Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material, Experimental Conditions and Rhizobia Strains
4.2. Seed Germination, and Plant-Inoculation Process
4.3. Nutrient-Solution Application
4.4. Samplings and Methods
4.4.1. Growth and Yield Parameters
4.5. Total N, Total C, Δ and BNF-Activity
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassman, K.G.; Dobermann, A. Nitrogen and the Future of Agriculture: 20 Years on. Ambio 2022, 51, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abrol, Y.P.; Adhya, T.K.; Billen, G.; et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution; Centre for Ecology and Hydrology: Edinburgh, UK, 2013; pp. 19–31. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Roxana Petrescu, A.M.; Leach, A.M.; de Vries, W. Consequences of Human Modification of the Global Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhang, X.; Reis, S.; Gu, B. Socioeconomic Barriers of Nitrogen Management for Agricultural and Environmental Sustainability. Agric. Ecosyst. Environ. 2022, 333, 107950. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The Contributions of Nitrogen-Fixing Crop Legumes to the Productivity of Agricultural Systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M.; Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Goyal, R.K.; Mattoo, A.K.; Schmidt, M.A. Rhizobial–Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front. Microbiol. 2021, 12, 1290. [Google Scholar] [CrossRef]
- Udvardi, M.; Below, F.E.; Castellano, M.J.; Eagle, A.J.; Giller, K.E.; Ladha, J.K.; Liu, X.; Maaz, T.M.C.; Nova-Franco, B.; Raghuram, N.; et al. A Research Road Map for Responsible Use of Agricultural Nitrogen. Front. Sustain. Food Syst. 2021, 5, 165. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Findura, P.; Treder, K. Modification of Yield and Fiber Fractions Biosynthesis in Phaseolus vulgaris L. by Treatment with Biostimulants Containing Amino Acids and Seaweed Extract. Agronomy 2020, 10, 1338. [Google Scholar] [CrossRef]
- Guzmán-Maldonado, S.H.; Acosta-Gallegos, J.; Paredes-López, O. Protein and Mineral Content of a Novel Collection of Wild and Weedy Common Bean (Phaseolus vulgaris L). J. Sci. Food Agric. 2000, 80, 1874–1881. [Google Scholar] [CrossRef]
- Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; Demiate, I.M. Beans (Phaseolus vulgaris L.): Whole Seeds with Complex Chemical Composition. Curr. Opin. Food Sci. 2018, 19, 63–71. [Google Scholar] [CrossRef]
- Shamseldin, A.; Velázquez, E. The Promiscuity of Phaseolus vulgaris L. (Common Bean) for Nodulation with Rhizobia: A Review. World J. Microbiol. Biotechnol. 2020, 36, 63. [Google Scholar] [CrossRef] [PubMed]
- Andraus, M.P.; Cardoso, A.A.; Ferreira, E.P.B. Differences in Nodulation and Grain Yield on Common Bean Cultivars with Different Growth Cycles. Commun. Soil Sci Plant Anal. 2016, 47, 1148–1161. [Google Scholar] [CrossRef]
