Coriander (Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning
Abstract
:1. Introduction
2. Results
2.1. Coriander Growth Parameters
2.2. Mycorrhizal Rate
2.3. Soil Microbial Biomass
2.4. Bacterial α-Diversity of Soil Biotopes
2.5. Metabolic Potential of Soil Microbial Communities
3. Discussion
4. Materials and Methods
4.1. In Situ Experimental Design
4.2. Experimental Design
4.3. Sample Collection
4.4. Fatty Acid Analysis
4.5. DNA Extraction
4.6. Illumina MiSeq Sequencing
4.7. Data Analysis–Bioinformatic Processing
4.8. Nucleotide Sequence Accession Numbers
4.9. Soil Bacterial Metabolic Profiles
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Douay, F.; Roussel, H.; Pruvot, C.; Loriette, A.; Fourrier, H. Assessment of a Remediation Technique Using the Replacement of Contaminated Soils in Kitchen Gardens Nearby a Former Lead Smelter in Northern France. Sci. Total Environ. 2008, 401, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Mickus, K.; Camacho, L.M. Abandoned Pb--Zn Mining Wastes and Their Mobility as Proxy to Toxicity: A Review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef]
- Gupta, V.V.S.R.; Germida, J.J. Distribution of Microbial Biomass and Its Activity in Different Soil Aggregate Size Classes as Affected by Cultivation. Soil Biol. Biochem. 1988, 20, 777–786. [Google Scholar] [CrossRef]
- Epelde, L.; Burges, A.; Mijangos, I.; Garbisu, C. Microbial Properties and Attributes of Ecological Relevance for Soil Quality Monitoring during a Chemical Stabilization Field Study. Appl. Soil Ecol. 2014, 75, 1–12. [Google Scholar] [CrossRef]
- Mench, M.; Vilela, J.; Pereira, S.; Moreira, H.; Castro, P.; Ávila, P.; Vega, A.; Maestri, E.; Szulc, W.; Rutkowska, B.; et al. Guide of Best Practices for Phytomanaging Metal(Loid)-Contaminated Soils: GT1 Characterization and Risk Assessment of Contaminated/ Degraded Sites and Implementation of Suitable Phytomanagement Options; European Regional Development Fund: Maastricht, The Netherlands, 2019; 66p. [Google Scholar]
- Raveau, R.; Fontaine, J.; Bert, V.; Perlein, A.; Tisserant, B.; Ferrant, P.; Lounès-Hadj Sahraoui, A. In Situ Cultivation of Aromatic Plant Species for the Phytomanagement of an Aged-Trace Element Polluted Soil: Plant Biomass Improvement Options and Techno-Economic Assessment of the Essential Oil Production Channel. Sci. Total Environ. 2021, 789, 147944. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.; Mench, M.; Álvarez-López, V.; Bert, V.; Dimitriou, I.; Friesl-Hanl, W.; Herzig, R.; Olga Janssen, J.; Kolbas, A.; Müller, I.; et al. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. Int. J. Phytoremediation 2015, 17, 1005–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; Bai, X.; Zhou, Y.; Zhu, W.; Yin, Y. Variations of Soil Microbial Communities Accompanied by Different Vegetation Restoration in an Open-Cut Iron Mining Area. Sci. Total Environ. 2020, 704, 135243. [Google Scholar] [CrossRef]
- Perlein, A.; Zdanevitch, I.; Gaucher, R.; Robinson, B.; Papin, A.; Lounès-Hadj Sahraoui, A.; Bert, V. Phytomanagement of a Metal(Loid)-Contaminated Agricultural Site Using Aromatic and Medicinal Plants to Produce Essential Oils: Analysis of the Metal(Loid) Fate in the Value Chain. Environ. Sci. Pollut. Res. 2021, 28, 62155–62173. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Soltani, A.; Jemâa, J.M.B.; Laruelle, F.; Lounès-Hadj Sahraoui, A. In Vitro Potential of Clary Sage and Coriander Essential Oils as Crop Protection and Post-Harvest Decay Control Products. Foods 2022, 11, 312. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B.; Nielsen, N.E.; Wilcox, A. Aromatic Plant Production on Metal Contaminated Soils. Sci. Total Environ. 2008, 395, 51–62. [Google Scholar] [CrossRef]
