Kim, J.W.; Sung, S.H. Prickly Pear Cactus (Opuntia ficus indica var. saboten) Protects Against Stress-Induced Acute Gastric Lesions in Rats. J. Med. Food 2012, 15, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Akkol, E.K.; Ilhan, M.; Karpuz, B.; Genç, Y.; Sobarzo-Sánchez, E. Sedative and Anxiolytic Activities of Opuntia ficus indica (L.) Mill.: An Experimental Assessment in Mice. Molecules 2020, 25, 1844. [Google Scholar] [CrossRef] [Green Version]
- An, B.H.; Jeong, H.; Zhou, W.; Liu, X.; Kim, S.; Jang, C.Y.; Kim, H.-S.; Sohn, J.; Park, H.-J.; Sung, N.-H.; et al. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator. Phytotherapy Res. 2016, 30, 971–980. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, S.; Kim, M.-Y.; Lee, J.; An, B.H.; Kim, H.-D.; Jeong, H.; Song, Y.S.; Chang, M. Inhibitory and Inductive Effects of Opuntia ficus indica Extract and Its Flavonoid Constituents on Cytochrome P450s and UDP-Glucuronosyltransferases. Int. J. Mol. Sci. 2018, 19, 3400. [Google Scholar] [CrossRef] [Green Version]
- Baldassano, S.; Tesoriere, L.; Rotondo, A.; Serio, R.; Livrea, M.A.; Mulè, F. Inhibition of the Mechanical Activity of Mouse Ileum by Cactus Pear (Opuntia ficus indica, L., Mill.) Fruit Extract and Its Pigment Indicaxanthin. J. Agric. Food Chem. 2010, 58, 7565–7571. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Sebai, H.; Marzouki, L. Opposite Effect of Opuntia ficus-indica L. Juice Depending on Fruit Maturity Stage on Gastrointestinal Physiological Parameters in Rat. J. Med. Food 2018, 21, 617–624. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Saidani, K.; Grami, D.; Amri, M.; Sebai, H.; Marzouki, L. Reverse Effect of Opuntia ficus-indica L. Juice and Seeds Aqueous Extract on Gastric Emptying and Small-Bowel Motility in Rat. J. Food Sci. 2018, 83, 205–211. [Google Scholar] [CrossRef]
- Guerrero-Rubio, M.A.; Hernández-García, S.; García-Carmona, F.; Gandía-Herrero, F. Extension of life-span using a RNAi model and in vivo antioxidant effect of Opuntia fruit extracts and pure betalains in Caenorhabditis elegans. Food Chem. 2019, 274, 840–847. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, T.B.; Yang, H.; Sung, S.H. Phenolic Compounds Isolated from Opuntia ficus-indica Fruits. Nat. Prod. Sci. 2016, 22, 117–121. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarano, P.; Tartaglia, M.; Zuzolo, D.; Prigioniero, A.; Guarino, C.; Sciarrillo, R. Recovery and Valorization of Bioactive and Functional Compounds from the Discarded of Opuntia ficus-indica (L.) Mill. Fruit Peel. Agronomy 2022, 12, 388. [Google Scholar] [CrossRef]
- Aparicio-Fernández, X.; Vega-Ahuatzin, A.; Ochoa-Velasco, C.E.; Cid-Pérez, S.; Hernández-Carranza, P.; Ávila-Sosa, R. Physical and Antioxidant Characterization of Edible Films Added with Red Prickly Pear (Opuntia ficus-indica L.) cv. San Martín Peel and/or Its Aqueous Extracts. Food Bioprocess Technol. 2018, 11, 368–379. [Google Scholar] [CrossRef]
