A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality
Abstract
:1. Introduction
2. Effects of Irrigation Management on Wheat Physiology
2.1. Deficit Irrigation
2.2. Regulated Deficit Irrigation
2.3. Alternate Furrow Irrigation
2.4. Drip Irrigation
3. Effects of Irrigation Management on Wheat Growth and Yield
3.1. Effects of Irrigation Method on Wheat Growth and Yield
3.2. Effects of Irrigation Scheduling on Wheat Growth and Yield
4. Effects of Irrigation Management on Wheat Grain Quality
4.1. Effect of Irrigation Regimes on Flour Quality and Dough Stability
4.2. Effects of Irrigation Regimes on Wet Gluten Content and Gluten Index
4.3. Effect of Irrigation Regimes on Protein Content and Components
4.4. Effect of Irrigation Regimes on Wheat Starch Content
5. Perspective for Improving Irrigation Management in Wheat Crops
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guarin, J.R.; Martre, P.; Ewert, F.; Webber, H.; Dueri, S.; Calderini, D.; Reynolds, M.; Molero, G.; Miralles, D.; Garcia, G.; et al. Evidence for increasing global wheat yield potential. Environ. Res. Lett. 2022, 17, 124045. [Google Scholar] [CrossRef]
- del Pozo, A.; Yáñez, A.; Matus, I.A.; Tapia, G.; Castillo, D.; Sanchez-Jardón, L.; Araus, J.L. Physiological traits associated with wheat yield potential and performance under water-stress in a mediterranean environment. Front. Plant Sci. 2016, 7, 987. [Google Scholar] [CrossRef]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Ahmad, S.; Saleem, M.F.; Khan, I.H.; Iqbal, R.; Zaheer, M.S.; Haider, I.; Ali, M. Physiological and biochemical assisted screening of wheat varieties under partial rhizosphere drying. Plant Physiol. Biochem. 2017, 116, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Mwale, S.S.; Azamali, S.N.; Massawe, F. Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture: 1. Dry matter and yield. Eur. J. Agron. 2007, 26, 345–353. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Li, S.; Liu, J.; Liang, Y.; Gao, Y.; Duan, A. Optimizing nitrogen application for drip-irrigated winter wheat with DSSAT-CERES-Wheat model. Agric. Water Manag. 2021, 244, 106592. [Google Scholar] [CrossRef]
- Mosaffa, H.R.; Sepaskhah, A.R. Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agric. Water Manag. 2018, 216, 444–456. [Google Scholar] [CrossRef]
- You, Y.; Song, P.; Yang, X.; Zheng, Y.; Dong, L.; Chen, J. Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment. Agric. Water Manag. 2022, 273, 107901. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Sun, J.; Zhang, X.; Zhang, J. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Cao, H.; Zhang, J. Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays). Field Crops Res. 2002, 77, 31–41. [Google Scholar] [CrossRef]
- Idnani, L.K.; Kumar, A. Performance of wheat (Triticum aestivum) under different irrigation schedules and sowing methods. Indian J. Agric. Sci. 2013, 83, 37–40. [Google Scholar]
- Liu, H.; Li, H.H.; Ning, H.F.; Zhang, X.X.; Li, S.; Pang, J.; Wang, G.S.; Sun, J.S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Sharma, K.D.; Kumar, A. Identification of physiological and yield related traits of wheat (Triticum aestivum L.) under varying soil moisture stress. J. Agrometeorol. 2014, 16, 78–84. [Google Scholar] [CrossRef]
- Singh, S.; Angadi, S.V.; Grover, K.; Begna, S.; Auld, D. Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains. Agric. Water Manag. 2016, 163, 354–362. [Google Scholar] [CrossRef]
- Jha, S.K.; Gao, Y.; Liu, H.; Huang, Z.; Wang, G.; Liang, Y.; Duan, A. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric. Water Manag. 2017, 182, 139–150. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.; Liang, Y.; Hu, X.; Cai, H.; Gu, B. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Chen, R.; Xiong, X.; Cheng, W. Root characteristics of spring wheat under drip irrigation and their relationship with aboveground biomass and yield. Sci. Rep. 2021, 11, 4913. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Rabea, S.; Caroline, M. Effects of continuous versus pulsed drought stress on physiology and growth of wheat. Plant Biol. 2018, 20, 1005–1013. [Google Scholar]
