Evaluation of a Sugarcane (Saccharum spp.) Hybrid F1 Population Phenotypic Diversity and Construction of a Rapid Sucrose Yield Estimation Model for Breeding
Abstract
:1. Introduction
2. Results
2.1. Construction of Hybrid F1 Population
2.2. Phenotype Variation and Diversity of the Hybrid F1 Population
2.3. Correlation Analysis of the Eleven Traits
2.4. Cluster Analysis
2.5. Principal Component Analysis (PCA)
2.6. Rapid Sucrose Yield Estimation Model Construction and Verification
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Field Experiment Design
4.3. Phenotypic Traits Identification
4.4. Phenotypic Diversity and Statistical Analysis
4.5. Rapid Sugar Yield Estimation Model Construction and Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Que, Y.; Pan, Y.; Lu, Y.; Yang, C.; Yang, Y.; Huang, N.; Xu, L. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Res. Int. 2014, 468375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Q.; Huang, Y.X.; Zhou, Z.F.; Zhou, S.; Duan, W.X.; Yang, C.F.; Gao, Y.J.; Zhang, G.M.; Song, X.P.; Zhang, X.Q.; et al. Cold-Induced physiological and biochemical alternations and proteomic insight into the response of Saccharum spontaneum to low temperature. Int. J. Mol. Sci. 2022, 23, 14244. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Available online: https://data.stats.gov.cn/ (accessed on 10 October 2022).
- Zhang, M.; Govindaraju, M. Sugarcane production in China. In Sugarcane—Technology and Research; De Oliveira, A., Ed.; IntechOpen: London, UK, 2018; pp. 49–67. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Z.; Todd, J.; Sood, S.; Wang, J. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). Plant Genome. 2020, 13, e20006. [Google Scholar] [CrossRef] [PubMed]
- Filho, J.A.D.; Calsa Júnior, T.; Simões Neto, D.E.; Souto, L.S.; Souza, A.D.S.; de Luna, R.G.; Gomes-Silva, F.; Moreira, G.R.; Cunha-Filho, M.; Pinto Dos Santos, A.L.; et al. Genetic divergence for adaptability and stability in sugarcane: Proposal for a more accurate evaluation. PLoS ONE 2021, 16, e0254413. [Google Scholar] [CrossRef] [PubMed]
- Voss-Fels, K.P.; Wei, X.; Ross, E.M.; Frisch, M.; Aitken, K.S.; Cooper, M.; Hayes, B.J. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding. Theor. Appl. Genet. 2021, 134, 1493–1511. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, S.M.; Honeycutt, R.J.; McClelland, M.; Sobral, B.W. A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 1993, 134, 1249–1260. [Google Scholar] [CrossRef]
- Silva, J.A.; Sorrells, M.E.; Burnquist, W.L.; Tanksley, S.D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 1993, 36, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Q.; Li, L.; Tang, H.; Zhang, Q.; Chen, Y.; Arrow, J.; Zhang, X.; Wang, A.; Miao, C.; et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol. J. 2019, 17, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Garsmeur, O.; Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2019, 9, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, F.Z.; Rosa, J.R.B.F.; Balsalobre, T.W.A.; Pastina, M.M.; Silva, R.R.; Hoffmann, H.P.; de Souza, A.P.; Garcia, A.A.F.; Carneiro, M.S. A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS ONE 2019, 14, e0219843. [Google Scholar] [CrossRef]
- Vieira, M.L.C.; Almeida, C.B.; Oliveira, C.A.; Tacuatiá, L.O.; Munhoz, C.F.; Cauz-Santos, L.A.; Pinto, L.R.; Monteiro-Vitorello, C.B.; Xavier, M.A.; Forni-Martins, E.R. Revisiting meiosis in sugarcane: Chromosomal irregularities and the prevalence of bivalent configurations. Front. Genet. 2018, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Hoarau, J.Y.; Grivet, L.; Offmann, B.; Raboin, L.M.; Diorflar, J.P.; Payet, J.; Hellmann, M.; D’Hont, A.; Glaszmann, J.C. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.).II. detection of QTLs for yield components. Theor. Appl. Genet. 