Resistance Inducers for the Protection of Pedunculate Oak (Quercus robur L.) Seedlings against Powdery Mildew Erysiphe alphitoides
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Material Collection
4.2. Tested Substances
4.3. Experimental Design
4.4. Seedling Inoculation
4.5. Disease Severity Assessment
4.6. Vegetation Indices Collection
4.7. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marçais, B.; Desprez-Loustau, M.L. European oak powdery mildew: Impact on trees, effects of environmental factors, and potential effects of climate change. Ann. For. Sci. 2014, 71, 633–642. [Google Scholar] [CrossRef]
- Mougou, A.; Dutech, C.; Desprez-Loustau, M.L. New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. For. Pathol. 2008, 38, 275–287. [Google Scholar] [CrossRef]
- Foex, M.E. L’invasion des chênes d’Europe par le blanc ou oidium. Rev. Eaux For. 1941, 79, 338–349. [Google Scholar]
- Desprez-Loustau, M.L.; Feau, N.; Mougou-Hamdane, A.; Dutech, C. Interspecific and intraspecific diversity in oak powdery mildew in Europe: Coevolution history and adaptation to their hosts. Mycoscience 2011, 52, 165–173. [Google Scholar] [CrossRef]
- Soutrenon, A. Une experimentation pluri-annuelle confirme l’impact de l’oïdium sur de jeunes sujets. In Les Cahiers du DSF, 1–2000 (la Santé des Forets [France] en 1997); Ministère de l’Agriculture et de la Pêche: Paris, France, 1998; pp. 93–94. [Google Scholar]
- Roszak, R.; Baranowska, M.; Bełka, M.; Behnke-Borowczyk, J. Zastosowanie technik biologii molekularnej do detekcji Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam. w organach roślinnych [Applying the molecular biology techniques to the detection of Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam. in plant parts]. Sylwan 2019, 163, 740–745. [Google Scholar]
- Marçais, B.; Bréda, N. Role of an opportunistic pathogen in the decline of stressed oak trees. J. Ecol. 2006, 94, 1214–1223. [Google Scholar] [CrossRef]
- Marçais, B.; Kavkova, M.; Desprez-Loustau, M.L. Phenotypic variation in the phenology of ascospore production between European populations of oak powdery mildew. Ann. For. Sci. 2009, 66, 814. [Google Scholar] [CrossRef]
- Hewitt, H.G.; Ayres, P.G. Effect of infection by Microsphaera alphitoides (powdery mildew) on carbohydrate levels and translocation in seedlings of Quercus robur. New Phytol. 1976, 77, 379–390. [Google Scholar] [CrossRef]
- Hajji, M.; Dreyer, E.; Benoit, M. Impact of Erysiphe alphitoides on transpiration and photosynthesis in Quercus robur leaves. Eur. J. Plant Pathol. 2009, 125, 63–67. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.L.; Saint-Jean, G.; Barrès, B.; Dantec, C.F.; Dutech, C. Biochemical changes in Quercus robur L. leaves after Erysiphe alphitoides infection. For. Pathol. 2022, 52, e12756. [Google Scholar]
- Kurth, F.; Mailänder, S.; Bönn, M.; Feldhahn, L.; Herrmann, S.; Große, I.; Buscot, F.; Schrey, S.D.; Tarkka, M.T. Streptomyces-Induced Resistance against Oak Powdery Mildew Involves Host Plant Responses in Defense, Photosynthesis, and Secondary Metabolism Pathways. Mol. Plant Microbe Interact. 2014, 27, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Oszako, T.; Voitka, D.; Stocki, M.; Stocka, N.; Nowakowska, J.A.; Linkiewicz, A.; Hsiang, T.; Belbahri, L.; Berezovska, D.; Malewski, T. Trichoderma asperellum efficiently protects Quercus robur leaves against Erysiphe alphitoides. Eur. J. Plant. Pathol. 2021, 159, 295–308. [Google Scholar] [CrossRef]
