Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture
Abstract
:1. Introduction
2. Results
2.1. Morphological Characteristics and Water Content in Tea Callus Cultures
2.2. The Total Phenolic Content in Tea Callus Cultures
2.3. The Phenylpropanoids Content in Tea Callus Cultures
2.4. The Flavans Content in Tea Callus Cultures
2.5. The Proanthocyanidins Content in Tea Callus Cultures
2.6. The Level of Lipid Peroxidation in Tea Callus Cultures
3. Discussion
3.1. Morphological Characteristics and Water Content in Tea Callus Cultures
3.2. The Total Phenolic Content in Tea Callus Cultures
3.3. The Phenylpropanoids Content in Tea Callus Cultures
3.4. The Flavans Content in Tea Callus Cultures
3.5. The Proanthocyanidins Content in Tea Callus Cultures
3.6. The Level of Lipid Peroxidation in Tea Callus Cultures
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Determination of Morphological Characteristics of Tea Callus Cultures
4.3. Determination of Water Content in Tea Callus Cultures
4.4. Extraction of Phenolic Compounds from Tea Callus Culture
4.5. Determination of Different Phenolic Compounds Classes in Tea Callus Culture
4.6. Determination of the Level of Lipid Peroxidation in Tea Callus Culture
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yue, W.; Ming, Q.; Lin, B.; Rahman, K.; Zheng, C.; Han, T.; Qin, L. Medicinal plant cell suspension cultures: Pharmaceutical applications and highyielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.; Puente-Garza, C.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Popova, E.; Nosov, A.; Titova, M.; Kochkin, D.; Fomenkov, A.; Kulichenko, I.; Nosov, A. Advanced biotechnologies: Collections of plant cell cultures as a basis for development and production of medicinal preparations. Russ. J. Plant Physiol. 2021, 68, 385–400. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Murthy, H.; Lee, J.; Paek, Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult. 2014, 118, 1–16. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.; Jin, Y.; Lee, E.; Loake, G. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Tanase, C.; Coarcă, S.; Muntean, D. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, B.; Zulfiqar, F.; Raza, A.; Mohsin, S.; Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic Compounds: Introduction. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1543–1580. [Google Scholar] [CrossRef]
- Tijjani, H.; Zangoma, M.; Mohammed, Z.; Obidola, S.; Egbuna, C.; Abdulai, S. Polyphenols: Classifications, biosynthesis and bioactivities. In Functional Foods and Nutraceuticals; Egbuna, C., Dable Tupas, G., Eds.; Springer: Cham, Switzerland, 2020; pp. 389–414. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.; Apone, F.; Abdel-Salam, E.; Qahtan, A.; Altar, A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef]
- Corso, M.; Perreau, F.; Mouille, G.; Lepiniec, L. Specialized phenolic compounds in seeds: Structures, functions, and regulations. Plant Sci. 2020, 296, 110471. [Google Scholar] [CrossRef]
- Blokhina, O.; Inen, E.; Fagerstedt, K. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujcic, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Kiokias, S.; Oreopoulou, A. Review of the health protective effects of phenolic acids against a range of severe pathologic conditions (including coronavirus-based infections). Molecules 2021, 26, 5405. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.; Khan, N.; Ghani, L.; Poulson, B.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- El-Missiry, M.; Fekri, A.; Kesar, L.; Othman, A. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother. Res. 2021, 35, 2879–2889. [Google Scholar] [CrossRef]
