Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hg Content in Natural Epiphytic Lichens
2.2. Impact of Exogenous NO Donor on Hg Uptake and Macronutrients
2.3. NO Donor Reduces Hg-Induced ROS Formation
2.4. Metabolic Changes: The Protective Role of a NO Donor against Hg Is Not Universal
2.5. Correlation, PCA, and HCA Analyses
3. Materials and Methods
3.1. Lichens and Experimental Design
3.2. Quantification of Hg and Minerals
3.3. Microscopic Analyses
3.4. Assay of Metabolites
3.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Srivastava, P.K.; Singh, V.; Dubey, G.; Prasad, S.M. Light intensity determines the extent of mercury toxicity in the cyanobacterium Nostoc muscorum. Acta Physiol. Plant. 2012, 34, 1119–1131. [Google Scholar] [CrossRef]
- Ortega-Villasante, C.; Hernández, L.E.; Rellán-Álvarez, R.; Del Campo, F.F.; Carpena-Ruiz, R.O. Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol. 2007, 176, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, M.; Jiang, M. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol. Biochem. 2017, 111, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Zhu, Y.; Zhang, X.; Zhou, X.; Zhong, Z.; Li, H.; Li, Y.; Li, X.; Daud, M.K.; Chen, J.; et al. Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants 2021, 10, 1494. [Google Scholar] [CrossRef]
- Kalinhoff, C.; Calderón, N.-T. Mercury phytotoxicity and tolerance in three wild plants during germination and seedling development. Plants 2022, 11, 2046. [Google Scholar] [CrossRef]
- Bubach, D.; Catán, S.P.; Di Fonzo, C.; Dopchiz, L.; Arribére, M.; Ansaldo, M. Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Environ. Pollut. 2016, 210, 238–245. [Google Scholar] [CrossRef]
- Panichev, N.; Mokgalaka, N.; Panicheva, S. Assessment of air pollution by mercury in South African provinces using lichens Parmelia caperata as bioindicators. Environ. Geochem. Health 2019, 41, 2239–2250. [Google Scholar] [CrossRef]
- Floreani, F.; Barago, N.; Acquavita, A.; Covelli, S.; Skert, N.; Higueras, P. Spatial distribution and biomonitoring of atmospheric mercury concentrations over a contaminated coastal lagoon (Northern Adriatic, Italy). Atmosphere 2020, 11, 1280. [Google Scholar] [CrossRef]
- Catán, S.P.; Bubach, D.; Arribere, M.; Ansaldo, M.; Kitaura, M.J.; Scur, M.C.; Lirio, J.M. Trace elements baseline levels in Usnea antarctica from Clearwater Mesa, James Ross Island, Antarctica. Environ. Monit. Assess. 2020, 192, 246. [Google Scholar] [CrossRef]
- Fantozzi, L.; Guerrieri, N.; Manca, G.; Orrù, A.; Marziali, L. An Integrated investigation of atmospheric gaseous elemental mercury transport and dispersion around a chlor-alkali plant in the Ossola Valley (Italian Central Alps). Toxics 2021, 9, 172. [Google Scholar] [CrossRef]
- Monaci, F.; Ancora, S.; Paoli, L.; Loppi, S.; Wania, F. Lichen transplants as indicators of gaseous elemental mercury concentrations. Environ. Pollut. 2022, 313, 120189. [Google Scholar] [CrossRef] [PubMed]
- Pisani, T.; Munzi, S.; Paoli, L.; Bačkor, M.; Kováčik, J.; Piovár, J.; Loppi, S. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere 2011, 82, 1030–1037. [Google Scholar] [CrossRef]
- Vannini, A.; Jamal, M.B.; Gramigni, M.; Fedeli, R.; Ancora, S.; Monaci, F.; Loppi, S. Accumulation and release of mercury in the lichen Evernia prunastri (L.) Ach. Biology 2021, 10, 1198. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Rotková, G.; Bujdoš, M.; Babula, P.; Peterková, V.; Matúš, P. Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J. Hazard. Mater. 2017, 339, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Nawaz, S.; Iqbal, K.; Rehman, S.; Ullah, R.; Nawaz, G.; Almeer, R.; Sayed, A.A.; Peluso, I. Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants 2022, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Klejdus, B.; Babula, P.; Hedbavny, J. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 2015, 8, 45–52. [Google Scholar] [CrossRef]
- Kováčik, J.; Dresler, S.; Peterková, V.; Babula, P. Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere 2018, 203, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Dresler, S.; Babula, P.; Hladký, J.; Sowa, I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 2020, 156, 591–599. [Google Scholar] [CrossRef]
- Praveen, A. Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide 2022, 128, 37–49. [Google Scholar] [CrossRef]
- Meng, Y.; Jing, H.; Huang, J.; Shen, R.; Zhu, X. The role of nitric oxide signaling in plant responses to cadmium stress. Int. J. Mol. Sci. 2022, 23, 6901. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Zhu, C. Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol. Plant. 2015, 37, 194. [Google Scholar] [CrossRef]