- Hao, S.; Cao, H.; Wang, H.; Pan, X. The physiological responses of tomato to water stress and re-water in different growth periods. Sci. Hortic. 2019, 249, 143–154. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Zhao, J.; Ma, Y.; Li, Q. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric. Water Manag. 2019, 221, 371–376. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, H.; Zhao, L. Effects of growth-stage-based limited irrigation management on the growth, yields, and radiation utilization efficiency of winter wheat in northwest China. Irrig. Drain. 2022, 71, 70–80. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.; Dusek, D.A. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol. 2006, 163, 154–164. [Google Scholar] [CrossRef]
- Tadayon, M.R.; Emam, Y. Effect of supplemental irrigation and amount of available water on yield, yield components and physiological characteristics of two rainfed wheat cultivars. J. Sci. Technol. Agric. Nat. Resour. 2008, 42, 145–157. [Google Scholar]
- Ali, S.; Xu, Y.; Jia, Q.; Ma, X.; Ahmad, I.; Adnan, M.; Gerard, R.; Ren, X.; Zhang, P.; Cai, T.; et al. Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions. Agric. Water Manag. 2018, 207, 1–14. [Google Scholar] [CrossRef]
- Al-Ghawry, A.; Yazar, A.; Unlu, M.; Barutcular, C.; Çolak, Y.B. Comparison of physiological response to growth stage-based supplemental and conventional irrigation management of wheat. J. Agric. Sci. 2021, 159, 414–425. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2015, 36, 3. [Google Scholar] [CrossRef]
- Mu, Q.; Cai, H.; Sun, S.; Wen, S.; Xu, J.; Dong, M.; Saddique, Q. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agric. Water Manag. 2020, 243, 106475. [Google Scholar] [CrossRef]
- Wu, Y.L.; Guo, Q.F.; Luo, Y.; Tian, F.X.; Wang, W. Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions. Russ. J. Plant Physiol. 2014, 61, 451–459. [Google Scholar] [CrossRef]
- Sepaskhah, A.; Ahmadi, S. A review on partial root-zone drying irrigation. Int. J. Plant Prod. 2012, 4, 241–258. [Google Scholar] [CrossRef]
- Jia, D.; Dai, X.; Men, H.; He, M. Assessment of winter wheat (Triticum aestivum L.) grown under alternate furrow irrigation in northern China: Grain yield and water use efficiency. Can. J. Plant Sci. 2014, 94, 349–359. [Google Scholar] [CrossRef]
- Ma, S.-T.; Wang, T.-C. Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat. Agric. Water Manag. 2022, 271, 107783. [Google Scholar] [CrossRef]
- Bai, X.; Guo, L.; Lin, R.; Han, L.; Xiao, K. Characterization of yields, osmotic stress-associated traits, and expression patterns of aba receptor genes in winter wheat under deficit irrigation. Int. J. Plant Prod. 2021, 15, 419–429. [Google Scholar] [CrossRef]
- Li, X.-H.; Sheng, K.; Wang, Y.-H.; Dong, Y.-Q.; Jiang, Z.-K.; Sun, J.-S. Influence of furrow irrigation regime on the yield and water consumption indicators of winter wheat based on a multi-level fuzzy comprehensive evaluation. Open Life Sci. 2022, 17, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Yarami, N.; Sepaskhah, A.R. Saffron response to irrigation water salinity, cow manure and planting method. Agric. Water Manag. 2015, 150, 57–66. [Google Scholar] [CrossRef]
- Shabani, A.; Sepaskhah, A.; Kamgar-Haghighi, A. Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. Int. J. Plant Prod. 2013, 7, 569–596. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Interaction effects of planting method, irrigation regimes, and nitrogen application rates on yield, water and nitrogen use efficiencies of winter wheat (Triticum aestivum). Int. J. Plant Prod. 2018, 12, 265–283. [Google Scholar] [CrossRef]