- dos Santos Sousa, W.; Soratto, R.P.; Peixoto, D.S.; Campos, T.S.; da Silva, M.B.; Souza, A.G.V.; Teixeira, I.R.; Gitari, H.I. Effects of Rhizobium Inoculum Compared with Mineral Nitrogen Fertilizer on Nodulation and Seed Yield of Common Bean. A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 52. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Sahrawat, K.L.; Upadhyaya, H.D.; Mengoni, A.; Galardini, M.; Bazzicalupo, M.; Biondi, E.G.; Hungria, M.; Kaschuk, G.; Blair, M.W.; et al. Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation in Grain Legumes. Adv. Agron. 2015, 129, 1–116. [Google Scholar] [CrossRef]
- Martínez-Romero, E. Diversity of Rhizobium-Phaseolus Vulgaris Symbiosis: Overview and Perspectives. Plant Soil 2003, 252, 11–23. [Google Scholar] [CrossRef]
- Reinprecht, Y.; Schram, L.; Marsolais, F.; Smith, T.H.; Hill, B.; Pauls, K.P. Effects of Nitrogen Application on Nitrogen Fixation in Common Bean Production. Front. Plant Sci. 2020, 11, 1172. [Google Scholar] [CrossRef]
- Habinshuti, S.J.; Maseko, S.T.; Dakora, F.D. Inhibition of N2 Fixation by N Fertilization of Common Bean (Phaseolus vulgaris L.) Plants Grown on Fields of Farmers in the Eastern Cape of South Africa, Measured Using 15N Natural Abundance and Tissue Ureide Analysis. Front. Agron. 2021, 3, 52. [Google Scholar] [CrossRef]
- Jha, A.K.; Singh, R. The Influence of Interaction between Rhizobium Tropici and Fertilizer N on Nutrient Uptake, Growth and Yield of French Bean (Phaseolus vulgaris L.) under Salt Stress. Progress. Hortic. 2013, 45, 222–228. [Google Scholar]
- Soares, B.L.; Ferreira, P.A.A.; Rufini, M.; Martins, F.A.D.; Oliveira, D.P.; Reis, R.P.; de Andrade, M.J.B.; de Souza Moreira , F.M. Agronomic and Economic Efficiency of Common-Bean Inoculation with Rhizobia and Mineral Nitrogen Fertilization. Rev. Bras. Cienc. Solo 2016, 40, e0150235. [Google Scholar] [CrossRef] [Green Version]
- Daba, S.; Haile, M. Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean under intercropped conditions. J. Plant Nutr. 2007, 25, 1443–1455. [Google Scholar] [CrossRef]
- Daba, S.; Haile, M. Effects of Rhizobial Inoculant and Nitrogen Fertilizer on Yield and Nodulation of Common Bean. J. Plant Nutr. 2008, 23, 581–591. [Google Scholar] [CrossRef]
- Müller, S.; Pereira, P.A.A.; Martin, P. Effect of Different Levels of Mineral Nitrogen on Nodulation and N2 Fixation of Two Cultivars of Common Bean (Phaseolus vulgaris L.). Plant Soil 1993, 152, 139–143. [Google Scholar] [CrossRef]
- Barros, R.L.N.; De Oliveira, L.B.; De Magalhães, W.B.; Pimentel, C. Growth and yield of common bean as affected by seed inoculation with rhizobium and nitrogen fertilization. Exp. Agric. 2016, 54, 16–30. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, E.; Ropokis, A.; Sabatino, L.; Tran, F.; et al. Agronomic Practices to Increase the Yield and Quality of Common Bean (Phaseolus vulgaris L.): A Systematic Review. Agronomy 2022, 12, 271. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Liasis, E.; Iannetta, P.P.M.; Tampakaki, A.; Savvas, D. Impact of Rhizobial Inoculation and Reduced N Supply on Biomass Production and Biological N2 Fixation in Common Bean Grown Hydroponically. J. Sci. Food Agric. 2017, 97, 4353–4361. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Parada, F.; Villalba, G.; Rufí-Salis, M.; Rosell-Melé, A.; Gabarrell Durany, X. Improving the Fertigation of Soilless Urban Vertical Agriculture Through the Combination of Struvite and Rhizobia Inoculation in Phaseolus vulgaris. Front. Plant Sci. 2021, 12, 952. [Google Scholar] [CrossRef]