- Dresler, S.; Kováčik, J.; Sowa, I.; Wójciak, M.; Strzemski, M.; Rysiak, A.; Babula, P.; Todd, C.D. Allantoin overaccumulation enhances production of metabolites under excess of metals but is not tightly regulated by nitric oxide. J. Hazard. Mater. 2022, 436, 129138. [Google Scholar] [CrossRef]
- Rahim, W.; Khan, M.; Al Azzawi, T.N.I.; Pande, A.; Methela, N.J.; Ali, S.; Imran, M.; Lee, D.-S.; Lee, G.-M.; Mun, B.-G.; et al. Exogenously applied sodium nitroprusside mitigates lead toxicity in rice by regulating antioxidants and metal stress-related transcripts. Int. J. Mol. Sci. 2022, 23, 9729. [Google Scholar] [CrossRef]
- Kováčik, J.; Dresler, S.; Micalizzi, G.; Babula, P.; Hladký, J.; Mondello, L. Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide 2019, 83, 11–18. [Google Scholar] [CrossRef]
- Expósito, J.R.; Coello, A.J.; Barreno, E.; Casano, L.M.; Catalá, M. Endogenous NO is involved in dissimilar responses to rehydration and Pb(NO3)2 in Ramalina farinacea thalli and its isolated phycobionts. Microb. Ecol. 2020, 79, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Shishido, S.M.; Ganzarolli de Oliveira, M. Photosensitivity of aqueous sodium nitroprusside solutions: Nitric oxide release versus cyanide toxicity. Prog. React. Kinet. Mech. 2001, 26, 239–261. [Google Scholar] [CrossRef]
- Vannini, A.; Nicolardi, V.; Bargagli, R.; Loppi, S. Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 2014, 48, 8754–8759. [Google Scholar] [CrossRef]
- Bozkurt, Z. Determination of airborne trace elements in an urban area using lichens as biomonitor. Environ. Monit. Assess. 2017, 189, 573. [Google Scholar] [CrossRef] [PubMed]
- Kłos, A.; Rajfur, M.; Šrámek, I.; Wacławek, M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ. Monit. Assess. 2012, 184, 6765–6774. [Google Scholar] [CrossRef]
- Yang, L.; Yang, H.; Bian, Z.; Lu, H.; Zhang, L.; Chen, J. The defensive role of endogenous H2S in Brassica rapa against mercury-selenium combined stress. Int. J. Mol. Sci. 2022, 23, 2854. [Google Scholar] [CrossRef]
- Santos, A.M.d.; Vitorino, L.C.; Cruvinel, B.G.; Ávila, R.G.; Vasconcelos Filho, S.d.C.; Batista, P.F.; Bessa, L.A. Impacts of Cd pollution on the vitality, anatomy and physiology of two morphologically different lichen species of the genera Parmotrema and Usnea, evaluated under experimental conditions. Diversity 2022, 14, 926. [Google Scholar] [CrossRef]
- Weissman, L.; Garty, J.; Hochman, A. Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl. Environ. Microbiol. 2005, 71, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Nicolardi, V.; Cai, G.; Parrotta, L.; Puglia, M.; Bianchi, L.; Bini, L.; Gaggi, C. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery. Environ. Pollut. 2012, 160, 1–10. [Google Scholar] [CrossRef]
- Kováčik, J.; Husáková, L.; Graziani, G.; Patočka, J.; Vydra, M.; Rouphael, Y. Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species. Plant Physiol. Biochem. 2022, 185, 357–367. [Google Scholar] [CrossRef] [PubMed]
Species | Locality | Pollution Level | Hg (ng/g DW) |
---|---|---|---|
Xanthoria parietina | Párnica | ++ | 46.7 ± 3.8 e |
Dolná Streda | ++ | 73.6 ± 2.7 c | |
High Tatra Mountains | + | 55.1 ± 4.8 de | |
Evernia prunastri | Staré Hory | + | 58.0 ± 2.4 d |
High Tatra Mountains | + | 30.7 ± 4.1 f | |
Pseudevernia furfuracea | Ochtinská Aragonite Cave | + | 108.9 ± 9.5 a |
High Tatra Mountains | + | 95.3 ± 5.9 ab | |
Hypogymnia physodes | Ochtinská Aragonite Cave | + | 72.1 ± 4.8 c |
High Tatra Mountains | + | 106.5 ± 7.6 a | |
Usnea hirta | High Tatra Mountains | + | 82.2 ± 1.9 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováčik, J.; Husáková, L.; Piroutková, M.; Babula, P. Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens. Plants 2023, 12, 727. https://doi.org/10.3390/plants12040727
Kováčik J, Husáková L, Piroutková M, Babula P. Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens. Plants. 2023; 12(4):727. https://doi.org/10.3390/plants12040727
Chicago/Turabian StyleKováčik, Jozef, Lenka Husáková, Martina Piroutková, and Petr Babula. 2023. "Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens" Plants 12, no. 4: 727. https://doi.org/10.3390/plants12040727
APA StyleKováčik, J., Husáková, L., Piroutková, M., & Babula, P. (2023). Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens. Plants, 12(4), 727. https://doi.org/10.3390/plants12040727