- Kong, L.; Wang, F.; Feng, B.; Li, S.; Si, J.; Zhang, B. A root-zone soil regime of wheat: Physiological and growth re-sponses to furrow irrigation in raised bed planting in Northern China. Agron. J. 2010, 102, 154–162. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Ma, X.; Jia, Q.; Jia, Z. Improvement in winter wheat productivity through regulating PSII photochemistry, photosynthesis and chlorophyll fluorescence under deficit irrigation conditions. J. Integr. Agric. 2022, 21, 654–665. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; Shi, P.; Yang, X.; Yukuo, A.B.E.; Du, T.; Shen, Q.; Zhang, J. The impacts of human activities on the water–land environment of the Shiyang River basin, an arid region in northwest China. Hydrol. Sci. J. 2004, 49, 413–427. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Hu, X. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric. Water Manag. 2006, 84, 41–52. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Guo, Q.; Zhou, X.; Helmers, M.J. Effect of aeration and soil water redistribution on the air permeability under subsurface drip irrigation. Soil Sci. Soc. Am. J. 2012, 76, 815–820. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, X.; Shao, L.; Chen, S.; Sun, H. Assessing the performance of different irrigation systems on winter wheat under limited water supply. Agric. Water Manag. 2018, 196, 133–143. [Google Scholar] [CrossRef]
- Camposeo, S.; Rubino, P. Effect of irrigation frequency on root water uptake in sugar beet. Plant Soil 2003, 253, 301–309. [Google Scholar] [CrossRef]
- Romero, P.; Botia, P.; Garcia, F. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees. Plant Soil 2004, 260, 169–181. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Iijima, M. Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod. Sci. 2005, 8, 454–460. [Google Scholar] [CrossRef]
- Tao, X.; Su, D.; Kou, D.; Li, Y.; Qiao, Y. Effects of irrigation methods on photosynthetic charactieristics and yield of alfalfa in Arid Northwest China. Chin. J. Glassland 2015, 37, 35–41. [Google Scholar]
- Ma, L.; Liu, X.; Wang, Y.; Wu, P. Effects of drip irrigation on deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant Soil 2013, 37, 995–1006. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J. Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat. Agric. Water Manag. 2017, 179, 277–287. [Google Scholar] [CrossRef]
- Mon, J.; Bronson, K.F.; Hunsaker, D.J.; Thorp, K.R.; White, J.W.; French, A.N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crops Res. 2016, 191, 54–65. [Google Scholar] [CrossRef]
- Liu, S.; Lin, X.; Wang, W.; Zhang, B.; Wang, D. Supplemental irrigation increases grain yield, water productivity, and nitrogen utilization efficiency by improving nitrogen nutrition status in winter wheat. Agric. Water Manag. 2022, 264, 107505. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Ken, S. Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Res. 2004, 87, 35–42. [Google Scholar]
- Si, Z.Y. Effects of Different Cultivation Methods on Growth and Water-Nitrogen Use Efficiency of winter Wheat. Ph.D. Dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Fischer, R.; Ramos, O.M.; Monasterio, I.O.; Sayre, K. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Res. 2018, 232, 95–105. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; Abbas, E.; Swelam, A.; Sabry, S.R.S.; Moustafa, M.A.; Halila, H. Socioeconomic, biophysical, and environmental impacts of raised beds in irrigated wheat: A case study from Egypt. Agric. Water Manag. 2021, 249, 106802. [Google Scholar] [CrossRef]
- Wang, F.; He, Z.; Sayre, K.; Li, S.; Si, J.; Feng, B.; Kong, L. Wheat cropping systems and technologies in China. Field Crops Res. 2009, 111, 181–188. [Google Scholar] [CrossRef]
- Ahmad, S.; Raza, M.; Saleem, M.; Iqbal, R.; Haider, I.; Aslam, M.U.; Ali, M.; Khan, I. Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J. Anim. Plant Sci. 2020, 30, 154–162. [Google Scholar]
- Rady, M.O.; Semida, W.M.; Howladar, S.; El-Mageed, T.A.A. Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L.) under deficit irrigation. Agric. Water Manag. 2020, 245, 106629. [Google Scholar] [CrossRef]