- Kouki, S.; L’taief, B.; Al-Qthanin, R.N.; Sifi, B. Impacts of Rhizobium Strain Ar02 on the Nodulation, Growth, Nitrogen (N2 ) Fixation Rate and Ion Accumulation in Phaseolus vulgaris L. under Salt Stress. Legum. Res. 2021, 44, 1521–1528. [Google Scholar] [CrossRef]
- Jiang, Y.; MacLean, D.E.; Perry, G.E.; Marsolais, F.; Hill, B.; Pauls, K.P. Evaluation of Beneficial and Inhibitory Effects of Nitrate on Nodulation and Nitrogen Fixation in Common Bean (Phaseolus vulgaris). Legum. Sci. 2020, 2, e45. [Google Scholar] [CrossRef]
- Pradhan, D.; Sinclair, T.R.; Alijani, K. Nitrogen Fixation Establishment during Initial Growth of Grain Legume Species. J. Crop Improv. 2017, 32, 50–58. [Google Scholar] [CrossRef]
- Pérez-Giménez, J.; Lodeiro, A.R. Two Effects of Combined Nitrogen on the Adhesion of Rhizobium Etli to Bean Roots. Symbiosis 2013, 59, 157–163. [Google Scholar] [CrossRef]
- Franco, A.A.; Munns, D.N. Nodulation and Growth Of Phaseolus Vulgaris in Solution Culture. Plant Soil 1982, 66, 149–160. [Google Scholar] [CrossRef]
- Peña-Cabriales, J.J.; Grageda-Cabrera, O.A.; Kola, V.; Hardarson, G. Time Course of N2 Fixation in Common Bean (Phaseolus vulgaris L.). Plant Soil 1993, 152, 115–121. [Google Scholar] [CrossRef]
- Hungria, M.; Thomas, R.J. Effects of Cotyledons and Nitrate on the Nitrogen Assimilation of Phaseolus vulgaris. MIRCEN J. Appl. Microbiol. Biotechnol. 1987, 3, 411–419. [Google Scholar] [CrossRef]
- Hungria, M.; Barradas, C.A.A.; Wallsgrove, R.M. Nitrogen Fixation, Assimilation and Transport During the Initial Growth Stage of Phaseolus vulgaris L. J. Exp. Bot. 1991, 42, 839–844. [Google Scholar] [CrossRef]
- Zoffoli, B.C.; Brito, L.F.; Straliotto, R.; de Araújo, A.P. Early Nitrogen Supplementation Stimulates the Nodulation and Growth of Common Bean Plants Inoculated with Rhizobium. Acta Sci. Agron. 2021, 43, e55105. [Google Scholar] [CrossRef]
- Rebeschini, A.C.; de Mazzuchelli, R.C.L.; de Araujo, A.S.F.; de Araujo, F.F. Nitrogen Application and Inoculation with Rhizobium Tropici on Common Bean in the Fall/Winter. Afr. J. Agric. Res. 2014, 9, 3156–3163. [Google Scholar] [CrossRef]
- Głodowska, M.; Wozniak, M.; Głodowska, M.; Wozniak, M. Changes in Soil Microbial Activity and Community Composition as a Result of Selected Agricultural Practices. Agric. Sci. 2019, 10, 330–351. [Google Scholar] [CrossRef]
- Tajini, F.; Drevon, J.J.; Lamouchi, L.; Aouani, M.E.; Trabelsi, M. Response of Common Bean Lines to Inoculation: Comparison between the Rhizobium Tropici CIAT899 and the Native Rhizobium Etli 12a3 and Their Persistence in Tunisian Soils. World J. Microbiol. Biotechnol. 2008, 24, 407–417. [Google Scholar] [CrossRef]
- Westermann, D.T.; Porter, L.K.; O’Deen, W.A. Nitrogen Partitioning and Mobilization Patterns in Bean Plants1. Crop Sci. 1985, 25, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Araujo, A.P.; Teixeira, M.G. Relationships between Grain Yield and Accumulation of Biomass, Nitrogen and Phosphorus in Common Bean Cultivars. Rev. Bras. Cienc. Solo 2008, 32, 1977–1986. [Google Scholar] [CrossRef]