- Borchani, M.; Yaich, H.; Abbès, F.; Blecker, C.; Besbes, S.; Attia, H.; Masmoudi, M. Physicochemical, Functional and Antioxidant Properties of the Major Protein Fractions Extracted from Prickly Pear (Opuntia ficus indica L.) Seed Cake. Waste Biomass- Valorization 2021, 12, 1749–1760. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination 2010, 250, 1101–1104. [Google Scholar] [CrossRef]
- Cayupán, Y.S.C.; Ochoa, M.J.; Nazareno, M.A. Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem. 2011, 126, 514–519. [Google Scholar] [CrossRef]
- Del Socorro Cruz-Cansino, N.; Ramírez-Moreno, E.; León-Rivera, J.E.; Delgado-Olivares, L.; Alanís-García, E.; Ariza-Ortega, J.A.; de Jesús Manríquez-Torres, J.; Jaramillo-Bustos, D.P. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrason. Sonochemistry 2015, 27, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cansino, N.D.S.; Montiel-Columna, N.I.; Bautista-Velueta, P.G.; Pérez-Tinoco, M.R.; Alanís-García, E.; Ramírez-Moreno, E. Optimization of Thermoultrasound Conditions for the Processing of A Prickly Pear Juice Blend (Opuntia Ficus Indica) Using Response Surface Methodology. J. Food Qual. 2016, 39, 780–791. [Google Scholar] [CrossRef]
- Diaz-Vela, J.; Totosaus, A.; Cruz-Guerrero, A.E.; de Lourdes Pérez-Chabela, M. In vitroevaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-indica L.) peel and pineapple (Ananas comosus) peel as functional ingredients. Int. J. Food Sci. Technol. 2013, 48, 1460–1467. [Google Scholar] [CrossRef]
- Du Toit, A. Antioxidant Content and Potential of Fresh and Processed Cladodes and Fruit from Different Coloured Cactus Pear (Opuntia ficus-indica and Opuntia Robusta) Cultivars. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2013. [Google Scholar]
- Du Toit, A.; de Wit, M.; Osthoff, G.; Hugo, A. Relationship and correlation between antioxidant content and capacity, processing method and fruit colour of cactus pear fruit. Food Bioprocess Technol. 2018, 11, 1527–1535. [Google Scholar] [CrossRef]
- Ghazi, Z.; Ramdani, M.; Tahri, M.; Rmili, R.; Elmsellem, H.; El Mahi, B.; Fauconnier, M.-L. Chemical Composition and Antioxidant Activity of Seeds Oils and Fruit Juice of Opuntia ficus indica and Opuntia dillenii from Morocco. J. Mater. Environ. Sci. 2015, 6, 2338–2345. [Google Scholar]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J.; Cano, M.P. Enhancement of anti-inflammatory and antioxidant activities of prickly pear fruits by high hydrostatic pressure: A chemical and microstructural approach. Innov. Food Sci. Emerg. Technol. 2019, 54, 132–142. [Google Scholar] [CrossRef]