- Devkota, M.; Martius, C.; Lamers, J.P.A.; Sayre, K.D.; Devkota, K.P.; Gupta, R.K.; Egamberdiev, O.; Vlek, P.L.G. Combining permanent beds and residue retention with nitrogen fertilization improves crop yields and water productivity in irrigated arid lands under cotton, wheat and maize. Field Crops Res. 2013, 149, 105–114. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Z.; Guo, Q.; Hu, Z.; Li, J.; Wei, T.; Ding, R.; Cai, T.; Ren, X.; Han, Q.; et al. Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment. Agric. Water Manag. 2021, 259, 107239. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhang, Y.; Ren, X.; Chen, X. Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China? Agric. Water Manag. 2022, 272, 107852. [Google Scholar] [CrossRef]
- Du, X.; He, W.; Wang, Z.; Xi, M.; Xu, Y.; Wu, W.; Gao, S.; Liu, D.; Lei, W.; Kong, L. Raised bed planting reduces waterlogging and increases yield in wheat following rice. Field Crops Res. 2021, 265, 108119. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Xi, M.; Wu, W.; Wei, Z.; Xu, Y.; Zhou, Y.; Lei, W.; Kong, L. A novel planting pattern increases the grain yield of wheat after rice cultivation by improving radiation resource utilization. Agric. For. Meteorol. 2021, 310, 108625. [Google Scholar] [CrossRef]
- Wu, L.; Han, X.; Islam, S.; Zhai, S.; Zhao, H.; Zhang, G.; Cui, G.; Zhang, F.; Han, W.; You, X.; et al. Effects of sowing mode on lodging resistance and grain yield in winter wheat. Agronomy 2021, 11, 1378. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Si, Z.; Wu, L.; Duan, A. Effects of cultivation methods on water consumption yield and water use efficiency of winter wheat. J. Soil Water Consump. 2020, 34, 210–216. (In Chinese) [Google Scholar]
- Bai, S.; Kang, Y.; Wan, S. Drip fertigation regimes for winter wheat in the North China Plain. Agric. Water Manag. 2020, 228, 105885. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Chen, J.; Si, Z.; Ramatshaba, T.S.; Zain, M.; Rahman, S.U.; Duan, A. Nitrous oxide emission from winter wheat field as responded to irrigation scheduling and irrigation methods in the North China Plain. Agric. Water Manag. 2019, 222, 367–374. [Google Scholar] [CrossRef]
- Zhai, L.-C.; Lü, L.-H.; Dong, Z.-Q.; Zhang, L.-H.; Zhang, J.-T.; Jia, X.-L.; Zhang, Z.-B. The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain. J. Integr. Agric. 2021, 20, 1687–1700. [Google Scholar] [CrossRef]
- Umair, M.; Hussain, T.; Jiang, H.; Ahmad, A.; Yao, J.; Qi, Y.; Zhang, Y.; Min, L.; Shen, Y. Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat. Sustainability 2019, 11, 2978. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Jat, M.L.; Singh, Y.; Sidhu, R.K.; Gupta, N.; Singh, P.; Singh, P.; Jat, H.S.; Gerard, B. Subsurface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agric. Water Manag. 2019, 216, 273–283. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Slamini, M.; Sbaa, M.; Arabi, M.; Darmous, A. Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution. Agric. Water Manag. 2022, 271, 107807. [Google Scholar] [CrossRef]
- Iqbal, R.; Andersen, M.N.; Raza, M.A.S.; Rashid, M.A.; Ahmad, S. Physiological Manipulation and Yield Response of Wheat Grown with Split Root System under Deficit Irrigation. Pak. J. Agric. Res. 2019, 32, 514–526. [Google Scholar] [CrossRef]
- Lü, G.-H.; Song, J.-Q.; Bai, W.-B.; Wu, Y.-F.; Liu, Y.; Kang, Y.-H. Effects of different irrigation methods on micro-environments and root distribution in winter wheat fields. J. Integr. Agric. 2015, 14, 1658–1672. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.; He, X.; Zhang, X.; Chen, S.; Chen, J.; Yang, Y. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, W.; Chen, S.; Shao, L.; Sun, H. Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Feng, Y.; Shang, M.; Bo, X.; Gao, Z.; Chen, F.; Chu, Q. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems. Agric. Water Manag. 2021, 248, 106762. [Google Scholar] [CrossRef]
- Feng, S.; Gu, S.; Zhang, H.; Wang, D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res. 2017, 214, 131–141. [Google Scholar] [CrossRef]
- Song, H.; Li, Y.; Zhou, L.; Xu, Z.; Zhou, G. Maize leaf functional responses to drought episode and rewatering. Agric. For. Meteorol. 2017, 249, 57–70. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Zhang, Y.; Wu, J.; Zhang, J.; Pan, X.; Gao, C.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L. Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China. Agric. Water Manag. 2022, 271, 107782. [Google Scholar] [CrossRef]
