A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea
Abstract
:1. Introduction
2. Results
2.1. Identification of SNPs and InDels for Potential Species Differentiation and Marker Development
2.2. Marker Validation in Extended Sets of Individuals
2.3. Assignment Test
2.3.1. Test Population for Validation
2.3.2. Assignment of Potential Hybrids
2.3.3. Assignment of Samples with Unknown Species Identity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Next Generation Sequencing, Read Mapping and Variant Calling
4.3. Transfer of Variant Positions from Q. Robur Genome Assembly v1 to Q. Robur Genome Assembly PM1N
4.4. Identification of Potential Genes That Include Selected Variants
4.5. Primer Design, DNA Extraction, PCR Conditions, Post-PCR Processing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A. (Eds.) European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-52833-0. [Google Scholar] [CrossRef]
- Ducousso, A.; Bordacs, S. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Pedunulate and Sessile Oaks (Quercus robur and Q. petraea); International Plant Genetic Resources Institute: Rome, Italy, 2004; 6p. [Google Scholar]
- ProQuercus. Available online: https://www.proquercus.org/willkommen/die-eiche/biodiversit%C3%A4t/ (accessed on 4 October 2022).
- Schroeder, H.; Nosenko, T.; Ghirardo, A.; Fladung, M.; Schnitzler, J.P.; Kersten, B. Oaks as Beacons of Hope for Threatened Mixed Forests in Central Europe. Front. For. Glob. Chang. 2021, 4, 670797. [Google Scholar] [CrossRef]
- Perkins, D.; Uhl, E.; Biber, P.; du Toit, B.; Carraro, V.; Rötzer, T.; Pretzsch, H. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 2018, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Muir, G.; Fleming, C.C.; Schlötterer, C. Species status of hybridizing oaks. Nature 2000, 405, 1016. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Hipp, A.L. Oaks: An evolutionary success story. New Phytol. 2020, 226, 987–1011. [Google Scholar] [CrossRef] [PubMed]
- Zanetto, A.; Roussel, G.; Kremer, A. Geographic variation of inter-specific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. For. Genet. 1994, 1, 111–123. [Google Scholar]
- Gömöry, D.; Yakovlev, I.; Zhelev, P.; Jedináková, J.; Paule, L. Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 2001, 86, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Muir, G.; Schlötterer, C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol. Ecol. 2005, 14, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Guichoux, E.; Lagache, L.; Wagner, S.; Léger, P.; Petit, R.J. Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.). Mol. Ecol. Resour. 2011, 11, 578–585. [Google Scholar] [CrossRef]
- Scotti-Saintagne, C.; Mariette, S.; Porth, I.; Goicoechea, P.G.; Barreneche, T.; Bodénès, C.; Burg, K.; Kremer, A. Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 2004, 168, 1615–1626. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Liu, H.; Wu, S.; Yuan, Y.; Li, H.; Dong, J.; Liu, Z.; An, C.; Su, Z.; Li, B. Species identification of oaks (Quercus L., Fagaceae) from gene to genome. Int. J. Mol. Sci. 2019, 20, 5940. [Google Scholar] [CrossRef]
- Degen, B.; Blanc-Jolivet, C.; Bakhtina, S.; Yanbaev, R.; Yanbaev, Y.; Mader, M.; Nürnberg, S.; Schroeder, H. A new set of nuclear and plastid SNP and Indel loci for Quercus robur and Quercus petraea screened with targeted genotyping by sequencing. Conserv. Genet. Resour. 2021, 13, 345–347. [Google Scholar] [CrossRef]