- George, T.; Singleton, P.W. Nitrogen Assimilation Traits and Dinitrogen Fixation in Soybean and Common Bean. Agron. J. 1992, 84, 1020–1028. [Google Scholar] [CrossRef]
- Soratto, R.P.; Fernandes, A.M.; dos Santos, L.A.; Job, A.L.G. Nutrient Extraction and Exportation by Common Bean Cultivars under Different Fertilization Levels: I—Macronutrients. Rev. Bras. Cienc. Solo 2013, 37, 1027–1042. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R.A. Isotopic Composition of Plant Carbon Correlates With Water-Use Efficiency of Wheat Genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Bort, J.; Nogués, S.; Araus, J.L. The Combined Effect of Constant Water Deficit and Nitrogen Supply on WUE, NUE and Δ13C in Durum Wheat Potted Plants. Ann. Appl. Biol. 2007, 151, 277–289. [Google Scholar] [CrossRef]
- Farquhar, G.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination And Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Akhter, J.; Mohammad, W.; Shah, S.M.; Nawaz, H.; Mahmood, K. Effect of Tillage and Fertilizer Levels on Wheat Yield, Nitrogen Uptake and Their Correlation with Carbon Isotope Discrimination under Rainfed Conditions in North-West Pakistan. Soil Till. Res. 2005, 80, 47–57. [Google Scholar] [CrossRef]
- Fu, Q.A.; Boutton, T.W.; Ehleringer, J.R.; Flagler, R.B. Environmental and Developmental Effects on Carbon Isotope Discrimination by Two Species of Phaseolus. Stable Isot. Plant Carbon-Water Relat. 1993, 297–309. [Google Scholar] [CrossRef]
- Knight, J.D.; Verhees, F.; Van Kessel, C.; Slinkard, A.E. Does Carbon Isotope Discrimination Correlate with Biological Nitrogen Fixation? Plant Soil 1993, 153, 151–153. [Google Scholar] [CrossRef]
- Smith, M.R.; Reis Hodecker, B.E.; Fuentes, D.; Merchant, A. Investigating Nutrient Supply Effects on Plant Growth and Seed Nutrient Content in Common Bean. Plants 2022, 11, 737. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Murphy, M.T.; Moore, T.R. Nutrient Resorption of Two Evergreen Shrubs in Response to Long-Term Fertilization in a bog. Oecologia 2014, 174, 365–377. [Google Scholar] [CrossRef]
- Ågren, G.I. The C:N:P stoichiometry of autotrophs—Theory and observations. Ecol. Lett. 2004, 7, 185–191. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Responses of C:N Stoichiometry in Plants, Soil, and Microorganisms to Nitrogen Addition. Plant Soil 2020, 456, 277–287. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Bilalis, D.; Pappa, V.A.; Rees, R.M.; Savvas, D. Effects of Organic Farming Practices and Salinity on Yield and Greenhouse Gas Emissions from a Common Bean Crop. Sci. Hortic. 2015, 183, 48–57. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Ntanasi, T.; Vlachos, I.; Tampakaki, A.; Iannetta, P.P.M.; Savvas, D. Comparative Assessment of Different Crop Rotation Schemes for Organic Common Bean Production. Agronomy 2020, 10, 1269. [Google Scholar] [CrossRef]
- Mastrodomenico, A.T.; Purcell, L.C.; Andy King, C. The Response and Recovery of Nitrogen Fixation Activity in Soybean to Water Deficit at Different Reproductive Developmental Stages. Environ. Exp. Bot. 2013, 85, 16–21. [Google Scholar] [CrossRef]