- Rathore, V.S.; Nathawat, N.S.; Bhardwaj, S.; Sasidharan, R.P.; Yadav, B.M.; Kumar, M.; Santra, P.; Yadava, N.D.; Yadav, O.P. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2017, 187, 232–245. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; Zhao, J.; Wang, K.; Shang, M.; Qin, Y.; Bo, X.; Chen, F.; Chu, Q. Adopting different irrigation and nitrogen management based on precipitation year types balances winter wheat yields and greenhouse gas emissions. Field Crops Res. 2022, 280, 108484. [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Dar, E.A.; Brar, A.; Singh, K. Water use and productivity of drip irrigated wheat under variable climatic and soil moisture regimes in North-West, India. Agric. Ecosyst. Environ. 2017, 248, 9–19. [Google Scholar] [CrossRef]
- Eissa, M.A.; Rekaby, S.A.; Hegab, S.A.; Ragheb, H.M. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. J. Plant Nutr. 2018, 41, 1576–1586. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; Wang, Q.; Tang, M.; Feng, S.; Cai, H. AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity. Agric. Water Manag. 2022, 266, 107580. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Wang, C.; Jia, H.; Worqlul, A.W.; Norelli, N.; Zeng, Z.; Chu, Q. Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain. Agric. Water Manag. 2020, 240, 106298. [Google Scholar] [CrossRef]
- Davarpanah, R.; Ahmadi, S.H. Modeling the effects of irrigation management scenarios on winter wheat yield and water use indicators in response to climate variations and water delivery systems. J. Hydrol. 2021, 598, 126269. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Wang, Z.; Zhang, Y. Yield sustainability of winter wheat under three limited-irrigation schemes based on a 28-year field experiment. Crop. J. 2022, 10, 1774–1783. [Google Scholar] [CrossRef]
- Dar, E.A.; Brar, A.; Dar, S.A.; Aljuaid, B.S.; El-Shehawi, A.M.; Rashid, R.; Shah, Z.A.; Yousuf, A.; Bhat, M.A.; Ahmed, M.; et al. Quantitative response of wheat to sowing dates and irrigation regimes using CERES-Wheat model. Saudi J. Biol. Sci. 2021, 28, 6198–6208. [Google Scholar] [CrossRef]
- He, J.; Cai, H.; Bai, J. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China. Agric. Water Manag. 2013, 128, 19–31. [Google Scholar] [CrossRef]
- Zeng, R.; Yao, F.; Zhang, S.; Yang, S.; Bai, Y.; Zhang, J.; Wang, J.; Wang, X. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain. Agric. Water Manag. 2021, 256, 107063. [Google Scholar] [CrossRef]
- Kheir, A.M.; Alrajhi, A.A.; Ghoneim, A.M.; Ali, E.F.; Magrashi, A.; Zoghdan, M.G.; Abdelkhalik, S.A.; Fahmy, A.E.; Elnashar, A. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Water Manag. 2021, 256, 107122. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Bakke, A.; Vickers, Z. Consumer liking of refined and whole wheat breads. J. Food Sci. 2007, 72, S473–S480. [Google Scholar] [CrossRef]
- Ansari, F.; Pimentel, T.C.; Pourjafar, H.; Ibrahim, S.A.; Jafari, S.M. The influence of prebiotics on wheat flour, dough, and bread properties; resistant starch, polydextrose, and inulin. Foods 2022, 11, 3366. [Google Scholar] [CrossRef]
- Sun, H.; Ouyang, S.; Duan, X. Wheat quality in China–status and challenge. Sci. Technol. Cereal Oil Food. 2017, 25, 1–4. (In Chinese) [Google Scholar]
- Buster, M.; Simpfendorfer, S.; Guppy, C.; Sissons, M.; Flavel, R.J. Fusarium crown rot reduces water use and causes yield penalties in wheat under adequate and above average water availability. Agronomy 2022, 12, 2616. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Xia, X.; Qu, Y.; Zhang, Y. Effects of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chem. 2014, 91, 623–630. [Google Scholar] [CrossRef]