2002, 105, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Ukoskit, K.; Posudsavang, G.; Pongsiripat, N.; Chatwachirawong, P.; Klomsa-Ard, P.; Poomipant, P.; Tragoonrung, S. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics 2019, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre, T.W.; da Silva Pereira, G.; Margarido, G.R.; Gazaffi, R.; Barreto, F.Z.; Anoni, C.O.; Cardoso-Silva, C.B.; Costa, E.A.; Mancini, M.C.; Hoffmann, H.P.; et al. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genom. 2017, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Racedo, J.; Gutiérrez, L.; Perera, M.F.; Ostengo, S.; Pardo, E.M.; Cuenya, M.I.; Welin, B.; Castagnaro, A.P. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol. 2016, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Aitken, K.S.; Hermann, S.; Karno, K.; Bonnett, G.D.; McIntyre, L.C.; Jackson, P.A. Genetic control of yield related stalk traits in sugarcane. Theor. Appl. Genet. 2008, 117, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Dal-Bianco, M.; Carneiro, M.S.; Hotta, C.T.; Chapola, R.G.; Hoffmann, H.P.; Garcia, A.A.; Souza, G.M. Sugarcane improvement: How far can we go? Curr. Opin. Biotechnol. 2012, 23, 265–270. [Google Scholar] [CrossRef]
- Balsalobre, T.W.A.; Mancini, M.C.; Pereira, G.d.S.; Anoni, C.O.; Barreto, F.Z.; Hoffmann, H.P.; de Souza, A.P.; Garcia, A.A.F.; Carneiro, M.S. Mixed Modeling of Yield Components and Brown Rust Resistance in Sugarcane Families. Agron. J. 2016, 108, 1824–1837. [Google Scholar] [CrossRef]
- Guilly, S.; Dumont, T.; Thong-Chane, A.; Barau, L.; Hoarau, J.Y. Analysis of multienvironment trials (MET) in the sugarcane breeding program of Réunion Island. Euphytica 2017, 213, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.H.; Wu, Y.X.; Qiao, B.; Su, L.; Xie, S.Q.; Ling, P. Evaluation on the phenotypic diversity of Calamansi (Citrus microcarpa) germplasm in Hainan island. Sci. Rep. 2022, 12, 371. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Zhao, A.; Li, D. Phenotypic genetic diversity of jujube germplasm resources. Sci. Silvae Sin. 2014, 50, 33–41. [Google Scholar]
- Xu, Z.; Zhao, S.; Hu, X.; Kong, R.; Su, J.; Liu, Y. Development, Characterization and speciality of microsatellite markers in AP85-441 and R570 genomic reference sequences. Chin. J. Trop. Crops 2020, 41, 722–729. [Google Scholar] [CrossRef]
- Welch, N.G.; Madiona, R.M.; Payten, T.B.; Jones, R.T.; Brack, N.; Muir, B.W.; Pigram, P.J. Surface adsorbed antibody characterization using ToF-SIMS with principal component analysis and artificial neural networks. Langmuir 2016, 32, 8717–8728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, R.Z.; Li, Y.H.; Qiu, L.J.; Zhao, X.W.; Guo, B.F. Comprehensive analysis and evaluation of the phenotype and quality traits of Jiangxi soybean germplasm resources. Soybean Sci. 2019, 38, 686–693. [Google Scholar] [CrossRef]
- Parthiban, S.; Govindaraj, P.; Senthilkumar, S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech 2018, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, S.P.; Tiwari, A.K.; Sharma, B.L. Genetic diversity of sugarcane hybrid cultivars by RAPD markers. 3 Biotech 2017, 7, 222. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, P.; Liu, Y.; Huang, C.; Huang, G.; Jiang, H.; Xu, L.; Zhang, M.; Deng, Z.; Zhao, X. Development of SLAF-sequence and multiplex SNaPshot panels for population genetic diversity analysis and construction of DNA Fingerprints for Sugarcane. Genes 2022, 13, 1477. [Google Scholar] [CrossRef]
- Singh, R.B.; Mahenderakar, M.D.; Jugran, A.K.; Singh, R.K.; Srivastava, R.K. Assessing genetic diversity and population structure of sugarcane cultivars, progenitor species and genera using microsatellite (SSR) markers. Gene 2020, 753, 144800. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J.; et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573. [Google Scholar] [CrossRef]