- Agnello, A.C.; Potysz, A.; Fourdrin, C.; Huguenot, D.; Chauhan, P.S. Impact of Pyrometallurgical Slags on Sunflower Growth, Metal Accumulation and Rhizosphere Microbial Communities. Chemosphere 2018, 208, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Branca, T.A.; Colla, V. Possible Uses of Steelmaking Slag in Agriculture: An Overview. In Material Recycling—Trends and Perspectives; InTech: London, UK, 2012. [Google Scholar]
- Das, S.; Gwon, H.S.; Khan, M.I.; Jeong, S.T.; Kim, P.J. Steel Slag Amendment Impacts on Soil Microbial Communities and Activities of Rice (Oryza sativa L.). Sci. Rep. 2020, 10, 6746. [Google Scholar] [CrossRef] [Green Version]
- Ning, D.; Liang, Y.; Song, A.; Duan, A.; Liu, Z. In Situ Stabilization of Heavy Metals in Multiple-Metal Contaminated Paddy Soil Using Different Steel Slag-Based Silicon Fertilizer. Environ. Sci. Pollut. Res. 2016, 23, 23638–23647. [Google Scholar] [CrossRef]
- Hu, Z.H.; Zhuo, F.; Jing, S.H.; Li, X.; Yan, T.X.; Lei, L.L.; Lu, R.R.; Zhang, X.F.; Jing, Y.X. Combined Application of Arbuscular Mycorrhizal Fungi and Steel Slag Improves Plant Growth and Reduces Cd, Pb Accumulation in Zea Mays. Int. J. Phytoremediat. 2019, 21, 857–865. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in Soil Using Amendments—A Review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Cicatelli, A.; Todeschini, V.; Lingua, G.; Biondi, S.; Torrigiani, P.; Castiglione, S. Epigenetic Control of Heavy Metal Stress Response in Mycorrhizal versus Non-Mycorrhizal Poplar Plants. Environ. Sci. Pollut. Res. 2014, 21, 1723–1737. [Google Scholar] [CrossRef] [PubMed]
- Javot, H.; Pumplin, N.; Harrison, M.J. Phosphate in the Arbuscular Mycorrhizal Symbiosis: Transport Properties and Regulatory Roles. Plant Cell Environ. 2007, 30, 310–322. [Google Scholar] [CrossRef]
- Meier, S.; Borie, F.; Bolan, N.; Cornejo, P. Phytoremediation of Metal-Polluted Soils by Arbuscular Mycorrhizal Fungi. Crit. Rev. Environ. Sci. Technol. 2012, 42, 741–775. [Google Scholar] [CrossRef]
- Smith, S.; Read, D. Mycorrhizal Symbiosis; Elsevier: Amsterdam, The Netherlands, 2008; Volume 3, ISBN 9780123705266. [Google Scholar]
- Ferrol, N.; Tamayo, E.; Vargas, P. The Heavy Metal Paradox in Arbuscular Mycorrhizas: From Mechanisms to Biotechnological Applications. J. Exp. Bot. 2016, 67, 6253–6565. [Google Scholar] [CrossRef] [Green Version]
- González-Chávez, M.C.; Carrillo-González, R.; Wright, S.F.; Nichols, K.A. The Role of Glomalin, a Protein Produced by Arbuscular Mycorrhizal Fungi, in Sequestering Potentially Toxic Elements. Environ. Pollut. 2004, 130, 317–323. [Google Scholar] [CrossRef]
- Liu, B.; Gumpertz, M.L.; Hu, S.; Ristaino, J.B. Long-Term Effects of Organic and Synthetic Soil Fertility Amendments on Soil Microbial Communities and the Development of Southern Blight. Soil Biol. Biochem. 2007, 39, 2302–2316. [Google Scholar] [CrossRef]