- Grahmann, K.; Govaerts, B.; Fonteyne, S.; Guzman, C.; Soto, A.P.G.; Buerkert, A.; Verhulst, N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr. Cycl. Agroecosystems 2016, 106, 185–199. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, D.; Chang, H.; Yan, X.; Yan, Y. Effects of water-deficit and high-nitrogen treatments on wheat resistant starch crystalline structure and physicochemical properties. Carbohydr. Polym. 2020, 234, 115905. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Wang, Z.; Xu, G.; Zhu, Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol. 2004, 135, 1621–1629. [Google Scholar] [CrossRef]
- Guo, T.; Song, X.; Ma, D.; Zha, F.; Yue, Y. Effects of nitrogen application rate on carbon and nitrogen transportation in winter wheat. Acta Bot. Boreal. Occident. Sin. 2007, 27, 1605–1610. (In Chinese) [Google Scholar]
- Noorka, I.R.; da Silva, J.A.T. Mechanistic insight of water stress induced aggregation in wheat (Triticum aestivum L.) quality: The protein paradigm shift. Not. Sci. Biol. 2012, 4, 32–38. [Google Scholar] [CrossRef]
- Kindred, D.R.; Verhoeven, T.M.O.; Weightman, R.M.; Swanston, J.S.; Agu, R.C.; Brosnan, J.M.; Sylvester–Bradley, R. Effects of cultivar and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J. Cereal Sci. 2008, 48, 46–57. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.; Ma, J.; Lei, T.; Zheng, L.; Wang, P. Simulation of the water dynamics and root water uptake of winter wheat in irrigation at different soil depths. Water 2018, 10, 1033. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xu, X.; He, Z.; Xiao, Y.; Chen, X.; Wang, Z. Dry matter accumulation and water use performance of winter wheat cultivar Zhongmai 175 under three limited irrigation levels. Sci. Agric. Sin. 2018, 51, 374–385. (In Chinese) [Google Scholar]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, J. Comparison of starch physicochemical properties of wheat cultivars differing in bread–and noodle–making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Dai, Z.; Yin, Y.; Wang, Z. Activities of key enzymes involved in starch synthesis in grains of wheat under different irrigation patterns. J. Agric. Sci. 2009, 147, 437–444. [Google Scholar] [CrossRef]
- Rajala, A.; Hakala, K.; Mäkelä, P.; Muurinen, S.; Peltonen-Sainio, P. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res. 2009, 114, 263–271. [Google Scholar] [CrossRef]
- Rezaei, M.; Zehtab–Salmasi, S.; Najafi, N.; Ghassemi–Golezani, K.; Jalalikamali, M. Effects of water deficit on nutrient content and grain protein of bread wheat genotypes. J. Food Agric. Environ. 2010, 8, 535–539. [Google Scholar]
- DU, X.-D.; Zhao, H.-W.; Wang, J.-G.; Liu, H.-L.; Yang, L.; Xu, J.; Song, J.-T. Changes in Starch Accumulation and Activity of Enzymes Associated with Starch Synthesis under Different Nitrogen Applications in Japonica Rice in Cold Region. Acta Agron. Sin. 2012, 38, 159–167. [Google Scholar] [CrossRef]
- Ahmadi, A.; Baker, D. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 2014, 59, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, F.; Sepaskhah, A.R. Partial root zone drying irrigation, planting methods and nitrogen fertilization influ-ence on physiologic and agronomic parameters of winter wheat. Agric. Water Manag. 2019, 223, 105688. [Google Scholar] [CrossRef]
- Liu, J.; Wiberg, D.; Zehnder, A.J.B.; Yang, H. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig. Sci. 2007, 26, 21–33. [Google Scholar] [CrossRef]
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2018, 70, 2549–2560. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Panlasigui, L.N.; Thompson, L.U.; Juliano, B.O.; Pérez, C.M.; Yiu, S.H.; Greenberg, G.R. Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am. J. Clin. Nutr. 1991, 54, 871–877. [Google Scholar] [CrossRef]
- Li, H.; Dhital, S.; Slade, A.J.; Yu, W.; Gilbert, R.G.; Gidley, M.J. Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocoll. 2019, 92, 51–59. [Google Scholar] [CrossRef]