- Miguel, M.G.; Gago, C.; Valente, R.; Guerreiro, A.; Antunes, D.; Manhita, A.; Barrocas-Dias, C. Qualitative evaluation of fruits from different Opuntia ficus-indica ecotypes/cultivars harvested in South Portugal. J. Food Biochem. 2018, 42, e12652. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Naz, S.; Siddiqi, R.; Abdullah, S.U.; Khan, K.; Ahmed, J.; Badaruddin, M. Antioxidant Activities and Total Phenolics Contents from Extracts of Terminalia catappa, Carrisa carandas, and Opuntia ficus indica Fruits. Recent Innov. Chem. Eng. Formerly Recent Patents Chem. Eng. 2014, 7, 106–112. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Gatzias, I.; Riganakos, K.A. Characterization of prickly pear juice by means of shelf life, sensory notes, physicochemical parameters and bio-functional properties. J. Food Sci. Technol. 2019, 56, 3646–3659. [Google Scholar] [CrossRef]
- Ramírez-Ramos, M.; Medina-Dzul, K.; García-Mateos, R.; Corrales-García, J.; Ybarra-Moncada, C.; Castillo-González, A.M. Nutraceutical Components, Antioxidant Activity, and Color of 11 Varieties of Prickly Pear (Opuntia Sp.). J. Appl. Bot. Food Qual 2018, 91, 211–218. [Google Scholar] [CrossRef]
- Reis, C.M.G.; Gouveia, C.; Vitorino, M.C.; Gazarini, L.; Ribeiro, M.M.A.; Peres, M.F. Bioactive Compounds and Morphology in Opuntia Spp. Fruits from Portuguese Ecotypes. Bulg. J. Agric. Sci. 2017, 23, 929–938. [Google Scholar]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef]
- Suh, S.; Kim, Y.E.; Yang, H.-J.; Ko, S.; Hong, G.-P. Influence of autoclave treatment and enzymatic hydrolysis on the antioxidant activity of Opuntia ficus-indica fruit extract. Food Sci. Biotechnol. 2017, 26, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Villanueva-Sánchez, J.; Alanís-García, E. Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrason. Sonochemistry 2013, 20, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Zenteno-Ramírez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monreal-Montes, M.; García, J.M.; Serratosa, M.P.; Santos, M.Á.V.; Pérez, M.D.O.; Rendón-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar]
Origin | Description | TP Values | Reference |
---|---|---|---|
Algeria | Fruit juice from different locations | 493.5 to 618.5 GA mg/100 mL | [42] |
Algeria | Orange fruit peel ethanolic extract | 1.5 g GA /100 g d.w | [43] |
Algeria | Fruit pulp extracted with different solvents | 103.7 to 144.5 mg GA/100 g d.w | [44] |
Egypt | Fruit methanolic extracts | Peel 165.2 mg GA/g d.w | [45] |
Pulp 53.8 mg GA/g d.w | |||
Egypt | Red-purple peel powder methanolic extract | 52 g GA/100 g d.w | [46] |
Greek | Fruit juice | 9 mg GA mg/mL | [47] |
Italy | Fruit juice | White “Muscaredda” 39.5 mg GA/100 g f.w | [48] |
Red “Sanguigna” 51.1 mg GA/100 g f.w | |||
Yellow “Sulfarina” 45 mg GA/100 g f.w | |||
Morocco | Fruits from different locations | “Amousten” 33.7 to 44.7 mg GA/100 g f.w | [49] |
Morocco | Fresh peel | “Aakria” 243.7 mg GA/100 g f.w | [50] |
“Derbana” 180 mg GA/100 g f.w | |||
“Safra” 160 mg GA/100 g f.w | |||