- Zhang, B.; Kong, W.; Nan, W.; Zhang, Y. Bacterial Diversity and Community along the Succession of Biological Soil Crusts in the Gurbantunggut Desert, Northern China. J. Basic Microbiol. 2016, 56, 670–679. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, M.; Cajthaml, T.; Filipová, A.; Tlustoš, P.; Száková, J.; García-Romera, I. Implications of Mycoremediated Dry Olive Residue Application and Arbuscular Mycorrhizal Fungi Inoculation on the Microbial Community Composition and Functionality in a Metal-Polluted Soil. J. Environ. Manag. 2019, 247, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhao, Z.; Chen, L.; Li, Y. Arbuscular Mycorrhizal Fungi and Organic Manure Have Synergistic Effects on Trifolium Repens in Cd-Contaminated Sterilized Soil but Not in Natural Soil. Appl. Soil Ecol. 2020, 149, 103485. [Google Scholar] [CrossRef]
- Raklami, A.; Tahiri, A.I.; Bechtaoui, N.; Abdelhay, E.G.; Pajuelo, E.; Baslam, M.; Meddich, A.; Oufdou, K. Restoring the Plant Productivity of Heavy Metal-Contaminated Soil Using Phosphate Sludge, Marble Waste, and Beneficial Microorganisms. J. Environ. Sci. 2021, 99, 210–221. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of Arbuscular Mycorrhizal Inoculation and Biochar Amendment on Maize Growth, Cadmium Uptake and Soil Cadmium Speciation in Cd-Contaminated Soil. Chemosphere 2018, 194, 495–503. [Google Scholar] [CrossRef]
- Curaqueo, G.; Schoebitz, M.; Borie, F.; Caravaca, F.; Roldán, A. Inoculation with Arbuscular Mycorrhizal Fungi and Addition of Composted Olive-Mill Waste Enhance Plant Establishment and Soil Properties in the Regeneration of a Heavy Metal-Polluted Environment. Environ. Sci. Pollut. Res. 2014, 21, 7403–7412. [Google Scholar] [CrossRef]
- Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and Its Bioactive Constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef]
- Mench, M.J.; Dellise, M.; Bes, C.M.; Marchand, L.; Kolbas, A.; Le Coustumer, P.; Oustrière, N. Phytomanagement and Remediation of Cu-Contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome. Front. Ecol. Evol. 2018, 6, 123. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.; Nguyen, T.B.T.; Honeyands, T.; Monaghan, B.; O’Dea, D.; Rinklebe, J.; Vinu, A.; Hoang, S.A.; Singh, G.; Kirkham, M.B.; et al. Production, Characterisation, Utilisation, and Beneficial Soil Application of Steel Slag: A Review. J. Hazard. Mater. 2021, 419, 126478. [Google Scholar] [CrossRef]
- Mench, M.; Vangronsveld, J.; Didier, V.; Clijsters, H. Evaluation of Metal Mobility, Plant Availability and Immobilization by Chemical Agents in a Limed-Silty Soil. Environ. Pollut. 1994, 86, 279–286. [Google Scholar] [CrossRef]
- Firmin, S.; Labidi, S.; Fontaine, J.; Laruelle, F.; Tisserant, B.; Nsanganwimana, F.; Pourrut, B.; Dalpé, Y.; Grandmougin, A.; Douay, F.; et al. Arbuscular Mycorrhizal Fungal Inoculation Protects Miscanthus×giganteus against Trace Element Toxicity in a Highly Metal-Contaminated Site. Sci. Total Environ. 2015, 527–528, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Mycorrhization of Coriander (Coriandrum sativum L.) to Enhance the Concentration and Quality of Essential Oil. J. Sci. Food Agric. 2002, 82, 339–342. [Google Scholar] [CrossRef]
- Gui, H.; Purahong, W.; Hyde, K.D.; Xu, J.; Mortimer, P.E. The Arbuscular Mycorrhizal Fungus Funneliformis Mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition. Front. Microbiol. 2017, 8, 1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morvan, S.; Meglouli, H.; Lounès-Hadj Sahraoui, A.; Hijri, M. Into the Wild Blueberry (Vaccinium angustifolium) Rhizosphere Microbiota. Environ. Microbiol. 2020, 22, 3803–3822. [Google Scholar] [CrossRef] [PubMed]