- Schroeder, H.; Cronn, R.; Yanbaev, Y.; Jennings, T.; Mader, M.; Degen, B.; Kersten, B. Development of Molecular Markers for Determining Continental Origin of Wood from White Oaks (Quercus L. sect. Quercus). PLoS ONE 2016, 11, e0158221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomion, C.; Aury, J.M.; Amselem, J.; Alaeitabar, T.; Barbe, V.; Belser, C.; Bergès, H.; Bodénès, C.; Boudet, N.; Boury, C.; et al. Decoding the oak genome: Public release of sequence data, annotation and publication strategies. Mol. Ecol. Resour. 2016, 16, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Plomion, C.; Aury, J.M.; Amselem, J.; Leroy, T.; Murat, F.; Duplessis, S. Oak genome reveals facets of long lifespan. Nature Plants 2018, 4, 40–452. [Google Scholar] [CrossRef] [Green Version]
- Curtu, A.L.; Gailing, O.; Finkeldey, R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol. Biol. 2007, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Lepais, O.; Petit, R.J.; Guichoux, E.; Lavabre, J.E.; Alberto, F.; Kremer, A.; Gerber, S. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 2009, 18, 2228–2242. [Google Scholar] [CrossRef]
- Guichoux, E.; Garnier-Géré, P.; Lagache, L.; Lang, T.; Boury, C.; Petit, R.J. Outlier loci highlight the direction of introgression in oaks. Mol. Ecol. 2013, 22, 450–462. [Google Scholar] [CrossRef]
- Leroy, T.; Louvet, J.M.; Lalanne, C.; Le Provost, G.; Labadie, K.; Aury, J.M.; Delzon, S.; Plomion, C.; Kremer, A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020, 226, 1171–1182. [Google Scholar] [CrossRef]
- Petit, R.J.; Bodenes, C.; Ducousso, A.; Roussel, G.; Kremer, A. Hybridization as a mechanism of invasion in oaks. New Phytol. 2004, 161, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Degen, B.; Yanbaev, Y.; Mader, M.; Ianbaev, R.; Bakhtina, S.; Schroeder, H.; Blanc-Jolivet, C. Impact of gene flow and introgression on the range wide genetic structure of Quercus robur L. in Europe. Forests 2021, 12, 1425. [Google Scholar] [CrossRef]
- Reutimann, O.; Gugerli, F.; Rellstab, C. A species-discriminatory single-nucleotide polymorphism set reveals maintenance of species integrity in hybridizing European white oaks (Quercus spp.) despite high levels of admixture. Ann. Bot. 2020, 125, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Leroy, T.; Roux, C.; Villate, L.; Bodenes, C.; Romiguier, J.; Paiva, J.A.P.; Dossat, C.; Aury, J.M.; Plomion, C.; Kremer, A. Extensive recent secondary contacts between four European white oak species. New Phytol. 2017, 214, 865–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, T.; Rougemont, Q.; Dupouey, J.L.; Bodenes, C.; Lalanne, C.; Belser, C.; Labadie, K.; Le Provos, G.; Aury, M.; Kremer, A.; et al. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytol. 2020, 226, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Bruegmann, T.; Fladung, M.; Schroeder, H. Flexible DNA isolation procedure for different tree species as a convenient lab routine. Silvae Genet. 2022, 71, 20–30. [Google Scholar] [CrossRef]
- Degen, B. GDA-NT 2021: Genetic Data Analysis and Numerical Tests. Available online: https://www.thuenen.de/en/fg/software/gda-nt-2021/ (accessed on 21 September 2021).