- Aouani, M.E.; Mhamdi, R.; Mars, M.; Elayeb, M.; Ghrir, R. Potential for Inoculation of Common Bean by Effective Rhizobia in Tunisian Soils. Agronomie 1997, 17, 445–454. [Google Scholar] [CrossRef]
- del Cerro, P.; Rolla-Santos, A.A.P.; Gomes, D.F.; Marks, B.B.; Pérez-Montaño, F.; Rodríguez-Carvajal, M.Á.; Nakatani, A.S.; Gil-Serrano, A.; Megías, M.; Ollero, F.J.; et al. Regulatory NodD1 and NodD2 Genes of Rhizobium Tropici Strain CIAT 899 and Their Roles in the Early Stages of Molecular Signaling and Host-Legume Nodulation. BMC Genom. 2015, 16, 251. [Google Scholar] [CrossRef]
- Mostasso, L.; Mostasso, F.L.; Dias, B.G.; Vargas, M.A.T.; Hungria, M. Selection of Bean (Phaseolus vulgaris L.) Rhizobial Strains for the Brazilian Cerrados. Field Crops Res. 2002, 73, 121–132. [Google Scholar] [CrossRef]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Benefits of Inoculation of the Common Bean (Phaseolus vulgaris) Crop with Efficient and Competitive Rhizobium Tropici Strains. Biol. Fertil. Soils 2003, 39, 88–93. [Google Scholar] [CrossRef]
- Gunnabo, A.H.; Geurts, R.; Wolde-meskel, E.; Degefu, T.; Giller, K.E.; van Heerwaarden, J. Genetic Interaction Studies Reveal Superior Performance of Rhizobium Tropici CIAT899 on a Range of Diverse East African Common Bean (Phaseolus vulgaris L.) Genotypes. Appl. Environ. Microbiol. 2019, 85, e01763-19. [Google Scholar] [CrossRef] [PubMed]
- Ouma, E.W.; Asango, A.M.; Maingi, J.; Njeru, E.M. Elucidating the Potential of Native Rhizobial Isolates to Improve Biological Nitrogen Fixation and Growth of Common Bean and Soybean in Smallholder Farming Systems of Kenya. Int. J. Agron. 2016, 2016, 4569241. [Google Scholar] [CrossRef]
- Kawaka, F.; Makonde, H.; Dida, M.; Opala, P.; Ombori, O.; Maingi, J.; Muoma, J. Genetic Diversity of Symbiotic Bacteria Nodulating Common Bean (Phaseolus vulgaris) in Western Kenya. PLoS ONE 2018, 13, e0207403. [Google Scholar] [CrossRef]
- Kawaka, F.; Dida, M.M.; Opala, P.A.; Ombori, O.; Maingi, J.; Osoro, N.; Muthini, M.; Amoding, A.; Mukaminega, D.; Muoma, J. Symbiotic Efficiency of Native Rhizobia Nodulating Common Bean (Phaseolus vulgaris L. ) in Soils of Western Kenya. Int. Sch. Res. Not. 2014, 2014, 258497. [Google Scholar] [CrossRef]
- Pacheco, R.S.; Boddey, R.M.; Alves, B.J.R.; de Brito Ferreira, E.P.; Straliotto, R.; Araújo, A.P. Differences in Contribution of Biological Nitrogen Fixation to Yield Performance of Common Bean Cultivars as Assessed by the 15N Natural Abundance Technique. Plant Soil 2020, 454, 327–341. [Google Scholar] [CrossRef]
- Fageria, N.K.; Santos, A.B. Yield Physiology of Dry Bean. J. Plant Nutr. 2008, 31, 983–1004. [Google Scholar] [CrossRef]
- Mouhouche, B.; Ruget, F.; Delécolle, R. Effects of Water Stress Applied at Different Phenological Phases on Yield Components of Dwarf Bean (Phaseolus vulgaris L.). Agronomie 1998, 18, 197–205. [Google Scholar] [CrossRef]
- Ndakidemi, P.A.; Dakora, F.D.; Nkonya, E.M.; Ringo, D.; Mansoor, H.; Ndakidemi, P.A.; Dakora, F.D.; Nkonya, E.M.; Ringo, D.; Mansoor, H. Yield and Economic Benefits of Common Bean (Phaseolus vulgaris) and Soybean (Glycine max) Inoculation in Northern Tanzania. Aust. J. Exp. Agric. 2006, 46, 571–577. [Google Scholar] [CrossRef]