Morocco | Pulp fruit acetone extract | “Aakria” 48 to 58 mg GA/100 g f.w | [51] |
“Mlez” 27 to 50 mg GA/ 100 g f.w | |||
Mexico | Fruit juice | Fruit juice 0.9 to 1 mg GA/100 g d.w | [52] |
Waste juice 0.6–0.8 GA/100 g d.w | |||
Mexico | Peel, pulp and juice | Red peel 722.5 mg GA/100 g d.w | [53] |
Red pulp 214.9 mg GA/100 g d.w | |||
Red juice 209.2 mg GA/100 g d.w | |||
White peel 748.6 mg GA/100 g d.w | |||
White pulp 152.9 mg GA/100 g d.w | |||
White juice 131.5 mg GA/100 g d.w | |||
Yellow peel 444.6 mg GA/100 g d.w | |||
Yellow pulp 168.3 mg GA/100 g d.w | |||
Yellow juice 283.8 mg GA/100 g d.w | |||
Mexico | Raining season red fruit | 230 to 450 mg GA/100 g d.w | [39] |
Mexico | Fruit juice | Red juice 111.7 mg GA/100 mL | [54] |
Yellow juice 79.7 mg GA/100 mL | |||
Peru | Peel and seed | Purple peel 3.7 g GA/100 g d.w | [55] |
Purple seed 2.9 g GA 100 g/d.w | |||
Yellow peel 3.4 g GA/100 g d.w | |||
Yellow seed 2.7 g GA/100 g d.w | |||
Peru | Pulp ethanolic extract | 693.2 mg GA/L | [56] |
Portugal | Juice from different locations | 2.1–2.5 g GA/L | [57] |
Portugal | Yellow fruit | 1.6 g GA/100 g d.w | [58] |
Saudi Arabia | Peel and pulp | Peel 18.4 g GA/100 g f.w | [59] |
Pulp 9.7 g GA/100 g f.w | |||
Tunisia | Peel flour | 2.7 g GA/100 g d.w | [60] |
Tunisia | Spiny fruits | 56 mg GA/100 g d.w | [6] |
Tunisia | Whole fruit | 1.5 g GA /100 g d.w | [6] |
Tunisia | Red Peel & pulp | 5 g GA/100 g d.w | [61] |
0.6 g GA/100 g d.w | |||
Tunisia | Peel, pulp and seed | Peel 4.7 g GA/100 g d.w | [62] |
Pulp 2.5 g GA/100 g d.w | |||
Seed 108.6 mg GA/100 g d.w |
Origin | Description | Ascorbic Acid Concentration | Reference |
---|---|---|---|
Algeria | Homogenized orange pulp | 24.34 mg/100 mL | [79] |
Algeria | Orange skinned pulp juice | 78.6 mg/100 mL | [42] |
Italy | Sicilian white, yellow and red pulp | 28; 29 & 30 mg/ 100 g f.w | [80] |
Italy | 95% red and 5% yellow blend fruit Juice | 23.9 mg/100 mL | [81] |
Morocco | Fruit juice | 11.2 to 23.4 mg/L | [82] |
Morocco | “Aakria” and “Mles” fresh peel | “Aakria” 70 mg/100 g f.w | [83] |
“Mles” 59 mg/100 g f.w | |||
Morocco | Oven dried peel | 186 to 296 mg/100 g d.w | [84] |
Morocco | “Aakria” and “Mles” pulp fruit | “Aakria” 26 mg/100 g f.w | [51] |
“Mles”24 mg f.w | |||
Morocco | “Aakria” and “Safra” oven dried and fresh peel | “Aakria” 295 mg/100 g d.w | [50] |
“Safra” 210 mg/10 g d.w | |||
“Aakria” 74.7 mg/100 g f.w | |||
“Safra” 57.2 mg/100 g f.w | |||
Spain | Red skinned blended fruit | 18.5 mg/100 g f.w | [12] |
Spain | Peel and Pulp | 240 mg /100 g d.w peel | [85] |
140 mg /100 g d.w pulp | |||
USA | Texas Green skinned fruits | 45.8 mg /100 g f.w | [14] |
USA | Fruits growth on drainage sediment | 54 mg/100 g f.w | [66] |
Origin | Description | Betaxanthin | Betacyanin | Betalain Content | Reference |
---|---|---|---|---|---|
Algerian | Homogenate pulp fruit juice | - | 16.5 mg/100 mL | - | [42] |