- Solnier, J.; Fladerer, J. Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochem. Rev. 2021, 20, 773–795. [Google Scholar] [CrossRef]
- Motolinía-Alcántara, E.; Castillo-Araiza, C.; RodríguezMonroy, M.; Román-Guerrero, A.; Cruz-Sosa, F. Engineering considerations to produce bioactive compounds from plant cell suspension culture in bioreactors. Plants 2021, 10, 2762. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Pan, H.; Zhang, J.; Wang, Q.; Que, Q.-X.; Pan, R.; Lai, Z.-X.; Lai, G.-T. Light quality modulates growth, triggers differential accumulation of phenolic compounds, and changes the total antioxidant capacity in the red callus of Vitis davidii. J. Agric. Food Chem. 2022, 70, 13264–13278. [Google Scholar] [CrossRef] [PubMed]
- Isah, T.; Umar, S.; Mujib, A.; Sharma, M.; Rajasekharan, P.; Zafar, N.; Frukh, A. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult. 2018, 132, 239–265. [Google Scholar] [CrossRef]
- Feduraev, P.; Skrypnik, L.; Riabova, A.; Pungin, A.; Tokupova, E.; Maslennikov, P.; Chupakhina, G. Phenylalanine and tyrosine as exogenous precursors of wheat (Triticum aestivum L.) secondary metabolism through PAL-associated pathways. Plants 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Musbah, H.; Ibrahim, K.; Ibrahim, K. Effects of feeding tyrosine or phenylalanine on the accumulation of polyphenols in Coleus blumei in vivo and in vitro. J. Biotechnol. 2019, 13, 35–43. [Google Scholar] [CrossRef]
- Muthaiya, M.; Nagella, P.; Thiruvengadam, M.; Mandal, A. Enhancement of the productivity of tea (Camellia sinensis) secondary metabolites in cell suspension cultures using pathway inducers. J. Crop. Sci. Biotechnol. 2013, 16, 143–149. [Google Scholar] [CrossRef]
- Twaij, B.; Jazar, Z.; Hasan, M. The effects of elicitors and precursor on in-vitro cultures of Trifolium resupinatum for sustainable metabolite accumulation and antioxidant activity. Biocatal. Agric. Biotechnol. 2019, 22, 101337. [Google Scholar] [CrossRef]
- Han, W.-Y.; Huang, J.-G.; Li, X.; Li, Z.-X.; Ahammed, G.; Yan, P.; Stepp, J. Altitudinal effects on the quality of green tea in east China: A climate change perspective. Eur. Food Res. Technol. 2016, 243, 323–330. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.; Zhou, J.; Santos, J.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef]
- Meng, X.; Li, N.; Zhu, H.; Wang, D.; Yang, C.; Zhang, Y. Plant resources, chemical constituents, and bioactivities of tea plants from the genus Camellia section Thea. J. Agric. Food Chem. 2019, 67, 5318–5349. [Google Scholar] [CrossRef]
- Prasanth, M.; Sivamaruthi, B.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Zaveri, N. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006, 78, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Bojić, M.; Maleš, Ž.; Antolić, A.; Babić, I.; Tomičić, M. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharm. 2019, 69, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, M.; Mondal, T.; Chand, P. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): A review. Plant Cell Rep. 2016, 35, 255–287. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Sun, M.; Zhao, L.; Wang, Y.; Chen, X.; Wei, C.; Liping, G.; Xia, T. Differential gene expression in tea (Camellia sinensis L.) calli with different morphologies and catechin contents. J. Plant Physiol. 2012, 169, 163–175. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Zhang, Y.; Lin, X.; Li, B.; Chen, Z. Integrated metabolomic and transcriptomic strategies to understand the effects of dark stress on tea callus flavonoid biosynthesis. Plant Physiol. Biochem. 2020, 155, 549–559. [Google Scholar] [CrossRef]