- Feigl, V.; Ujaczki, É.; Vaszita, E.; Molnár, M. Influence of Red Mud on Soil Microbial Communities: Application and Comprehensive Evaluation of the Biolog EcoPlate Approach as a Tool in Soil Microbiological Studies. Sci. Total Environ. 2017, 595, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Gremion, F.; Chatzinotas, A.; Kaufmann, K.; Von Sigler, W.; Harms, H. Impacts of Heavy Metal Contamination and Phytoremediation on a Microbial Community during a Twelve-Month Microcosm Experiment. FEMS Microbiol. Ecol. 2004, 48, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Borymski, S.; Cycon, M.; Beckmann, M.; Mur, L.A.J.; Piotrowska-Seget, Z. Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated with Metal-Tolerant Plants in Metalliferous Soils. Front. Microbiol. 2018, 9, 1425. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; McGrath, S.P. Heavy Metals and Soil Microbes. Soil Biol. Biochem. 2009, 41, 2031–2037. [Google Scholar] [CrossRef]
- Schneider, A.R.; Gommeaux, M.; Duclercq, J.; Fanin, N.; Conreux, A.; Alahmad, A.; Lacoux, J.; Roger, D.; Spicher, F.; Ponthieu, M.; et al. Response of Bacterial Communities to Pb Smelter Pollution in Contrasting Soils. Sci. Total Environ. 2017, 605–606, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Duclercq, J.; Facon, N.; Dewaele, D.; Laruelle, F.; Tisserant, B.; Lounès-Hadj Sahraoui, A. Coriander (Coriandrum sativum L.) in Combination with Organic Amendments and Arbuscular Mycorrhizal Inoculation: An Efficient Option for the Phytomanagement of Trace Elements-Polluted Soils. Microorganisms 2022, 10, 2287. [Google Scholar] [CrossRef] [PubMed]
- Haferburg, G.; Kothe, E. Microbes and Metals: Interactions in the Environment. J. Basic Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Goel, R. Strategies for Crop Improvement in Contaminated Soils Using Metal-Tolerant Bioinoculants. In Microbial Strategies for Crop Improvement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–358. ISBN 9783642019791. [Google Scholar]
- Biswas, R.; Halder, U.; Kabiraj, A.; Mondal, A.; Bandopadhyay, R. Overview on the Role of Heavy Metals Tolerance on Developing Antibiotic Resistance in Both Gram-Negative and Gram-Positive Bacteria. Arch. Microbiol. 2021, 203, 2761–2770. [Google Scholar] [CrossRef]
- Cui, H.; Le Liu, L.; Dai, J.R.; Yu, X.N.; Guo, X.; Yi, S.J.; Zhou, D.Y.; Guo, W.H.; Du, N. Bacterial Community Shaped by Heavy Metals and Contributing to Health Risks in Cornfields. Ecotoxicol. Environ. Saf. 2018, 166, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Kolaiřík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Vlček, Č.; et al. Active and Total Microbial Communities in Forest Soil Are Largely Different and Highly Stratified during Decomposition. ISME J. 2012, 6, 248–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauddh, K.; Ma, Y. Advances in Microbe-Assisted Phytoremediation of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, p. 522. [Google Scholar]
- Gupta, R.S. The Phylogeny of Proteobacteria: Relationships to Other Eubacterial Phyla and Eukaryotes. FEMS Microbiol. Rev. 2000, 24, 367–402. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.K.; Frandsen, R.J.N.; Holm, P.E.; Nybroe, O. Development of Pollution-Induced Community Tolerance Is Linked to Structural and Functional Resilience of a Soil Bacterial Community Following a Five-Year Field Exposure to Copper. Soil Biol. Biochem. 2010, 42, 748–757. [Google Scholar] [CrossRef]