Brazil | Mesocarp ethanol/water 80:20 extract | 14 mg/100 g f.w | 3 mg/100 g f.w | 15 mg/100 g f.w | [102] |
Endocarp ethanol/water 80:20 extract | 15 mg/100 g f.w | 2 mg/100 g f.w | 16 mg/100 g f.w | ||
Mesocarp + endocarp ethanol/water 80:20 extract | 17 mg/100 g f.w | 3 mg/100 g f.w | 17 mg/100 g f.w | ||
Italy | Sicilian “Gallia” juice | 4.8 mg/100 mL | 0.6 mg/100 mL | - | [24] |
Sicilian “Rossa” juice | 3.3 mg/100 mL | 5.9 mg/100 mL | |||
Italy | Purple pulp and peel | - | 39.3 mg/100 g f.w | - | [32] |
Italy | Sicilian “Agostani” yellow juice | 9 mg/100 g | - | - | [103] |
Sicilian “Agostani” red juice | 8 mg/100 g | ||||
Italy | Red cultivar | 7.62 g /100 g d.w | 33.59 g/100 g d.w | - | [104] |
Orange cultivar | 20.26 g/100 g d.w | 2.33 g/100 g d.w | |||
Yellow cultivar | 15.14 g/100 g d.w | 1.61 g/100 g d.w | |||
Italy | Catania “Agostani” red fruit | 2.6 mg/100 g f.w | 4.8 mg/100 g f.w | - | [48] |
Catania “Agostani” Yellow fruit | 6.8 mg/100 g f.w | 1 mg/100 g f.w | |||
Catania “Agostani” white fruit | 0.3 mg/100 g f.w | 0.2 mg/100 g f.w | |||
Catania “Bastardoni” red fruit | 2 mg/100 g f.w | 2.8 mg/100 g f.w | |||
Catania “Bastardoni” yellow fruit | 5.1 mg/100 g f.w | 0.6 mg/100 g f.w | |||
Catania “Bastardoni” white fruit | 0.3 mg/100 g f.w | 0.3 mg/100 g f.w | |||
Mexico | Sanguinos pulp | 0.9 mg/100 g f.w | 2 mg/100 g f.w | - | [105] |
Sanguinos peel | 0.6 mg/100 g f.w | 5.7 mg/100 g f.w | |||
Pelota pulp | 3.9 mg/100 g f.w | 27.9 mg/100 g f.w | |||
Pelota peel | 1 mg/100 g f.w | 195. 6 mg/100 g f.w | |||
Morocco | “Moussa” yellow juice | 37.83 mg/kg | - | [8] | |
“Moussa” red juice | 45.87 mg/kg | ||||
Morocco | “Amousten” orange juice | 87.7 μg/g | 6.89 μ/g | 96.59 μg/g | [49] |
Morocco | “Akria” oven dried peel | - | - | 35 mg/100 g d.w | [50] |
“Safra” oven dried peel | 22 mg/100 g d.w | ||||
“Akria” fresh peel | 6.2 mg/100 g f.w | ||||
“Safra” fresh peel | 8.4 mg/100 g f.w | ||||
Spain | Red-violet whole fruit water extract | - | 15.2 mg/100 g f.w | - | [16] |
Red-violet whole fruit ethanol/water 80:20 extract | 14.3 mg/100 g f.w | ||||
Red-violet whole fruit citrate-phosphate buffer pH 5.5 extract | 14.5 mg/100 g f.w | ||||
Spain | Whole red fruit extract | 24.5 mg/100 g f.w | 40.6 mg/100 g f.w | - | [12] |
Tunisia | Peel fluor | 250 mg/100 g d.w | 336 mg/100 d.w | - | [60] |
Tunisia | All fruit | 843.6 mg/100 g d.w | 1.4 mg/100 g d.w | - | [6] |
Extracts | Strains | Anti-Microbial Activity | Reference |
---|---|---|---|
Ethyl acetate extract | Leishmania mexicana | 243.9 µg/mL (IC50) | [149] |
L. donovani | 70.3 µg/mL (IC50) | ||
Aqueous extract of fruit syrup | Staphylococcus aureus ATCC6538 | 665 µg/mL (MIC) | [11] |
S. epidermis CIP 106510 | 665 µg/mL (MIC) | ||
Bacillus cereus ATCC1778 | 1.3 mg/mL (MIC) | ||
Escherichia coli ATCC8739 | 1.3 mg/mL (MIC) | ||
Pseudomonas aeruginosa ATCC9027 | 6.6 mg/mL (MIC) | ||