- Percival, G.; Haynes, I. The Influence of Systemic Inducing Resistance Chemicals for the Control of Oak Powdery Mildew (Microsphaera alphitoides) Applied as a Therapeutic Treatment. Arboric. Urban For. 2008, 34, 271–279. [Google Scholar] [CrossRef]
- Gozzo, F.; Faoro, F. Systemic acquired resistance (50 years afte discovery): Moving from the lab to the field. J. Agric. Food Chem. 2013, 61, 12473–12491. [Google Scholar] [CrossRef]
- Hartman, G.L.; Pawlowski, M.L.; Chang, H.X.; Hill, C.B. Successful technologies and approaches used to develop and manage resistance against crop disease and pests. Emerg. Technol. Promot. Food Sect. 2016, 16, 43–66. [Google Scholar]
- Fu, Z.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Kaiyomo, E.; Kumar, D.; Mosher, S.; Klessig, D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 2007, 318, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.M.; Zhu, S.; Kachroo, P.; Kachroo, A. Signal regulators of systemic acquired resistance. Front. Plant Sci. 2015, 6, 228. [Google Scholar] [CrossRef]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.A. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Mol. Plant Microbe Interact. 2018, 31, 871–888. [Google Scholar] [CrossRef]
- Sudisha, J.; Sharathchandra, R.G.; Amruthesh, K.N.; Kumar, A.; Shetty, H.S. Pathogenesis related proteins in plant defense response. Biol. Control 2012, 12, 379–403. [Google Scholar]
- Nakao, S.; Watanabe, H.; Yano, T.; Yamaoka, Y.; Ishii, H. Control efficacy of the systemic acquired resistance (SAR) inducer acibenzolar-S-methyl against Venturia nashicola in Japanese pear orchards. J. Gen. Plant Pathol. 2021, 87, 307–315. [Google Scholar] [CrossRef]
- Kenney, J.R.; Grandmont, M.E.; Mauck, K.E. Priming Melon Defenses with Acibenzolar-S-methyl Attenuates Infections by Phylogenetically Distinct Viruses and Diminishes Vector Preferences for Infected Hosts. Viruses 2020, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- De Jong, H.; Reglinski, T.; Elmer, P.A.G. Integrated Use of Aureobasidium pullulans Strain CG163 and Acibenzolar-S-Methyl for Management of Bacterial Canker in Kiwifruit. Plants 2019, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Smiglak, M.; Kukawka, R.; Lewandowski, P.; Pospieszny, H. Cationic derivatives of the plant resistance inducer benzo (1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) as bifunctional ionic liquids. Tetrahedron Lett. 2014, 55, 3565–3568. [Google Scholar] [CrossRef]
- Kukawka, R.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New J. Chem. 2018, 42, 11984–11990. [Google Scholar] [CrossRef]
- Feder-Kubis, J.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. Ionic Liquids with Natural Origin Component: A Path to New Plant Protection Products. ACS Sustain. Chem. Eng. 2020, 8, 842–852. [Google Scholar] [CrossRef]
- Zajac, A.; Kukawka, R.; Pawlowska-Zygarowicz, A.; Stolarska, O.; Smiglak, M. Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chem. 2018, 20, 4764–4789. [Google Scholar] [CrossRef]
- Smiglak, M.; Kukawka, R.; Lewandowski, P.; Budziszewska, M.; Obrępalska-Stęplowska, A.; Krawczyk, K.; Zwolińska, A.; Pospieszny, H. New Dual Functional Salts Based on Cationic Derivative of Plant Resistance Inducer Benzo [1.2.3] thiadiazole-7-carbothioic Acid, S-Methyl Ester. ACS Sustain. Chem. Eng. 2016, 4, 3344–3351. [Google Scholar] [CrossRef]