- Alahmad, A.; Decocq, G.; Spicher, F.; Kheirbeik, L.; Kobaissi, A.; Tetu, T.; Dubois, F.; Duclercq, J. Cover Crops in Arable Lands Increase Functional Complementarity and Redundancy of Bacterial Communities. J. Appl. Ecol. 2018, 56, 651–664. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, X.; Guo, D.; Zhao, J.H.; Yan, L.; Feng, G.Z.; Gao, Q.; Yu, H.; Zhao, L.-P. Soil PH Is the Primary Factor Driving the Distribution and Function of Microorganisms in Farmland Soils in Northeastern China. Ann. Microbiol. 2019, 69, 1461–1473. [Google Scholar] [CrossRef] [Green Version]
- Uroz, S.; Kelly, L.C.; Turpault, M.P.; Lepleux, C.; Frey-Klett, P. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-Associated Bacterial Communities. Trends Microbiol. 2015, 23, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Schmid, M.; van Tuinen, D.; Berg, G. Plant-Driven Selection of Microbes. Plant Soil 2009, 321, 235–257. [Google Scholar] [CrossRef]
- Wu, L.; Wang, J.; Huang, W.; Wu, H.; Chen, J.; Yang, Y.; Zhang, Z.; Lin, W. Plant-Microbe Rhizosphere Interactions Mediated by Rehmannia Glutinosa Root Exudates under Consecutive Monoculture. Sci. Rep. 2015, 5, 15871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, P.; Maji, D.; Awasthi, A.; Pandey, S.S.; Yadav, A.; Pandey, A.; Saikia, D.; Babu, C.S.V.; Kalra, A. Vulnerability of Soil Microbiome to Monocropping of Medicinal and Aromatic Plants and Its Restoration Through Intercropping and Organic Amendments. Front. Microbiol. 2019, 10, 2604. [Google Scholar] [CrossRef] [PubMed]
- Adamovic, D.; Djalovic, I.; Mrkovacki, N. Microbial Abundance in Rhizosphere of Medicinal and Aromatic Plant Species in Conventional and Organic Growing Systems. Ratar. Povrt. 2015, 52, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Köberl, M.; Schmidt, R.; Ramadan, E.M.; Bauer, R.; Berg, G. The Microbiome of Medicinal Plants: Diversity and Importance for Plant Growth, Quality, and Health. Front. Microbiol. 2013, 4, 400. [Google Scholar] [CrossRef] [Green Version]
- Adamovic, D.; Djalovic, I.; Mrkovacki, N.; Burdock, G.A.; Carabin, I.G.; Choudhary, S.; Mishra, B.K.; Singh, R.; Sharma, R.; Delgado-Baquerizo, M.; et al. Intercropping With Aromatic Plants Increased the Soil Organic Matter Content and Changed the Microbial Community in a Pear Orchard. Trop. Ecol. 2015, 5, 616932. [Google Scholar] [CrossRef]
- Mosbah, R.; Sahmoune, M.N. Biosorption of Heavy Metals by Streptomyces Species—An Overview. Cent. Eur. J. Chem. 2013, 11, 1412–1422. [Google Scholar] [CrossRef]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F.; et al. Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef]
- Kurm, V.; Geisen, S.; Gera Hol, W.H. A Low Proportion of Rare Bacterial Taxa Responds to Abiotic Changes Compared with Dominant Taxa. Environ. Microbiol. 2019, 21, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-Term and High-Concentration Heavy-Metal Contamination Strongly Influences the Microbiome and Functional Genes in Yellow River Sediments. Sci. Total Environ. 2018, 637–638, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Hemmat-Jou, M.H.; Safari-Sinegani, A.A.; Mirzaie-Asl, A.; Tahmourespour, A. Analysis of Microbial Communities in Heavy Metals-Contaminated Soils Using the Metagenomic Approach. Ecotoxicology 2018, 27, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.S.; Philippot, L. Insights into the Resistance and Resilience of the Soil Microbial Community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labidi, S.; Fontaine, J.; Laruelle, F.; Tisserant, B.; Dalpé, Y.; Grandmougin-Ferjani, A.; Douay, F.; Lounès-Hadj Sahraoui, A. Fly Ash-Aided Phytostabilisation of Highly Trace Element Polluted Topsoils Improves the Telluric Fungal Biomass: A Long-Term Field Experiment. Appl. Soil Ecol. 2015, 85, 69–75. [Google Scholar] [CrossRef]