- Li, J.; Inanaga, S.; Li, Z.; Eneji, A.E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric. Water Manag. 2005, 76, 8–23. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Tong, J.; Wang, S.; He, Z.; Zhang, Y. Effects of reduced nitrogen fertilization and irrigation on structure and physicochemical properties of starch in two bread wheat cultivars. Agriculture 2021, 11, 26. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Y.; Zhou, S.; Zhou, J.; Si, Z. Study on effects of soil drought stress on winter wheat senescence. Acta Agric. Univer. Henan 1996, 30, 309–311. (In Chinese) [Google Scholar]
- Ma, D.; Zhu, Y.; Guo, T.; Wang, C. Effects of genotype environment and G * E interaction on wheat quality of Henan Province and the stability analysis. J. Triticeae Crops 2002, 22, 13–18. (In Chinese) [Google Scholar]
- Wang, Y.; Chen, J.; Qu, J.; Li, W.; Zhou, S. Effects of soil water on grain yield and quality in winter wheat. J. Laiyang Agric. Colleg. 2002, 19, 7–9. (In Chinese) [Google Scholar]
- Alghory, A.; Yazar, A. Evaluation of net return and grain quality characteristics of wheat for various irrigation strategies under the Mediterranean climatic conditions. Agric. Water Manag. 2018, 203, 395–404. [Google Scholar] [CrossRef]
- Ali, M.; Hoque, M.; Hassan, A.; Khair, A. Effects of deficit irrigation on yield, water productivity and economic returns of wheat. Agric. Water Manag. 2007, 92, 151–161. [Google Scholar] [CrossRef]
- Eid, A.R.; El-Farouk, A.M.; Bakry, B.A.; Elbegawy, M.K. Effect of sprinkler irrigation systems and irrigation frequency on water use efficiency and economical parameters for wheat production. Int. J. Sci. Res. Agric. Sci. 2014, 1, 56–66. [Google Scholar] [CrossRef]
- Erekul, O.; Gotz, K.; Gurbuz, T. Effect of supplemental irrigation on yield and bread–making quality of wheat (Triticum aestivum L.) varieties under the Mediterranean climatical conditions. Turk. J. Field Crops 2012, 17, 78–86. [Google Scholar]
- Gooding, M.; Ellis, R.; Shewry, P.; Schofield, J. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci. 2003, 37, 295–309. [Google Scholar] [CrossRef]
- Guttieri, M.; McLean, R.; Stark, J.; Souza, E. Managing irrigation and nitrogen fertility of hard spring wheats for op-timum bread and noodle quality. Crop Sci. 2005, 45, 2049–2059. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Silva, R.R.; Zucareli, C.; Fonseca, I.C.D.B.; Riede, C.R.; Gazola, D. Nitrogen management, cultivars and growing environments on wheat grain quality. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 826–832. [Google Scholar] [CrossRef]
- Kresović, B.; Gajić, B.; Tapanarova, A.; Dugalić, G. How Irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Pol. J. Environ. Stud. 2018, 27, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Asthir, B.; Jain, D.; Kaur, B.; Bains, N. Effect of nitrogen on starch and protein content in grain influence of nitrogen doses on grain starch and protein accumulation in diversified wheat genotypes. J. Environ. Biol. 2017, 38, 427–433. [Google Scholar] [CrossRef]
- Kaya, Y.; Akcura, M. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 2014, 34, 386–393. [Google Scholar] [CrossRef]
- Impa, S.; Perumal, R.; Bean, S.; Sunoj, V.J.; Jagadish, S.K. Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J. Cereal Sci. 2019, 86, 124–131. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; Hanumantharao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, F.; Gazeau, P.; de Vienne, D.; Zivy, M. Protein Changes in response to progressive water deficit in maize1. Plant Physiol. 1998, 117, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Z.; Qin, A.; Liang, Y.; Duan, A.; Gao, Y. A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality. Plants 2023, 12, 692. https://doi.org/10.3390/plants12040692
Si Z, Qin A, Liang Y, Duan A, Gao Y. A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality. Plants. 2023; 12(4):692. https://doi.org/10.3390/plants12040692
Chicago/Turabian StyleSi, Zhuanyun, Anzhen Qin, Yueping Liang, Aiwang Duan, and Yang Gao. 2023. "A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality" Plants 12, no. 4: 692. https://doi.org/10.3390/plants12040692
APA StyleSi, Z., Qin, A., Liang, Y., Duan, A., & Gao, Y. (2023). A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality. Plants, 12(4), 692. https://doi.org/10.3390/plants12040692