Salmonella sp | 6.6 mg/mL (MIC) | ||
Candida albicans ATCC14053 | 6.6 mg/mL (MIC) | ||
Hydro-alcoholic extract of peel | B. cereus | 75 µg/mL (MIC) | [150] |
S. aureus | 150 µg/mL (MIC) | ||
Listeria monocytogenes | 150 µg/mL (MIC) | ||
Enterobacter cloacae | 75 µg/mL (MIC) | ||
P. aeruginosa | 150 µg/mL (MIC) | ||
Salmonella typhimurium | 150 µg/mL (MIC) | ||
Aspergillus fumigatus | 300 µg/mL (MIC) | ||
A. niger | 300 µg/mL (MIC) | ||
A. ochraceus | 100 µg/mL (MIC) | ||
A. versicolor | 300 µg/mL (MIC) | ||
Trichoderma viride | 150 µg/mL (MIC) | ||
Penicillium funiculosum | 150 µg/mL (MIC) | ||
P. ochrochloron | 75 µg/mL (MIC) | ||
P. verrucosum var. cyclopium | 300 µg/mL (MIC) | ||
Extracts of fruits collected in summer | Mycobacterium tuberculosis H37Rv | 50 µg/mL (MIC) | [151] |
Extracts of fruits collected in rainy season | 100 µg/mL (MIC) | ||
Aqueous isopropyl 80% peel extract | P. aeruginosa ATCC9027 | 5.8 mm (IZ) | [46] |
E. coli ATCC11229 | 5 mm (IZ) | ||
S. aureus NCTC10788 | 7 mm (IZ) | ||
S. typhi ATCC14028 | 2.5 mm (IZ) | ||
F. culmorum KF191 | 9.6 mm (IZ) | ||
F. culmorum KF846 | 7.1 mm (IZ) | ||
F. graminearum KF841 | 8.6 mm (IZ) | ||
F. oxysporum ITEM 12591 | 6.4 mm (IZ) | ||
A. niger ITEM 3856 | 7.8 mm (IZ) | ||
Juice of from “Bastardoni” & “Agostani” | Salmonella enterica | “Agostani” 0.6 cm (IZ) | [48] |
“Bastardoni” 0.55 cm (IZ) | |||
Pseudomonas fluorescens | “Agostani” 0.23 cm (IZ) | ||
“Bastardoni” 0.27 cm (IZ) | |||
E. coli | “Agostani” 0.6 cm (IZ) | ||
“Bastardoni” 0.55 cm (IZ) | |||
B. subtilis | “Agostani” 0.77 cm (IZ) | ||
“Bastardoni” 0.5 cm (IZ) | |||
Fermented juice with Leuconostoc mesenteroides | E. coli | 4.3 mm (IZ) | [152] |
Bacilus megaterium F6 | 4.2 mm (IZ) | ||
Whole fruit ultrasound assisted extract | Methicillin-resistant Staphylococcus aureus (MRSA) | 27 mm (IZ) | [6] |
B. cereus ATCC 14579 | 14 mm (IZ) | ||
L. monocytogenes ATCC 19115 | 18 mm (IZ) | ||
E. faecalis ATCC 29212 | 10 mm (IZ) | ||
E. coli ATCC 25922 | 15 mm (IZ) | ||
Klebsiella pneumoniae CIP 104727 | 15 mm (IZ) | ||
Salmonella enteritidis DMB 560 | 15 mm (IZ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giraldo-Silva, L.; Ferreira, B.; Rosa, E.; Dias, A.C.P. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants 2023, 12, 543. https://doi.org/10.3390/plants12030543
Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants. 2023; 12(3):543. https://doi.org/10.3390/plants12030543
Chicago/Turabian StyleGiraldo-Silva, Luis, Bárbara Ferreira, Eduardo Rosa, and Alberto C. P. Dias. 2023. "Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities" Plants 12, no. 3: 543. https://doi.org/10.3390/plants12030543
APA StyleGiraldo-Silva, L., Ferreira, B., Rosa, E., & Dias, A. C. P. (2023). Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants, 12(3), 543. https://doi.org/10.3390/plants12030543