- You, Q.; Yang, X.; Peng, Z.; Islam, M.S.; Sood, S.; Luo, Z.; Comstock, J.; Xu, L.; Wang, J. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Appl. Genet. 2019, 132, 2829–2845. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.; Dong, S.; Wu, Y.; Zhang, H. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica. Chin. J. Plant. Ecol. 2019, 43, 585–600. [Google Scholar] [CrossRef]
- Liu, J.Q.; Yin, M.Y.; Zuo, S.Y.; Yang, S.B.; Wuyun, T. Phenotypic variations in natural populations of Amygdalus pedunculata. Chin. J. Plant. Ecol. 2017, 41, 1091–1102. [Google Scholar]
- Sun, D.L.; Bian, N.F.; Chen, Z.D.; Xing, X.H.; Xu, Z.J.; Qi, Y.J.; Wang, W. Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. J. Plant. Genet. Resour. 2018, 19, 865–874. [Google Scholar]
- Lin, H.B.; Wan, Y.; Xia, L.I.; Lei, J.G.; Luo, X.D.; Yan, W.G.; Xie, J.K. Analysis on genetic diversity of phenotypic traits in rice (oryza sativa) core collection and its comprehensive assessment. Acta Agron. Sin. 2012, 38, 829–839. [Google Scholar] [CrossRef]
- Dai, P.H.; Sun, J.L.; He, S.P.; Wang, L.R.; Jia, Y.H.; Pan, Z.E.; Wang, M. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton. Sci. Agric. Sin. 2016, 49, 3694–3708. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, X.; Hu, X.; Liu, Y. Phenotypic diversity of 33 introduced peanut germplasm accessions and preliminary adaptability evaluation in West Guangdong. Chin. J. Trop. Crops 2021, 42, 1885–1895. [Google Scholar] [CrossRef]
- Mahadevaiah, C.; Appunu, C.; Aitken, K.; Suresha, G.S.; Vignesh, P.; Mahadeva Swamy, H.K.; Valarmathi, R.; Hemaprabha, G.; Alagarasan, G.; Ram, B. Genomic selection in sugarcane: Current status and future prospects. Front. Plant Sci. 2021, 12, 708233. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, D.; Zhang, Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc. Natl. Acad. Sci. USA 2014, 111, 12456–12461. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, S.; Cheng, Q.; Wang, X.; Yan, J.; Zhang, R.; Qiao, F.; Ma, C.; Luo, J.; Li, W.; et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 2021, 22, 148. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Li, W.; Liu, S.; Liu, Y.; Zhao, G. The effect of the botanical traits on the yield model in broomrape resistant sunflower. Crops 2016, 32, 38–45. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Hu, R.; Liu, L. Yield prediction model for sugarcane in yunnan province based on association rules and multiple linear regression. Guangdong Agric. Sci. 2023, 50, 1–9. [Google Scholar]
- Tang, X.; Meng, X.; Jiang, J.; Huang, Z.; Wu, H.; Liu, J.; He, L.; Xiong, F.; Zhong, R.; Han, Z.; et al. Effects of sugarcane/peanut intercropping on soil microenvironment in different plough layer. Chin. J. Oil Crop Sci. 2020, 42, 713–722. [Google Scholar] [CrossRef]
- Cai, Q.; Fan, Y.H.; Ma, L.; Ying, X.M.; Huang, Y.K.; Wang, L.P. Descriptors and Data Standard for Sugarcane (Saccharum officinarum L.); China Agriculture Press: Beijing, China, 2006; pp. 1–18. [Google Scholar]
- Chen, D.; Zhou, W.; Yang, J.; Ao, J.; Huang, Y.; Shen, D.; Jiang, Y.; Huang, Z.; Shen, H. Effects of Seaweed Extracts on the Growth, Physiological Activity, Cane Yield and Sucrose Content of Sugarcane in China. Front. Plant Sci. 2021, 12, 659130. [Google Scholar] [CrossRef] [PubMed]
- ggpairs. Available online: https://ggobi.github.io/ggally/articles/ggpairs.html (accessed on 9 September 2022).
- Hallauer, A.R.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1898. [Google Scholar]
- Miller, L.; Pisacane, C.; Vicino, G. Relationship between behavioural diversity and faecal glucocorticoid metabolites: A case study with cheetahs (Acinonyx Jubatus). Anim. Welf. 2016, 25, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot: An Implementation of the Grammar of Graphics. R Package Version 04 0. 2006. Available online: https://pdfs.semanticscholar.org/ba19/d814f1b02664b4621d90a7e8e27c0eb22515.pdf (accessed on 9 September 2022).