- Cardillo, B.E.d.S.; Oliveira, D.P.; Soares, B.L.; Martins, F.A.D.; Rufini, M.; da Silva, J.S.; Neto, G.G.F.; de Andrade, M.J.B.; de Souza Moreira, F.M. Nodulation and Yields of Common Bean Are Not Affected Either by Fungicides or by the Method of Inoculation. Agron. J. 2019, 111, 694–701. [Google Scholar] [CrossRef]
- Efstathiadou, E.; Ntatsi, G.; Savvas, D.; Tampakaki, A.P. Genetic Characterization at the Species and Symbiovar Level of Indigenous Rhizobial Isolates Nodulating Phaseolus Vulgaris in Greece. Sci. Rep. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.P.; Tüzel, Y.; Gruda, N. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas, 217th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 303–354. [Google Scholar]
- Le, L.T.T.; Kotula, L.; Siddique, K.H.M.; Colmer, T.D. Na+ and/or Cl− Toxicities Determine Salt Sensitivity in Soybean (Glycine max (L.) Merr.), Mungbean (Vigna radiata (L.) R. Wilczek), Cowpea (Vigna unguiculata (L.) Walp.), and Common Bean (Phaseolus vulgaris L.). Int. J. Mol. Sci. 2021, 22, 1909. [Google Scholar] [CrossRef]
- Vassileva, V.; Milanov, G.; Ignatov, G.; Nikolov, B. Effect of Low PH on Nitrogen Fixation of Common Bean Grown at Various Calcium and Nitrate Levels. J. Plant Nutr. 2008, 20, 279–294. [Google Scholar] [CrossRef]
- Ovacikli, E.; Tolay, I. Morpho-Agronomic and Cooking Quality of Common Bean (Phaseolus vulgaris L.) Grown under Different Nitrogen Sources and Nitrogen Levels. Appl. Ecol. Environ. Res. 2020, 18, 8343–8354. [Google Scholar] [CrossRef]
- Savvas, D.; Leneti, H.; Mantzos, N.; Kakarantza, L.; Barouchas, P. Effects of Enhanced NH4+-N Supply and Concomitant Changes in the Concentrations of Other Nutrients Needed for Ion Balance on the Growth, Yield, and Nutrient Status of Eggplants Grown on Rockwool. J. Hortic. Sci. Biotechnol. 2015, 85, 355–361. [Google Scholar] [CrossRef]
- Dickson, R.W.; Fisher, P.R.; Argo, W.R.; Jacques, D.J.; Sartain, J.B.; Trenholm, L.E.; Yeager, T.H. Solution Ammonium: Nitrate Ratio and Cation/Anion Uptake Affect Acidity or Basicity with Floriculture Species in Hydroponics. Sci. Hortic. 2016, 200, 36–44. [Google Scholar] [CrossRef]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis; Norman, A.G., Ed.; Agronomy Monographs American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; University of New Mexico: Albuquerque, NM, USA, 2017. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Herridge, D.F.; Peoples, M.B.; Cadish, G.; Boddey, R.; Giller, K.; Alves, B.J.R.; Chalk, P.M. Measuring plant associated nitrogen fixation in agricultural systems. ACIAR 2008, 136, 258. [Google Scholar]
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological Nitrogen Fixation in Soybean in Argentina: Relationships with Crop, Soil, and Meteorological Factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
Treatments | Vegetative Stage | Flowering Stage | First-Pod Emergence | ||||
---|---|---|---|---|---|---|---|
N | Strain | Shoot FW (g) | Nodules (N° Plant−1) | Shoot FW (g) | Nodules (N° Plant−1) | Shoot FW (g) | Nodules (N° Plant−1) |
Main effects | |||||||
100% | 65.1 | 18.4 | 102.8 | 30.7 | 148.8 a | 23.4 | |
75–25% | 59.5 | 30.6 | 96.4 | 55.2 | 141.3 ab | 62.7 | |