- Smiglak, M.; Lewandowski, P.; Kukawka, R.; Budziszewska, M.; Krawczyk, K.; Obrępalska-Stęplowska, A.; Pospieszny, H. Dual functional salts of benzo [1.2.3] thiadiazole-7-carboxylates as a highly efficient weapon against viral plant diseases. ACS Sustain. Chem. Eng. 2017, 5, 4197–4204. [Google Scholar] [CrossRef]
- Markiewicz, M.; Lewandowski, P.; Spychalski, M.; Kukawka, R.; Feder-Kubis, J.; Beil, S.; Smiglak, M.; Stolte, S. New bifunctional ionic liquid-based plant systemic acquired resistance (SAR) inducers with improved environmental hazard profile. Green Chem. 2021, 23, 5138–5149. [Google Scholar] [CrossRef]
- Katiyar, D.; Hemantaranjan, A.; Singh, B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian J. Plant Physiol. 2015, 20, 1–9. [Google Scholar] [CrossRef]
- Mohammadkhani, G.; Kumar Ramamoorthy, S.; Adolfsson, K.H.; Mahboubi, A.; Hakkarainen, M.; Zamani, A. New solvent and coagulating agent for development of chitosan fibers by wet spinning. Polymers 2021, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Rosa, D.; Sánchez-Hernández, E.; Baquero-Foz, R.; Martín-Ramos, P.; Martín-Gil, J.; Torres-Sánchez, S.; Casanova-Gascón, J. Chitosan-Based Bioactive Formulations for the Control of Powdery Mildew in Viticulture. Agronomy 2022, 12, 495. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relatioships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Cortez, J.; de Paula, M.D.; de Oliveira, M.D.; Rodrigues dos Santos, C.I. Herbivory Rate on Woody Species of the Caatinga and NDVI as Indicators of Plant Stress (Taxa de Herbivoria em Espécies Arbóreas da Caatinga e o Uso do Índice de Vegetação por Diferença Normalizada (NDVI) como Indicador de Estresse em Planta). Rev. Bras. Geogr. Fís. 2012, 4, 909. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Narrow-band reflectance indices for mapping the combined effects of water and nitrogen stress in field grown tomato crops. Biosyst. Eng. 2020, 192, 133–143. [Google Scholar] [CrossRef]
- Zelazny, W.R.; Lukáš, J. Drought Stress Detection in Juvenile Oilseed Rape Using Hyperspectral Imaging with a Focus on Spectra Variability. Remote Sens. 2020, 12, 3462. [Google Scholar] [CrossRef]
- Frackowiak, P.; Pospieszny, H.; Smiglak, M.; Obrępalska-Stęplowska, A. Assessment of the efficacy and mode of action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acids-Methyl ester (BTH) and its derivatives in plant protection against viral disease. Int. J. Mol. Sci. 2019, 20, 1598. [Google Scholar] [CrossRef]
- Eyles, A.; Bonello, P.; Ganley, R.; Mohammed, C. Induced resistance to pests and pathogens in trees. New Phytol. 2010, 185, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, R. Host–pathogen interaction in conifers: Complicated systems yield interesting possibilities for research. Physiol. Mol. Plant Pathol. 2006, 68, 93–94. [Google Scholar] [CrossRef]
- Lin, T.C.; Ishizaka, M.; Ishii, H. Acibenzolar-S-methyl-induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. J. Phytopathol. 2009, 157, 40–50. [Google Scholar] [CrossRef]
- Meller-Harel, Y.; Kolton, M.; Elad, Y.; Rav-David, D.; Cytryn, E.; Ezra, D.; Borenstein, M.; Shulchani, R.; Graber, E.R. Induced systemic resistance in strawberry (Fragaria × ananassa) to powdery mildew using various control agents. IOBC/WPRS Bull. 2011, 71, 47–51. [Google Scholar]