Traits Name | Abbreviation | Range | Mean ± σ a | CV b | Skewness | Kurtosis | H′ c | h2 d |
---|---|---|---|---|---|---|---|---|
Tillering ratio (%) | TR | 1.61–10.00 | 3.89 ± 1.20 | 0.31 | 1.40 | 4.49 | 2.77 | 0.81 |
Effective tillering ratio (%) | ETR | 0.94–7.59 | 2.51 ± 1.07 | 0.43 | 1.86 | 5.06 | 2.64 | 0.75 |
Stalk number (/m2) | SN | 1.30–9.30 | 5.07 ± 1.44 | 0.28 | −0.09 | 0.61 | 2.92 | 0.78 |
Stalk diameter (Mm) | SD | 1.95–3.39 | 2.61 ± 0.28 | 0.11 | 0.40 | 0.32 | 2.92 | 0.80 |
Internode length (Cm) | IL | 9.43–16.78 | 13.32 ± 1.41 | 0.11 | −0.02 | −0.20 | 2.96 | 0.84 |
Stalk height (M) | SH | 2.10–4.31 | 3.16 ± 0.36 | 0.12 | 0.30 | 0.69 | 2.96 | 0.83 |
Brix (%) | B | 16.54–30.31 | 20.87 ± 1.82 | 0.09 | 1.16 | 5.57 | 2.86 | 0.80 |
Stalk weight (Kg) | SW | 0.74–2.92 | 1.72 ± 0.41 | 0.24 | 0.53 | 0.47 | 2.90 | 0.82 |
Sucrose content (%) | SC | 10.20–18.71 | 14.89 ± 1.97 | 0.13 | 1.16 | 5.57 | 2.86 | 0.80 |
Yield (T/ha) | Y | 18.75–142.35 | 77.25 ± 24.00 | 0.31 | 0.00 | 0.16 | 2.98 | 0.75 |
Sucrose yield (T/ha) | SY | 2.10–21.75 | 11.55 ± 4.06 | 0.35 | 0.12 | 0.23 | 2.98 | 0.80 |
Traits | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Tillering ratio | 0.19 | −0.29 | −0.30 | −0.23 |
Effective tillering ratio | 0.30 | −0.27 | −0.38 | −0.02 |
Stalk number | 0.40 | −0.08 | −0.30 | 0.19 |
Stalk diameter | −0.15 | 0.46 | −0.03 | 0.24 |
Internode length | 0.23 | 0.10 | −0.01 | −0.64 |
Stalk height | 0.15 | 0.29 | 0.11 | −0.58 |
Brix | 0.41 | −0.07 | 0.53 | 0.12 |
Stalk weight | −0.04 | 0.54 | 0.01 | −0.07 |
Sucrose content | 0.41 | −0.07 | 0.53 | 0.12 |
Yield | 0.33 | 0.37 | −0.31 | 0.17 |
Sucrose yield | 0.42 | 0.30 | −0.14 | 0.19 |
Eigenvalue | 3.31 | 2.88 | 1.43 | 1.28 |
Variance proportion (%) | 30.11 | 26.19 | 12.97 | 11.66 |
Cumulative proportion (%) | 30.11 | 56.30 | 69.27 | 80.93 |
Genotypes | Group | F1 | F2 | F3 | F4 | F |
---|---|---|---|---|---|---|
F1-2 | Group2 | 65.83 | 42.62 | −20.78 | 17.76 | 37.51 |
F1-5 | Group1 | 66.38 | 52.41 | −25.36 | 19.44 | 40.40 |
F1-9 | Group1 | 64.26 | 45.21 | −20.99 | 17.21 | 37.66 |
F1-13 | Group2 | 63.43 | 41.99 | −17.76 | 15.66 | 36.59 |
F1-15 | Group2 | 62.12 | 40.15 | −15.48 | 14.43 | 35.70 |
F1-22 | Group1 | 63.47 | 46.51 | −20.67 | 14.06 | 37.38 |
F1-23 | Group1 | 72.23 | 37.50 | −8.52 | 14.52 | 39.73 |
F1-43 | Group2 | 71.76 | 47.57 | −26.58 | 18.28 | 40.47 |
F1-59 | Group1 | 76.43 | 57.54 | −28.87 | 20.94 | 45.45 |
F1-71 | Group1 | 67.94 | 49.56 | −22.29 | 17.97 | 40.33 |
F1-73 | Group2 | 66.58 | 45.47 | −21.40 | 15.47 | 38.29 |
F1-76 | Group2 | 64.62 | 45.50 | −19.48 | 15.96 | 37.94 |
F1-84 | Group1 | 78.27 | 59.97 | −30.78 | 22.12 | 46.78 |
F1-85 | Group1 | 64.90 | 47.41 | −19.41 | 17.18 | 38.85 |