50–25% | 68.1 | 73.6 | 104.4 | 89.6 | 135.3 b | 97.9 | |
No inoc. | 63.4 | 4.9 | 94.3 | 11.2 | 136.5 | 22.8 | |
PVTN21 | 64.8 | 87.4 | 110.1 | 105.1 | 146.7 | 107.7 | |
CIAT 899 | 64.5 | 30.2 | 99.2 | 59.1 | 142.2 | 47.9 | |
Interactions | |||||||
100% | Non inoc. | 69.4 | 0 d | 108.2 | 8 c | 145.7 | 13 d |
PVTN21 | 64.2 | 46 bc | 111.0 | 64.3 b | 149.5 | 40 d | |
CIAT 899 | 61.6 | 9.3 cd | 89.2 | 26 c | 151.3 | 17.3 d | |
75–25% | Non inoc. | 55.2 | 0 d | 87.0 | 12.7 c | 133.8 | 22.3 d |
PVTN21 | 59.3 | 71.7 b | 99.1 | 91.7 b | 142.4 | 115.7 b | |
CIAT 900 | 64.1 | 20 cd | 103.0 | 61.3 b | 147.6 | 50 cd | |
50–25% | Non inoc. | 65.8 | 14.7 cd | 87.7 | 19.3 c | 130.2 | 39.7 cd |
PVTN21 | 70.9 | 144.7 a | 120.3 | 159.3 a | 148.2 | 167.3 a | |
CIAT 901 | 67.6 | 61.3 b | 105.4 | 90 b | 127.6 | 86.7 bc | |
Statistical Significance | |||||||
Nitrogen | ns | *** | ns | *** | * | *** | |
Strain | ns | *** | ns | *** | ns | *** | |
Nitrogen*Strain | ns | * | ns | * | ns | * |
Treatments | First Pod Emergence | Reproductive Stage | |||||
---|---|---|---|---|---|---|---|
Nitrogen | Strain | Δ | Total-C | C:N Ratio | Δ | Total-C | C:N Ratio |
Main effects | |||||||
100% | 22.01 | 39.38 | 9.36 | 21.45 a | 39.38 | 10.60 | |
75–25% | 21.72 | 39.88 | 10.35 | 20.82 b | 39.63 | 12.09 | |
50–25% | 21.58 | 39.54 | 10.84 | 20.72 b | 39.84 | 12.38 | |
Non inoc. | 21.86 | 39.65 | 10.45 | 20.88 | 39.67 | 11.87 | |
PVΤΝ21 | 21.61 | 39.41 | 10.01 | 21.00 | 39.59 | 11.39 | |
CIAT 899 | 21.84 | 39.74 | 10.09 | 21.10 | 39.59 | 11.82 | |
Interactions | |||||||
100% | Non inoc. | 22.30 | 39.25 | 9.31 d | 21.35 | 39.52 | 10.94 de |
PVΤΝ21 | 21.74 | 39.38 | 9.42 cd | 21.38 | 39.47 | 10.60 e | |
CIAT 899 | 21.97 | 39.52 | 9.35 d | 21.61 | 39.14 | 10.26 e | |
75–25% | Non inoc. | 21.88 | 39.69 | 10.18 bcd | 20.70 | 39.41 | 11.97 bc |
PVΤΝ21 | 21.49 | 39.84 | 10.65 bc | 20.86 | 39.69 | 11.94 bc | |
CIAT 899 | 21.79 | 40.13 | 10.23 bcd | 20.90 | 39.80 | 12.37 abc | |
50–25% | Non inoc. | 21.40 | 40.02 | 11.85 a | 20.60 | 40.08 | 12.69 ab |
PVΤΝ21 | 21.58 | 39.03 | 9.98 bcd | 20.76 | 39.60 | 11.64 cd | |
CIAT 899 | 21.77 | 39.57 | 10.68 b | 20.80 | 39.82 | 12.83 a | |
Statistical Significance | |||||||
Nitrogen | ns | ns | *** | *** | ns | *** | |
Strain | ns | ns | ns | ns | ns | * | |
Nitrogen * Strain | ns | ns | * | ns | ns | * |
Treatments | First-Pod Emergence | Reproductive | |||||
---|---|---|---|---|---|---|---|
Nitrogen | Strain | %Ndfa | DB | BNF | %Ndfa | DB | BNF |
Main effects | |||||||
100% | 10.36 c | 759 | 3.35 b | 24.43 | 2269 | 20.56 | |
75–25% | 15.01 b | 782 | 4.52 a | 28.16 | 1595 | 14.74 | |
50–25% | 18.23 a | 755 | 5.15 a | 38.60 | 1852 | 23.51 | |
Non inoc. | 13.21 b | 737 | 3.72 b | 28.21 | 1826 | 16.81 | |
PVTN21 | 16.79 a | 790 | 5.25 a | 33.31 | 1997 | 23.28 | |
CIAT 899 | 13.59 b | 768 | 4.04 b | 29.67 | 1893 | 18.71 | |
Interactions | |||||||
100% | Non inoc. | 10.60 | 737 | 3.41 | 22.66 e | 2444 a | 20.02 bc |
PVTN21 | 11.49 | 756 | 3.64 | 27.37 de | 2223 ab | 22.61 b | |
CIAT 899 | 8.99 | 786 | 2.99 | 23.27 de | 2141 bc | 19.05 bcd | |
75–25% | Non inoc. | 14.94 | 732 | 4.21 | 28.77 cd | 1458 e | 13.91 d |