- Zagoskina, N.; Fedoseeva, V.; Frolova, L.; Azarenkova, N.; Zaprometov, M. Tissue culture of tea plant: Differentiation, ploidy level, and formation of phenolic compounds. Russ. J. Plant Physiol. 1994, 41, 67–679. [Google Scholar]
- Zagoskina, N.; Goncharuk, E.; Alyavina, A. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ. J. Plant Physiol. 2007, 54, 237–243. [Google Scholar] [CrossRef]
- Nechaeva, T.; Nikolaeva, T.; Zagoskina, N. Salicylic and hydroxybenzoic acids affect the accumulation of phenolic compounds in tea-plant cultures in vitro. Biol. Bull. Russ. Acad. Sci. 2020, 47, 374–380. [Google Scholar] [CrossRef]
- Ricco, M.; Bari, M.; Catalano, A.; López, P.; Dobrecky, C.; Teves, S.; Posadaz, A.; Becher, M.; Ricco, R.; Wagner, M.; et al. Dynamics of polyphenol biosynthesis by calli cultures, suspension cultures and wild specimens of the medicinal plant Ligaria cuneifolia (Ruiz & Pav.) Tiegh. (Loranthaceae). Analysis of their biological activity. Plants 2021, 10, 1713. [Google Scholar] [CrossRef]
- Zaprometov, M. Proanthocyanidins and catechins. In Phytochemicals in Plant Cell Cultures; Constabel, F., Vasil, I., Eds.; Academic Press Inc.: London, UK, 1988; pp. 77–88. [Google Scholar] [CrossRef]
- Shi, J.; Yang, G.; You, Q.; Sun, S.; Chen, R.; Lin, Z.; Simal-Gandara, J.; Lv, H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001–2021). Crit. Rev. Food Sci. Nutr. 2021, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xiao, J.; Chen, S.; Yu, Y.; Ma, J.; Lin, Y.; Li, R.; Lin, J.; Fu, J.; Zhou, Q.; et al. Metabolite signatures of diverse Camellia sinensis tea populations. Nat. Commun. 2020, 11, 5586. [Google Scholar] [CrossRef] [PubMed]
- Alejo-Armijo, A.; Salido, S.; Altarejos, J. Synthesis of A-type proanthocyanidins and their analogues: A comprehensive review. J. Agric. Food Chem. 2020, 68, 8104–8118. [Google Scholar] [CrossRef]
- Zubova, M.; Nechaeva, T.; Kartashov, A.; Zagoskina, N. Regulation of the phenolic compounds accumulation in the tea-plant callus culture with a separate and combined effect of light and cadmium ions. Biol. Bull. Russ. Acad. Sci. 2020, 47, 593–604. [Google Scholar] [CrossRef]
- Karakas, F.; Sahin, G.; Turker, A.; Verma, S. Impacts of heavy metal, high temperature, and UV radiation exposures on Bellis perennis L. (common daisy): Comparison of phenolic constituents and antioxidant potential (enzymatic and non-enzymatic). S. Afr. J. Bot. 2022, 147, 370–379. [Google Scholar] [CrossRef]
- Fang, R.; Redfern, S.; Kirkup, D.; Porter, E.; Kite, G.; Terry, L.; Berry, M.; Simmonds, M. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem. 2017, 220, 517–526. [Google Scholar] [CrossRef]
- Hazra, A.; Saha, S.; Dasgupta, N.; Kumar, R.; Sengupta, C.; Das, S. Ecophysiological traits differentially modulate secondary metabolite accumulation and antioxidant properties of tea plant [Camellia sinensis (L.) O. Kuntze]. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Tikhonova, M.A.; Tikhonova, N.G.; Tenditnik, M.V.; Ovsyukova, M.V.; Akopyan, A.A.; Dubrovina, N.I.; Khlestkina, E.K. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative parkinson disease-like disturbances in mice. Molecules 2020, 25, 5339. [Google Scholar] [CrossRef]
- Sharma, R.; Verma, S.; Kumar, D. Polyphenolics and therapeutic insights in different tissues extract and fractions of Camellia sinensis (L.) Kuntze (Kangra Tea). Food Biosci. 2021, 42, 101164. [Google Scholar] [CrossRef]
- Demirci, T.; ÇelikkolAkçay, U.; GöktürkBaydar, N. Effects of 24-epibrassinolide and l-phenylalanine on growth and caffeic acid derivative production in hairy root culture of Echinacea purpurea L. Moench. Acta Physiol. Plant. 2020, 42, 66. [Google Scholar] [CrossRef]