- Görlach, J.; Volrath, S.; Knauf-Beiter, G.; Hengy, G.; Beckhove, U.; Kogel, K.H.; Oostendorp, M.; Staub, T.; Ward, E.; Kessmann, H.; et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 1996, 8, 629–643. [Google Scholar]
- Turczański, K.; Bełka, M.; Kukawka, R.; Spychalski, M.; Smiglak, M. A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests 2021, 12, 1072. [Google Scholar] [CrossRef]
- Faoro, F.; Maffi, D.; Cantu, D.; Iriti, M. Chemical-induced resistance against powdery mildew in barley: The effects of chitosan and benzothiadiazole. BioControl 2008, 53, 387–401. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Goltsev, V.N.; Zuk-Golaszewska, K.; Zivcak, M.; Brestic, M. Chlorophyll Fluorescence. In Understanding Crop Performance—Basics and Applications; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2017; p. 222. [Google Scholar]
- Vaštag, E.; Kastori, R.; Orlović, S.; Bojović, M.M.; Kesić, L.A.; Pap, P.L.; Stojnić, S.M. Effects of oak powdery mildew (Erysiphe alphitoides [Griffon and Maubl.] U. Braun and S. Takam.) on photosynthesis of pedunculate oak (Quercus robur L.). Zb. Matice Srp. Prir. Nauk. 2019, 136, 43–56. [Google Scholar] [CrossRef]
- Copolovici, L.; Väärtnõu, F.; Portillo Estrada, M.; Niinemets, Ü. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiol. 2014, 34, 1399–1410. [Google Scholar] [CrossRef]
- Pap, P.; Stojnić, S.; Nikolić, N.; Orlović, S.; Marković, M.; Vasić, V.; Stevanov, M. Impact of Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam. on Leaf Physiological Parameters in Pedunculate Oak (Quercus robur L.) Saplings. Balt. For. 2014, 20, 2–9. [Google Scholar]
- Picchi, V.; Iriti, M.; Quaroni, S.; Saracchi, M.; Viola, P.; Faoro, F. Climate variations and phenological stages modulate ozone damages in field-grown wheat. a three-year study with eight modern cultivars in po valley (Northern Italy). Agric. Ecosyst. Environ. 2010, 135, 310–317. [Google Scholar] [CrossRef]
- Picchi, V.; Gobbi, S.; Fattizzo, M.; Zefelippo, M.; Faoro, F. Chitosan Nanoparticles Loaded with N-Acetyl Cysteine to Mitigate Ozone and Other Possible Oxidative Stresses in Durum Wheat. Plants 2021, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Burlini, N.; Iriti, M.; Daghetti, A.; Faoro, F.; Ruggiero, A.; Bernasconi, S. Benzothiadiazole (BTH) Activates Sterol Pathway and Affects Vitamin D 3 Metabolism in Solanum malacoxylon Cell Cultures. Plant Cell Rep. 2011, 30, 2131–2141. [Google Scholar] [CrossRef]
- Spychalski, M.; Kukawka, R.; Krzesiński, W.; Spiżewski, T.; Michalecka, M.; Poniatowska, A.; Puławska, J.; Mieszczakowska-Frąc, M.; Panasiewicz, K.; Kocira, A.; et al. Use of New BTH Derivative as Supplement or Substitute of Standard Fungicidal Program in Strawberry Cultivation. Agronomy 2021, 11, 1031. [Google Scholar] [CrossRef]
- Smiglak, M.; Pospieszny, H.; Kukawka, R.; Lewandowski, P.; Stolarska, O.; Maciejewski, H. Application of 7-Carboxybenzo(1,2,3)thiadiazoleamides as Plant Stimulants. Patent Application No. WO/2017/017626, 2 February 2017. [Google Scholar]
- Chaube, H.S.; Singh, U.S. Plant Disease Management: Principles and Practices, 1st ed.; CRC Press: Boca Raton, FL, USA, 1991; 335p. [Google Scholar]