PVTN21 | 15.98 | 819 | 4.96 | 27.12 de | 1716 de | 15.48 cd | |
CIAT 899 | 14.10 | 793 | 4.39 | 28.59 cd | 1610 e | 14.82 cd | |
50–25% | Non inoc. | 14.11 | 744 | 3.54 | 33.18 bc | 1575 e | 16.51 cd |
PVTN21 | 22.88 | 796 | 7.15 | 45.44 a | 2053 bc | 31.74 a | |
CIAT 899 | 17.69 | 725 | 4.75 | 37.16 b | 1928 cd | 22.23 b | |
Statistical Significance | |||||||
Nitrogen | *** | ns | ** | *** | *** | *** | |
Strain | * | ns | * | ** | * | *** | |
Nitrogen*Strain | ns | ns | ns | * | ** | ** |
Treatments | Yield Components | |||
---|---|---|---|---|
Nitrogen | Strain | Pod Yield | Pod Number | Pod Size |
(g Plant−1) | (No. Plant−1) | (g) | ||
Main effects | ||||
100% | 276 | 17.3 | 15.95 | |
75–25% | 155 | 10.5 | 14.78 | |
50–25% | 214 | 13.9 | 15.41 | |
Non-inoculated | 195 | 13.0 | 14.86 | |
PVTN21 | 233 | 14.7 | 15.75 | |
CIAT 899 | 217 | 13.9 | 15.55 | |
Interactions | ||||
100% | Non-inoculated | 273 a | 17.2 a | 15.87 ab |
PVTN21 | 282 a | 17.4 a | 16.20 a | |
CIAT 899 | 275 a | 17.4 a | 15.78 ab | |
75–25% | Non inoc. | 133 e | 9.4 f | 14.12 e |
PVTN21 | 172 d | 11.2 de | 15.35 bc | |
CIAT 899 | 161 d | 10.8 e | 14.88 cd | |
50–25% | Non-inoculated | 180 d | 12.4 cd | 14.58 de |
PVTN21 | 245 b | 15.6 b | 15.68 ab | |
CIAT 899 | 217 c | 13.6 c | 15.97 ab | |
Statistical Significance | ||||
Nitrogen | *** | *** | *** | |
Strain | *** | *** | *** | |
Nitrogen * Strain | * | * | * |
NS | 100% N | 75% N | 50% N | 25% N | 100% N | 25% N | |
---|---|---|---|---|---|---|---|
DACE * | 0–50 | 0–35 | 0–35 | 35–50 | 50–80 | 50–80 | |
pH | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | |
EC (dS/m) | 1.93 | 1.93 | 1.93 | 1.69 | 1.90 | 1.78 | |
Κ | mM | 5.3 | 5.3 | 5.3 | 5.3 | 5 | 5.3 |
Ca | mM | 3.75 | 3.75 | 3.75 | 3.01 | 3.55 | 3.01 |
Mg | mM | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 |
NO3 | mM | 12.6 | 9.15 | 5.7 | 3.135 | 12 | 2.3 |
NH4 | mM | 1.2 | 1.2 | 1.2 | 0.315 | 1.8 | 1.15 |
H2PO4 | mM | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
SO4 | mM | 3.07 | 5.02 | 8.47 | 8.27 | 3.37 | 9.3 |
Cl | mM | 0.3 | 1.8 | 1.8 | 2.2 | 0.3 | 2.84 |
Fe | μM | 15 | 15 | 15 | 15 | 15 | 15 |
Mn | μM | 7 | 7 | 7 | 7 | 7 | 7 |
Zn | μM | 5 | 5 | 5 | 5 | 5 | 5 |
Cu | μM | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
B | μM | 20 | 20 | 20 | 20 | 20 | 20 |
Mo | μM | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karavidas, I.; Ntatsi, G.; Ntanasi, T.; Tampakaki, A.; Giannopoulou, A.; Pantazopoulou, D.; Sabatino, L.; Iannetta, P.P.M.; Savvas, D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. Plants 2023, 12, 646. https://doi.org/10.3390/plants12030646
Karavidas I, Ntatsi G, Ntanasi T, Tampakaki A, Giannopoulou A, Pantazopoulou D, Sabatino L, Iannetta PPM, Savvas D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. Plants. 2023; 12(3):646. https://doi.org/10.3390/plants12030646
Chicago/Turabian StyleKaravidas, Ioannis, Georgia Ntatsi, Theodora Ntanasi, Anastasia Tampakaki, Ariadni Giannopoulou, Dimitra Pantazopoulou, Leo Sabatino, Pietro P. M. Iannetta, and Dimitrios Savvas. 2023. "Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application" Plants 12, no. 3: 646. https://doi.org/10.3390/plants12030646