- Rannala, B.; Mountain, J.L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 1997, 94, 9197–9201. [Google Scholar] [CrossRef] [Green Version]
- Cornuet, J.-M.; Piry, S.; Luikart, G.; Estoup, A.; Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 1999, 153, 1989–2000. [Google Scholar] [CrossRef]
Name | Primer Sequence | Length (bp) | Tm | Genotyping Method | Fragments (bp) |
---|---|---|---|---|---|
QP_miSeq14a_F | 5′ TGT TGA CCA AAA TGG ATA AGA ATT 3′ | 187 | 54 °C | Fragment size screening after amplicon restriction with MboI | QUROB: 187 QUPET: 80/107 |
QP_miSeq14_R | 5′ GTT TGT CTG TCT TGA ATG GCC 3′ | ||||
QP_miSeq32_F QP_miSeq32_R | 5′ TGA GGG GAA ATC ACA ATT ATG TC 3′ 5′ TGA TGT TCT GTT CTG ATG AAT GAC 3′ | 193 | 59 °C | Amplicon size screening (Genetic Analyzer) | QUROB: 188 QUPET: 193 |
QP_miSeq36_F QP_miSeq36_R | 5′ TCA CTT GTT CTA TTT GCA ACA TAT 3′ 5′ TAT TCT GTG TCT GAG TAG GTG ATA C 3 | 169 | 54 °C | Fragment size screening after amplicon restriction with MseI | QUROB: 86/83 QUPET: 169 |
QP_miSeq38_F QP_miSeq38_R | 5′ GTA AAT GGT AAT TGA AAA GGC AT 3′ 5′ CCT GAA ACT CTT GTT CAG AAG AT 3′ | 193 | 55 °C | Sanger sequencing |
Reference | Reference Position | Type of Variant | Ref. Allele | Alt. Allele | Potential Gene Including the Variant (Identification Based on NCBI-BlastN) | ID of Derived Marker |
---|---|---|---|---|---|---|
Chr9 | 45479689 | SNP | T | C | LOC115972447; Q. lobata protein detoxification 56-like; XM_031092737.1 (variant in exon) | QP_miSeq14a SNP1 |
Chr9 | 45479691 | SNP | C | T | QP_miSeq14a SNP2 | |
Chr7 | 38644432 | InDel | - | GCTTC | LOC115974824; Q. lobata protein RRC1 isoform X1/X2; XP_030951210.1/ XP_030951211.1 (variant in intron) | QP_miSeq32 InDel |
Chr2 | 31588494 | SNP | A | G | LOC115974879; Q. lobata two-component response regulator ARR12-like; XP_030951285.1 (variant in intron) | QP_miSeq36 SNP |
scaffold492 | 52257 | SNP | G | A | LOC115974869; Q. lobata transcription initiation factor TFIID subunit 5; XM_031095409.1 (variant in intron) | QP_miSeq38 SNP1 |
scaffold492 | 52287 | SNP | A | C | QP_miSeq38 SNP2 |
QP_mi Seq14a SNP1 | F (%) | QP_mi Seq14a SNP2 | F (%) | QP_mi Seq32 InDel | F (%) | QP_miSeq36 SNP ** | F (%) | QP_miSeq38 SNP1 | F (%) | QP_mi Seq38 SNP2 | F (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference samples Q. robur * (N = 39/77) | TT | 100 | CC | 100 | 188/188 188/193 | 96 4 | TT CT CC | 85 13 2 | GG GA | 92 8 | AA AC | 92 8 |