- Bock, C.H.; Chiang, K.S.; Del Ponte, E.M. Accuracy of plant specimen disease severity estimates: Concepts, history, methods, ramifications and challenges for the future. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2016, 39, 1–13. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite 1 Symposium. Volume I: Technical Presentations; NASA SP-351; Freden, S.C., Mercanti, E.P., Becker, M., Eds.; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
Treatment Variants | Days Post Fungal Inoculation | ||||
---|---|---|---|---|---|
7th Day | 21st Day | 35th Day | 49th Day | 69th Day | |
C+ | 13.3% | 60.0% | 66.7% | 73.3% | 73.3% |
CHL | - | 5.9% | 23.5% | 52.9% | 58.8% |
[CHOL][BTHCOO] | - | 18.8% | 25.0% | 31.3% | 31.3% |
BTHWA | - | - | 5.6% | 11.1% | 11.1% |
C− | 5.6% | 38.9% | 50.0% | 55.6% | 55.6% |
Treatment Variants | 49th Day | 69th Day |
---|---|---|
DSI | DSI | |
C+ | 52% | 53% |
CHL | 28% | 34% |
[CHOL][BTHCOO] | 11% | 13% |
BTHWA | 3% | 3% |
C− | 32% | 38% |
Treatment Variants | Mean Initial Height (cm) | Mean Final Height (cm) | Mean Plant Growth (cm) |
---|---|---|---|
C+ | 12.9 | 13.8 | 0.9 |
CHL | 12.2 | 15.7 | 3.5 |
[CHOL][BTHCOO] | 13.3 | 15.8 | 2.4 |
BTHWA | 12.6 | 14.3 | 1.7 |
Significance | ns * | ns | ns |
Treatment Variants | NDVI | SR | ||
---|---|---|---|---|
Before Treatment and Inoculation | After Treatment and Inoculation | Before Treatment and Inoculation | After Treatment and Inoculation | |
C+ | 0.73 ± 0.02 | 0.71 ± 0.02 | 6.34 ± 0.36 | 5.94 ± 0.43 |
CHL | 0.71 ± 0.03 | 0.70 ± 0.04 | 5.94 ± 0.74 | 5.63 ± 0.80 |
[CHOL][BTHCOO] | 0.73 ± 0.02 | 0.74 ± 0.03 | 6.70 ± 0.65 | 6.37 ± 0.64 |
BTHWA | 0.71 ± 0.02 | 0.72 ± 0.02 | 6.10 ± 0.47 | 6.04 ± 0.54 |
C− | 0.71 ± 0.04 | 0.69 ± 0.02 | 6.09 ± 0.96 | 5.48 ± 0.37 |
Significance | ns * | ns | ns | ns |
Treatment Variants | N. of Plants | 1 st VIs Measurement | Treatments Prior Inoculation (2 Times) | Fungus Inoculation | Treatments Post Inoculation (3 Times) | 2nd VIs Measurement |
---|---|---|---|---|---|---|
C+ | 15 | ✓ | ✓ | ✓ | ||
CHL | 17 | ✓ | ✓ | ✓ | ✓ | ✓ |
[CHOL][BTHCOO] | 16 | ✓ | ✓ | ✓ | ✓ | ✓ |
BTHWA | 18 | ✓ | ✓ | ✓ | ✓ | ✓ |
C− | 18 | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turczański, K.; Bełka, M.; Spychalski, M.; Kukawka, R.; Prasad, R.; Smiglak, M. Resistance Inducers for the Protection of Pedunculate Oak (Quercus robur L.) Seedlings against Powdery Mildew Erysiphe alphitoides. Plants 2023, 12, 635. https://doi.org/10.3390/plants12030635
Turczański K, Bełka M, Spychalski M, Kukawka R, Prasad R, Smiglak M. Resistance Inducers for the Protection of Pedunculate Oak (Quercus robur L.) Seedlings against Powdery Mildew Erysiphe alphitoides. Plants. 2023; 12(3):635. https://doi.org/10.3390/plants12030635
Chicago/Turabian StyleTurczański, Krzysztof, Marta Bełka, Maciej Spychalski, Rafal Kukawka, Raghavendra Prasad, and Marcin Smiglak. 2023. "Resistance Inducers for the Protection of Pedunculate Oak (Quercus robur L.) Seedlings against Powdery Mildew Erysiphe alphitoides" Plants 12, no. 3: 635. https://doi.org/10.3390/plants12030635
APA StyleTurczański, K., Bełka, M., Spychalski, M., Kukawka, R., Prasad, R., & Smiglak, M. (2023). Resistance Inducers for the Protection of Pedunculate Oak (Quercus robur L.) Seedlings against Powdery Mildew Erysiphe alphitoides. Plants, 12(3), 635. https://doi.org/10.3390/plants12030635