- Sterckeman, T.; Douay, F.; Proix, N.; Fourrier, H.; Perdrix, E. Assessment of the Contamination of Cultivated Soils by Eighteen Trace Elements around Smelters in the North of France. Water Air Soil Pollut. 2002, 135, 173–194. [Google Scholar] [CrossRef]
- Sterckeman, T.; Douay, F.; Baize, D.; Fourrier, H.; Proix, N.; Schvartz, C. Référentiel Pédo-Géochimique Du Nord-Pas de Calais: Méthode et Principaux Résultats. Etude Gest. Sols 2007, 14, 153–168. [Google Scholar]
- Mäkelä, M.; Watkins, G.; Pöykiö, R.; Nurmesniemi, H.; Dahl, O. Utilization of Steel, Pulp and Paper Industry Solid Residues in Forest Soil Amendment: Relevant Physicochemical Properties and Heavy Metal Availability. J. Hazard. Mater. 2012, 207–208, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A New Method Which Gives an Objective Measure of Colonization of Roots by Vesicular—Arbuscular Mycorrhizal Fungi. N. Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E.; Frosteg, A.; Frostegård, Å.; Tunlid, A.; Bååth, E. Microbial Biomass Measured as Total Lipid Phosphate in Soils of Different Organic Content. J. Microbiol. Methods 1991, 14, 151–163. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Changes in Microbial Community Structure during Long-Term Incubation in Two Soils Experimentally Contaminated with Metals. Soil Biol. Biochem. 1996, 28, 55–63. [Google Scholar] [CrossRef]
- Herlemann, D.P.R.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in Bacterial Communities along the 2000 Km Salinity Gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [Green Version]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm: Robust and Fast Clustering Method for Amplicon-Based Studies. PeerJ 2014, 2, e593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, K.P.; Grove, J.A.; Gehder, M.; Anderson, W.A.; Legge, R.L. Data Transformations in the Analysis of Community-Level Substrate Utilization Data from Microplates. J. Microbiol. Methods 2007, 69, 461–469. [Google Scholar] [CrossRef]
- Oksanen, A.J.; Blanchet, F.G.; Kindt, R.; Legen-, P.; Minchin, P.R.; Hara, R.B.O.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H. Community Ecology Package. Ecol. Packag. 2013, 2, 321–326. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
Amendment | Dose (t ha−1) | Inoculation | Plant Aboveground Height (cm) | Dry Weight (g) | Mycorrhizal Rate (%) |
---|---|---|---|---|---|
Unamended | NI | 69.6 ± 7.0 ab | 4.1 ± 1.1 bcd | 40.8 ± 10.7 abc | |
I | 71.6 ± 2.5 ab | 4.7 ± 0.6 cd | 35.6 ± 4.9 abc | ||
Ladle slag | 1.5 | NI | 68.0 ± 4.0 ab | 7.0 ± 1.4 abc | 31.7 ± 0.8 c |
I | 65.0 ± 2.5 ab | 3.2 ± 0.3 d | 35.8 ± 1.8 abc | ||
45 | NI | 75.0 ± 9.8 a | 8.7 ± 2.1 a | 33.1 ± 3.9 bc | |
I | 72.7 ± 4.0 ab | 5.1 ± 1.1 abcd | 37.0 ± 1.3 abc | ||
Oven slag | 1.5 | NI | 70.0 ± 5.1 ab | 6.1 ± 1.4 abcd | 37.5 ± 4.1 abc |
I | 69.0 ± 4.3 ab | 4.9 ± 0.9 bcd | 51.0 ± 4.6 a | ||
45 | NI | 73.8 ± 4.1 a | 8.0 ± 0.7 ab | 48.6 ± 7.5 ab | |
I | 62.0 ± 2.6 b | 6.0 ± 1.9 abcd | 47.9 ± 4.3 ab | ||
Dose | NS | NS | NS | ||
Amendment | NS | NS | ** | ||