- Bahorun, T.; Neergheen, V.S.; Aruoma, O.I. Phytochemical constituents of Cassia fistula. Afr. J. Biotechnol. 2005, 4, 1530–1540. [Google Scholar] [CrossRef]
- Arafa, N.M.; Ibrahim, M.M.; Aly, U.I. Evaluation of total phenolic contents and antioxidant activity of carrot callus extracts as affected by phenylalanine precursor. Plant Tissue Cult. Biotechnol. 2015, 25, 207–221. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: Effect on Garnacha grape phenolic content. Food Chem. 2017, 237, 416–422. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; Abd El-Kader, E.M.; Rabeh, M.A.; Abdel Jaleel, G.A.; Arafat, M.A.; Schirmeiste, T.; Abdelmohsen, U.R. Eliciting callus culture for production of hepatoprotective flavonoids and phenolics from Sequoia sempervirens (D. Don Endl). Nat. Prod. Res. 2020, 34, 3125–3129. [Google Scholar] [CrossRef]
- Bido, G.D.S.; Ferrarese, M.D.L.L.; Marchiosi, R.; Ferrarese-Filho, O. Naringenin inhibits the growth and stimulates the lignification of soybean root. Braz. Arch. Biol. Technol. 2010, 53, 533–542. [Google Scholar] [CrossRef]
- Palacio, L.; Cantero, J.J.; Cusido, R.; Goleniowski, M. Phenolic compound production by Larrea divaricata Cav. Plant cell cultures and effect of precursor feeding. Process Biochem. 2011, 46, 418–422. [Google Scholar] [CrossRef]
- Shilpa, K.; Lakshmi, B.S. Influence of exogenous cinnamic acid on the production of chlorogenic acid in Cichorium intybus L cell culture. S. Afr. J. Bot. 2019, 125, 527–532. [Google Scholar] [CrossRef]
- Vyas, P.; Mukhopadhyay, K. Elicitation of phenylpropanoids and expression analysis of pal gene in suspension cell culture of Ocimum tenuiflorum L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1207–1217. [Google Scholar] [CrossRef]
- Blount, J.W.; Korth, K.L.; Masoud, S.A.; Rasmussen, S.; Lamb, C.; Dixon, R.A. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol. 2000, 122, 107–116. [Google Scholar] [CrossRef]
- Yin, R.; Messner, B.; Faus-Kessler, T.; Hoffmann, T.; Schwab, W.; Hajirezaei, M.R.; von Saint Paul, V.; Heller, W.; Schäffner, A.R. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J. Exp. Bot. 2012, 63, 2465–2478. [Google Scholar] [CrossRef]
- Hojati, M.; Modarres-Sanavy, S.A.M.; Enferadi, S.T.; Majdi, M.; Ghanati, F.; Farzadfar, S. Differential deployment of parthenolide and phenylpropanoids in feverfew plants subjected to divalent heavy metals and trans-cinnamic acid. Plant Soil 2016, 399, 41–59. [Google Scholar] [CrossRef]
- Deng, F.; Aoki, M.; Yogo, Y. Effect of naringenin on the growth and lignin biosynthesis of gramineous plants. Weed Biol. Manag. 2004, 4, 49–55. [Google Scholar] [CrossRef]
- Meng, X.H.; Liu, C.; Fan, R.; Zhu, L.F.; Yang, S.X.; Zhu, H.T.; Zhang, Y.J. Antioxidative flavan-3-ol dimers from the leaves of Camellia fangchengensis. J. Agric. Food Chem. 2018, 66, 247–254. [Google Scholar] [CrossRef]
- Świeca, M.; Sęczyk, Ł.; Gawlik-Dziki, U. Elicitation and precursor feeding as tools for the improvement of the phenolic content and antioxidant activity of lentil sprouts. Food Chem. 2014, 161, 288–295. [Google Scholar] [CrossRef]
- Świeca, M. Elicitation and treatment with precursors of phenolics synthesis improve low-molecular antioxidants and antioxidant capacity of buckwheat sprouts. Acta Sci. Pol. Technol. Aliment. 2016, 15, 17–28. [Google Scholar] [CrossRef]
- Nobari, H.; Saedmocheshi, S.; Chung, L.H.; Suzuki, K.; Maynar-Mariño, M.; Pérez-Gómez, J. An overview on how exercise with green tea consumption can prevent the production of reactive oxygen species and improve sports performance. J. Environ. Public Health 2021, 19, 218. [Google Scholar] [CrossRef]