Reference samples Q. petraea * (N = 45/77) | CC CT | 84 16 | TT TC | 84 16 | 193/193 188/188 188/193 | 64 18 18 | CC CT TT | 81 15 4 | AA GA | 93 7 | CC AC | 93 7 |
Scores | Exclusion Probability | Assigned | Divergent | |||||
---|---|---|---|---|---|---|---|---|
Sample Name | QUPET | QUROB | Hybrid | QUPET | QUROB | Hybrid | to Group | Markers |
QUPET_316_1 | 1 | 0 | 0 | 0.432 | 1 | 1 | QUPET | All QUPET |
QUPET_318_1 | 0.999 | 0 | 0.001 | 0.581 | 1 | 1 | QUPET | 36 hetero |
QUPET_267_1 | 0.938 | 0 | 0.062 | 0.875 | 1 | 0.968 | QUPET | 14 hetero 32 hetero |
QUPET_89_1 | 0.921 | 0 | 0.079 | 0.945 | 1 | 0.993 | QUPET | 32 hetero, 36 homo QR |
QUPET_54_1 | 0.284 | 0 | 0.716 | 0.989 | 1 | 0.960 | Hybrid | 14 hetero 36 homo QR |
QUROB_282_1 | 0 | 0.997 | 0.003 | 1 | 0.626 | 0.598 | QUROB | All QUROB |
QUROB_293_1 | 0 | 0.983 | 0.017 | 1 | 0.718 | 0.573 | QUROB | 36 hetero |
QUROB_1932_1 | 0 | 0.915 | 0.085 | 1 | 0.933 | 0.876 | QUROB | 36 homo QP |
QUROB_1606_1 | 0 | 0.983 | 0.017 | 1 | 0.711 | 0.571 | QUROB | 36 hetero |
QUROB_1769_1 | 0 | 0.963 | 0.037 | 1 | 0.642 | 0.528 | QUROB | 14 missing, all QUROB |
QUROB_1763_1 | 0 | 0.830 | 0.170 | 1 | 0.910 | 0.472 | QUROB | Both 38 hetero |
QUROB_1663_1 | 0 | 0.830 | 0.170 | 1 | 0.915 | 0.476 | QUROB | Both 38 hetero |
QUROB_1658_1 | 0.001 | 0.004 | 0.995 | 1 | 1 | 0.961 | Hybrid | 32 hetero, 38 homo QP |
Scores | Exclusion | Probability | Assigned | ||||
---|---|---|---|---|---|---|---|
Sample Name | QUPET | QUROB | Hybrid | QUPET | QUROB | Hybrid | to Group |
QUPET_697_1 | 0 | 0 | 1 | 1 | 1 | 0.031 | Hybrid |
QUPET_741_1 | 0 | 0 | 1 | 1 | 1 | 0.007 | Hybrid |
QUPET_834_1 | 0 | 0 | 1 | 1 | 1 | 0.007 | Hybrid |
QUPET_1189_1 | 0.085 | 0 | 0.915 | 1 | 1 | 0.667 | Hybrid |
QUPET_1197_1 | 0 | 0 | 1 | 1 | 1 | 0.012 | Hybrid |
QUPET_1291_1 | 0 | 0 | 1 | 1 | 1 | 0.010 | Hybrid |
QUPET_1348_1 | 0.007 | 0 | 0.993 | 1 | 1 | 0.712 | Hybrid |
QUPET_1527_1 | 0 | 0 | 1 | 1 | 1 | 0.580 | Hybrid |
QUPET_25_1 | 0 | 0.115 | 0.885 | 1 | 0.995 | 0.749 | Hybrid |
QUROB_2415_1 | 0 | 0.013 | 0.987 | 1 | 0.995 | 0.141 | Hybrid |
QUROB_2615_1 | 0 | 0 | 1 | 1 | 1 | 0.008 | Hybrid |
QUROB_3540_1 | 0 | 0.013 | 0.987 | 1 | 0.997 | 0.152 | Hybrid |
QUROB_3542_1 | 0 | 0.026 | 0.974 | 1 | 0.997 | 0.528 | Hybrid |
QUROB_3810_1 | 0 | 0.114 | 0.886 | 1 | 0.984 | 0.322 | Hybrid |
QUROB_3816_1 | 0 | 0.114 | 0.886 | 1 | 0.994 | 0.325 | Hybrid |
QUROB_3965_1 | 0.003 | 0 | 0.997 | 0.999 | 1 | 0.005 | Hybrid |
QUROB_3967_1 | 0 | 0.001 | 0.999 | 1 | 1 | 0.268 | Hybrid |
QUROB_3976_1 | 0 | 0.005 | 0.995 | 1 | 0.998 | 0.480 | Hybrid |
QUROB_4101_1 | 0 | 0 | 0.999 | 1 | 1 | 0.956 | Hybrid |