Mycorrhizal inoculation | NS | * | NS | ||
Dose * Amendment | NS | NS | NS | ||
Dose * Mycorrhizal inoculation | NS | NS | NS | ||
Amendment * Mycorrhizal inoculation | NS | NS | NS | ||
Dose * Mycorrhizal inoculation * Amendment | NS | NS | NS |
State | Amendment | Dose (t ha−1) | Inoculation | Gram-Positive Biomass µg g−1 of DW Soil | Gram-Negative Biomass µg g−1 of DW Soil | Total Bacteria µg g−1 of DW Soil | Gram-Positive/Gram-Negative Bacteria |
---|---|---|---|---|---|---|---|
Unvegetated | Unamended | NI | 3.64 ± 3.64 abcd | 2.96 ± 1.58 abc | 6.60 ± 5.20 abc | 1.02 ± 0.60 bcd | |
I | 5.50 ± 4.26 abcd | 2.85 ± 3.21 bc | 8.35 ± 7.34 abc | 2.93 ± 2.39 a | |||
Ladle slag | 1.5 | NI | 2.43 ± 0.57 d | 2.31 ± 0.94 c | 4.74 ± 0.40 c | 1.30 ± 0.92 bcd | |
I | 4.30 ± 0.95 abcd | 4.11 ± 0.95 abc | 8.41 ± 1.88 abc | 1.05 ± 0.09 bcd | |||
45 | NI | 4.08 ± 1.76 abcd | 3.58 ± 0.85 abc | 7.65 ± 1.76 abc | 1.22 ± 0.64 bcd | ||
I | 2.05 ± 1.44 d | 2.82 ± 0.86 bc | 4.88 ± 1.85 c | 0.76 ± 0.47 cd | |||
Oven slag | 1.5 | NI | 6.97 ± 1.35 abc | 2.86 ± 0.77 bc | 9.83 ± 5.86 abc | 2.42 ± 0.65 ab | |
I | 2.54 ± 1.13 bcd | 2.51 ± 1.41 bc | 5.05 ± 2.45 c | 1.17 ± 0.49 bcd | |||
45 | NI | 4.70 ± 0.86 abcd | 2.82 ± 0.91 bc | 7.52 ± 0.08 abc | 1.87 ± 0.98 abcd | ||
I | 3.26 ± 1.81 bcd | 2.82 ± 0.77 bc | 6.08 ± 2.57 abc | 1.09 ± 0.42 bcd | |||
Vegetated | Unamended | NI | 3.21 ± 2.40 bcd | 2.20 ± 1.15 c | 5.41 ± 3.54 c | 1.35 ± 0.40 abcd | |
I | 2.42 ± 0.71 cd | 4.06 ± 1.29 abc | 6.47 ± 1.94 abc | 0.60 ± 0.09 d | |||
Ladle slag | 1.5 | NI | 3.65 ± 1.96 abcd | 5.30 ± 0.36 a | 8.96 ± 1.63 abc | 0.71 ± 0.43 cd | |
I | 7.30 ± 3.49 ab | 4.82 ± 1.98 ab | 12.12 ± 5.45 a | 1.47 ± 0.20 abcd | |||
45 | NI | 1.77 ± 0.35 d | 2.31 ± 0.77 c | 4.08 ± 1.12 c | 0.78 ± 0.09 cd | ||
I | 3.97 ± 3.09 abcd | 4.37 ± 2.89 abc | 8.34 ± 5.95 abc | 0.88 ± 0.18 bcd | |||
Oven slag | 1.5 | NI | 7.34 ± 6.21 ab | 4.83 ± 1.05 ab | 12.16 ± 5.49 a | 1.72 ± 1.75 abcd | |
I | 8.14 ± 4.66 a | 3.78 ± 0.34 abc | 11.92 ± 4.47 ab | 2.21 ± 1.29 abc | |||
45 | NI | 3.21 ± 1.92 bcd | 4.15 ± 2.18 abc | 7.36 ± 3.15 abc | 0.91 ± 0.80 bcd | ||
I | 2.83 ± 0.59 bcd | 2.86 ± 0.78 bc | 5.70 ± 0.81 bc | 1.05 ± 0.35 bcd | |||
Vegetation | NS | * | NS | NS | |||
Amendments | NS | NS | NS | NS | |||
Dose | * | NS | * | NS | |||
Mycorrhizal inoculation | NS | NS | NS | NS | |||
Vegetation * Amendment | NS | NS | NS | NS | |||
Vegetation * Dose | NS | NS | * | NS | |||
Vegetation * Mycorrhizal inoculation | NS | NS | NS | NS | |||
Mycorrhizal inoculation * Amendments | NS | NS | NS | NS | |||
Mycorrhizal inoculation * Dose | NS | NS | NS | NS | |||
Vegetation * Mycorrhizal inoculation * Amendments | NS | NS | NS | NS |
State | Amendment | Dose (t ha−1) | Inoculation | Chao1 | Shannon |
---|---|---|---|---|---|
Unvegetated | Unamended | NI | 298.7 ± 28.5 cd | 4.3 ± 0.1 a | |
I | 305.1 ± 48.8 cd | 4.4 ± 0.1 a | |||
Ladle slag | 1.5 | NI | 333.3 ± 53.7 abc | 4.5 ± 0.1 a | |
I | 318.3 ± 13.5 bcd | 4.5 ± 0.1 a | |||
45 | NI | 288.1 ± 11.1 a | 4.5 ± 0.1 a | ||
I | 343.1 ± 17.7 abc | 4.5 ± 0.0 a | |||
Oven slag | 1.5 | NI | 335.5 ± 31.8 abc | 4.4 ± 0.0 a | |
I | 329.9 ± 16.7 abcd | 4.4 ± 0.0 a | |||
45 | NI | 312.5 ± 19.3 bcd | 4.3 ± 0.2 a | ||
I | 334.1 ± 28.6 abc | 4.4 ± 0.3 a | |||
Vegetated | Unamended | NI | 321.7 ± 25.7 abcd | 4.4 ± 0.2 a | |
I | 324.0 ± 23.4 abcd | 4.4 ± 0.0 a | |||
Ladle slag | 1.5 | NI | 320.2 ± 1.6 bcd | 4.5 ± 0.1 a | |