F1-86 | Group1 | 66.94 | 49.02 | −24.39 | 15.17 | 39.04 |
F1-89 | Group1 | 73.61 | 56.37 | −26.28 | 20.84 | 44.42 |
F1-92 | Group2 | 70.40 | 49.96 | −25.74 | 19.13 | 40.99 |
F1-93 | Group1 | 59.67 | 42.24 | −16.60 | 16.10 | 35.53 |
F1-99 | Group2 | 62.33 | 42.47 | −17.56 | 15.02 | 36.28 |
F1-102 | Group2 | 66.11 | 44.26 | −18.27 | 16.21 | 38.33 |
F1-110 | Group1 | 60.72 | 43.78 | −18.93 | 15.66 | 35.98 |
F1-115 | Group2 | 65.73 | 45.10 | −22.61 | 17.18 | 37.90 |
F1-124 | Group1 | 62.45 | 42.94 | −16.88 | 17.18 | 36.90 |
F1-129 | Group2 | 63.64 | 41.55 | −16.95 | 15.56 | 36.65 |
ROC22 | 60.04 | 41.40 | −14.84 | 14.63 | 35.47 |
Coefficient | Standard Error | t Value | p (>|t|) | |
---|---|---|---|---|
Intercept | −47.86 | 1.77 | −26.97 | <2 × 10−16 *** |
Stalk number | 2.01 | 0.07 | 28.55 | <2 × 10−16 *** |
Stalk diameter | 8.34 | 0.35 | 23.62 | <2 × 10−16 *** |
Internode length | 0.03 | 0.08 | 0.39 | 0.69 |
Stalk height | 3.38 | 0.29 | 11.86 | <2 × 10−16 *** |
Brix | 0.79 | 0.05 | 14.48 | <2 × 10−16 *** |
Sucrose content | NA | NA | NA | NA |
Coefficient | Standard Error | t Value | p (>|t|) | |
---|---|---|---|---|
Intercept | −47.64 | 1.68 | −28.39 | <2 × 10−16 *** |
Stalk number | 2.01 | 0.07 | 28.86 | <2 × 10−16 *** |
Stalk diameter | 8.32 | 0.35 | 23.77 | <2 × 10−16 *** |
Stalk height | 3.44 | 0.25 | 13.55 | <2 × 10−16 *** |
Brix | 0.79 | 0.05 | 14.59 | <2 × 10−16 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Kong, R.; An, D.; Zhang, X.; Li, Q.; Nie, H.; Liu, Y.; Su, J. Evaluation of a Sugarcane (Saccharum spp.) Hybrid F1 Population Phenotypic Diversity and Construction of a Rapid Sucrose Yield Estimation Model for Breeding. Plants 2023, 12, 647. https://doi.org/10.3390/plants12030647
Xu Z, Kong R, An D, Zhang X, Li Q, Nie H, Liu Y, Su J. Evaluation of a Sugarcane (Saccharum spp.) Hybrid F1 Population Phenotypic Diversity and Construction of a Rapid Sucrose Yield Estimation Model for Breeding. Plants. 2023; 12(3):647. https://doi.org/10.3390/plants12030647
Chicago/Turabian StyleXu, Zhijun, Ran Kong, Dongsheng An, Xuejiao Zhang, Qibiao Li, Huzi Nie, Yang Liu, and Junbo Su. 2023. "Evaluation of a Sugarcane (Saccharum spp.) Hybrid F1 Population Phenotypic Diversity and Construction of a Rapid Sucrose Yield Estimation Model for Breeding" Plants 12, no. 3: 647. https://doi.org/10.3390/plants12030647
APA StyleXu, Z., Kong, R., An, D., Zhang, X., Li, Q., Nie, H., Liu, Y., & Su, J. (2023). Evaluation of a Sugarcane (Saccharum spp.) Hybrid F1 Population Phenotypic Diversity and Construction of a Rapid Sucrose Yield Estimation Model for Breeding. Plants, 12(3), 647. https://doi.org/10.3390/plants12030647