- Tomilova, S.V.; Kochkin, D.V.; Tyurina, T.M.; Glagoleva, E.S.; Labunskaya, E.A.; Galishev, B.A.; Nosov, A.M. Growth and biosynthetic profiles of callus and suspension cell cultures of two rare foxglove species, Digitalis grandiflora Mill. and D. ciliata Trautv. Plant Cell Tissue Organ Cult. (PCTOC) 2022, 149, 213–224. [Google Scholar] [CrossRef]
- Olenichenko, N.; Zagoskina, N. Response of winter wheat to cold: Production of phenolic compounds and L-phenylalanine ammonia lyase activity. Appl. Biochem. Microbiol. 2005, 41, 600–603. [Google Scholar] [CrossRef]
- Al-Shwaiyat, M.; Denisenko, T.; Miekh, Y.; Vishnikin, A. Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Chem. Chem. Technol. 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Nikolaeva, T.; Lapshin, P.; Zagoskina, N. Method for determining the total content of phenolic compounds in plant extracts with Folin-Denis reagent and Folin-Chocalteu reagent: Modification and comparison. Khimiya Rastit. Syr’ya 2021, 2, 291–299. [Google Scholar] [CrossRef]
- Makowski, W.; Tokarz, K.M.; Tokarz, B.; Banasiuk, R.; Witek, K.; Królicka, A. Elicitation-based method for increasing the production of antioxidant and bactericidal phenolic compounds in Dionaea muscipula J. ellis tissue. Molecules 2020, 25, 1794. [Google Scholar] [CrossRef]
- Nikolaeva, T.; Zagoskina, N.; Zaprometov, M. Production of phenolic compounds in callus cultures of tea plant under the effect of 2,4-D and NAA. Russ. J. Plant Physiol. 2009, 56, 45–49. [Google Scholar] [CrossRef]
- Ossipova, S.; Ossipov, V.; Haukioja, E.; Loponen, J.; Pihlaja, K. Proanthocyanidins of mountain birch leaves: Quantification and properties. Phytochem. Anal. 2001, 12, 128–133. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. Estimation of malondialdehyde (MDA) by thiobarbituric acid (TBA) assay. In Plant-Microbe Interactions; Springer Protocols Handbooks: New York, NY, USA, 2021; pp. 103–105. [Google Scholar] [CrossRef]
Variants | Water Content in Cultures of Different Ages, % | |||
---|---|---|---|---|
3 Days | 7 Days | 9 Days | 14 Days | |
Control | 92.29 ± 0.83 Aa | 92.13 ± 0.02 Ba | 92,65 ± 0.19 Aa | 91.39 ± 0.21 Ba |
PhA | 91.20 ± 0.23 Bc | 92.05 ± 0.25 Bb | 92,10 ± 0.27 Bb | 93.17 ± 0.64 Aa |
CA | 92.33 ± 0.20 Aa | 92.42 ± 0.94 Ba | 92,10 ± 0.52 ABa | 93.02 ± 0.50 Aa |
NG | 91.69 ± 0.15 Ab | 94.01 ± 0.23 Aa | 91,65 ± 0.81 ABb | 92.21 ± 0.39 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksenova, M.A.; Nechaeva, T.L.; Zubova, M.Y.; Goncharuk, E.A.; Kazantseva, V.V.; Katanskaya, V.M.; Lapshin, P.V.; Zagoskina, N.V. Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. Plants 2023, 12, 796. https://doi.org/10.3390/plants12040796
Aksenova MA, Nechaeva TL, Zubova MY, Goncharuk EA, Kazantseva VV, Katanskaya VM, Lapshin PV, Zagoskina NV. Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. Plants. 2023; 12(4):796. https://doi.org/10.3390/plants12040796
Chicago/Turabian StyleAksenova, Maria A., Tatiana L. Nechaeva, Maria Y. Zubova, Evgenia A. Goncharuk, Varvara V. Kazantseva, Vera M. Katanskaya, Petr V. Lapshin, and Natalia V. Zagoskina. 2023. "Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture" Plants 12, no. 4: 796. https://doi.org/10.3390/plants12040796
APA StyleAksenova, M. A., Nechaeva, T. L., Zubova, M. Y., Goncharuk, E. A., Kazantseva, V. V., Katanskaya, V. M., Lapshin, P. V., & Zagoskina, N. V. (2023). Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. Plants, 12(4), 796. https://doi.org/10.3390/plants12040796