I | 365.4 ± 27.9 a | 4.4 ± 0.0 a | |||
45 | NI | 335.4 ± 28.2 abc | 4.5 ± 0.1 a | ||
I | 302.8 ± 13.3 cd | 4.5 ± 0.0 a | |||
Oven slag | 1.5 | NI | 350.7 ± 26.9 ab | 4.4 ± 0.1 a | |
I | 310.2 ± 5.0 bcd | 4.5 ± 0.1 a | |||
45 | NI | 335.7 ± 33.5 abc | 4.4 ± 0.1 a | ||
I | 340.9 ± 24.3 abc | 4.5 ± 0.1 a | |||
Vegetation | NS | NS | |||
Amendments | NS | NS | |||
Dose | NS | NS | |||
Mycorrhizal inoculation | NS | NS | |||
Vegetation * Amendment | NS | NS | |||
Vegetation * Dose | NS | NS | |||
Vegetation * Mycorrhizal inoculation | NS | NS | |||
Mycorrhizal inoculation * Amendments | NS | NS | |||
Mycorrhizal inoculation * Dose | NS | NS | |||
Vegetation * Mycorrhizal inoculation * Amendments | NS | NS |
State | Amendment | Dose | Inoculation | AWCD | Functional Richness |
---|---|---|---|---|---|
Unvegetated | Unamended | NI | 100.27 ± 18.70 ef | 23.00 ± 1.63 cde | |
I | 109.00 ± 16.49 bcdef | 23.50 ± 2.65 bcde | |||
Ladle slag | 1.5 | NI | 101.51 ± 29.86 ef | 21.50 ± 4.43 de | |
I | 131.28 ± 21.44 abcd | 25.25 ± 1.71 abc | |||
45 | NI | 105.58 ± 5.46 def | 24.50 ± 1.00 bcd | ||
I | 99.88 ± 17.08 ef | 21.50 ± 2.65 de | |||
Oven slag | 1.5 | NI | 107.53 ± 15.34 cdef | 23.75 ± 1.26 bcde | |
I | 98.86 ± 18.16 ef | 21.00 ± 2.16 e | |||
45 | NI | 87.99 ± 23.07 f | 20.75 ± 2.87 e | ||
I | 96.76 ± 14.04 ef | 21.00 ± 2.83 e | |||
Vegetated | Unamended | NI | 134.96 ± 6.02 ab | 26.50 ± 1.91 ab | |
I | 148.19 ± 20.41 a | 26.50 ± 1.29 ab | |||
Ladle slag | 1.5 | NI | 141.52 ± 15.20 a | 25.75 ± 0.50 ab | |
I | 136.81 ± 25.96 a | 26.75 ± 1.50 ab | |||
45 | NI | 128.84 ± 25.97 abcd | 25.00 ± 3.65 abc | ||
I | 122.11 ± 19.30 abcde | 25.50 ± 2.52 abc | |||
Oven slag | 1.5 | NI | 135.67 ± 18.88 ab | 25.75 ± 1.71 abc | |
I | 133.32 ± 19.25 abc | 25.25 ± 3.30 abc | |||
45 | NI | 147.66 ± 12.12 a | 28.00 ± 1.63 a | ||
I | 145.17 ± 24.64 a | 26.75 ± 1.89ab | |||
Vegetation | *** | *** | |||
Amendments | NS | NS | |||
Dose | NS | NS | |||
Mycorrhizal inoculation | NS | NS | |||
Vegetation * Amendments | * | NS | |||
Vegetation * Dose | NS | NS | |||
Vegetation * Mycorrhizal inoculation | NS | NS | |||
Mycorrhizal inoculation * Amendments | NS | NS | |||
Mycorrhizal inoculation * Dose | NS | NS | |||
Vegetation * Mycorrhizal inoculation * Amendments * Dose | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langrand, J.; Lounès-Hadj Sahraoui, A.; Duclercq, J.; Raveau, R.; Laruelle, F.; Bert, V.; Facon, N.; Tisserant, B.; Fontaine, J. Coriander (Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning. Plants 2023, 12, 618. https://doi.org/10.3390/plants12030618
Langrand J, Lounès-Hadj Sahraoui A, Duclercq J, Raveau R, Laruelle F, Bert V, Facon N, Tisserant B, Fontaine J. Coriander (Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning. Plants. 2023; 12(3):618. https://doi.org/10.3390/plants12030618
Chicago/Turabian StyleLangrand, Julien, Anissa Lounès-Hadj Sahraoui, Jérôme Duclercq, Robin Raveau, Frédéric Laruelle, Valérie Bert, Natacha Facon, Benoît Tisserant, and Joël Fontaine. 2023. "Coriander (Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning" Plants 12, no. 3: 618. https://doi.org/10.3390/plants12030618
APA StyleLangrand, J., Lounès-Hadj Sahraoui, A., Duclercq, J., Raveau, R., Laruelle, F., Bert, V., Facon, N., Tisserant, B., & Fontaine, J. (2023). Coriander (Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning. Plants, 12(3), 618. https://doi.org/10.3390/plants12030618