QUROB_4104_1 | 0 | 0.013 | 0.987 | 1 | 0.996 | 0.142 | Hybrid |
Scores | Exclusion Probability | Assigned | |||||
---|---|---|---|---|---|---|---|
Sample Name | QUPET | QUROB | Hybrid | QUPET | QUROB | Hybrid | to Group |
FG_259_1 | 0 | 0.995 | 0.005 | 1 | 0.634 | 0.471 | Q. robur |
FG_259_2 | 0.999 | 0 | 0.001 | 0.520 | 1 | 1 | Q. petraea |
FG_259_3 | 1 | 0 | 0 | 0.363 | 1 | 1 | Q. petraea |
FG_259_4 | 0 | 0.971 | 0.029 | 1 | 0.762 | 0.355 | Q. robur |
FG_259_6 | 0 | 0.809 | 0.191 | 1 | 0.910 | 0.438 | Q. robur |
FG_259_7 | 0 | 0.971 | 0.029 | 1 | 0.756 | 0.389 | Q. robur |
FG_259_8 | 0 | 0.995 | 0.005 | 1 | 0.704 | 0.482 | Q. robur |
FG_259_9 | 0 | 0.809 | 0.191 | 1 | 0.927 | 0.392 | Q. robur |
FG_259_10 | 1 | 0 | 0 | 0.372 | 1 | 1 | Q. petraea |
FG_259_11 | 0.001 | 0 | 0.999 | 1 | 1 | 0.104 | Hybrid |
FG_259_12 | 0 | 0.975 | 0.025 | 1 | 0.812 | 0.599 | Q. robur |
FG_259_13 | 0 | 0.995 | 0.005 | 1 | 0.604 | 0.457 | Q. robur |
FG_259_14 | 0 | 0.995 | 0.005 | 1 | 0.654 | 0.436 | Q. robur |
FG_259_15 | 0 | 0.975 | 0.025 | 1 | 0.837 | 0.528 | Q. robur |
FG_259_16 | 0.999 | 0 | 0.001 | 0.542 | 1 | 1 | Q. petraea |
FG_259_18 | 0 | 0.995 | 0.005 | 1 | 0.667 | 0.532 | Q. robur |
FG_259_19 | 0 | 0.995 | 0.005 | 1 | 0.546 | 0.426 | Q. robur |
FG_259_20 | 0.001 | 0 | 0.999 | 1 | 1 | 0.100 | Hybrid |
FG_259_21 | 0 | 0.953 | 0.047 | 1 | 0.618 | 0.531 | Q. robur |
FG_259_22 | 0.999 | 0 | 0.001 | 0.543 | 1 | 1 | Q. petraea |
FG_259_23 | 0.999 | 0 | 0.001 | 0.559 | 1 | 1 | Q. petraea |
FG_259_24 | 0.989 | 0 | 0.011 | 0.649 | 1 | 0.993 | Q. petraea |
FG_259_25 | 0.999 | 0 | 0.001 | 0.513 | 1 | 1 | Q. petraea |
FG_259_26 | 0 | 0.995 | 0.005 | 1 | 0.523 | 0.409 | Q. robur |
FG_259_27 | 0 | 0.995 | 0.005 | 1 | 0.681 | 0.480 | Q. robur |
FG_259_28 | 0 | 0.809 | 0.191 | 1 | 0.914 | 0.436 | Q. robur |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schroeder, H.; Kersten, B. A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea. Plants 2023, 12, 566. https://doi.org/10.3390/plants12030566
Schroeder H, Kersten B. A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea. Plants. 2023; 12(3):566. https://doi.org/10.3390/plants12030566
Chicago/Turabian StyleSchroeder, Hilke, and Birgit Kersten. 2023. "A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea" Plants 12, no. 3: 566. https://doi.org/10.3390/plants12030566
APA StyleSchroeder, H., & Kersten, B. (2023). A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea. Plants, 12(3), 566. https://doi.org/10.3390/plants12030566