Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments
Abstract
:1. Introduction
2. Results
2.1. Crop Phenology
2.2. Yield Attributes
2.3. Stability Analysis
2.4. GGE-Biplot
2.5. Yield Components Ranking and Stability of Genotypes
3. Discussion
3.1. Phenological Traits
3.2. Yield Attributes
3.3. Stability Parameters
3.4. GGE Biplot, Ranking, and Comparison with Stability Parameters
4. Materials and Methods
4.1. Materials and Experiments
4.2. Recorded Traits
4.3. Statistical Methods
4.3.1. Variance Analysis
4.3.2. Stability Parameters
4.3.3. GGE Biplot
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cokkizgin, A.; Shtaya, M.J.Y. Lentil: Origin, Cultivation Techniques, Utilization and Advances in Transformation. Agric. Sci. 2013, 1, 55–62. [Google Scholar] [CrossRef]
- Johnson, N.; Johnson, C.R.; Thavarajah, P.; Kumar, S.; Thavarajah, D. The roles and potential of lentil prebiotic carbohydrates in human and plant health. Plants People Planet 2020, 2, 310–319. [Google Scholar] [CrossRef]
- Erskine, W.; Sarker, A.; Kumar, S. Crops that feed the world 3. Investing in Lentil Improvement toward a Food Secure World. Food Secur. 2011, 3, 127–139. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Available online: www.faostat.fao.org (accessed on 31 July 2022).
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A Review. Agron. Sustain. Dev. 2012, 32, 433–449. [Google Scholar] [CrossRef]
- Sharma, S.R.; Singh, S.; Aggarwal, N.; Kaur, J.; Gill, R.K.; Kushwah, A.; Patil, S.B.; Kumar, S. Genetic Variation for Tolerance to Post-Emergence Herbicide, Imazethapyr in Lentil (Lens culinaris Medik.). Arch. Agron. Soil Sci. 2018, 64, 1818–1830. [Google Scholar] [CrossRef]
- Balech, R.; Maalouf, F.; Patil, S.B.; Hejjaoui, K.; Abou Khater, L.; Rajendran, K.; Rubiales, D.; Kumar, S. Evaluation of Performance and Stability of New Sources for Tolerance to Post-Emergence Herbicides in Lentil (Lens culinaris ssp. culinaris Medik.). Crop Pasture Sci. 2022, 73, 1264–1278. [Google Scholar] [CrossRef]
- Gaur, P.; Jukanti, A.; Samineni, S.; Chaturvedi, S.; Singh, S.; Tripathi, S.; Singh, I.; Singh, G.; Das, T.; Aski, M.; et al. Large Genetic Variability in Chickpea for Tolerance to Herbicides Imazethapyr and Metribuzin. Agronomy 2013, 3, 524–536. [Google Scholar] [CrossRef]
- Redlick, C.; Syrovy, L.D.; Duddu, H.S.N.; Benaragama, D.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. Developing an Integrated Weed Management System for Herbicide-Resistant Weeds Using Lentil (Lens culinaris) as a Model Crop. Weed Sci. 2017, 65, 778–786. [Google Scholar] [CrossRef]
- Yenish, J.P. Weed Management in Chickpea. In Chickpea Breeding and Management; Yadav, S.S., Redden, B., Chen, W., Sharma, B., Eds.; CAB International: Wallingford, UK, 2007; pp. 233–245. [Google Scholar]
- Sharma, S.R.; Singh, S.; Aggarwal, N.; Kushwah, A.; Kumar, S. Inherent Variability among Different Lentil (Lens culinaris Medik.) Genotypes against Tolerance to Metribuzin Herbicide. Biochem. Cell. Arch. 2017, 17, 49–56. [Google Scholar]
- Oliveira, M.C.; Feist, D.; Eskelsen, S.; Scott, J.E.; Knezevic, S.Z. Weed Control in Soybean with Preemergence- and Postemergence-Applied Herbicides. Crop Forage Turfgrass Manag. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Johnson, G.A.; Hoverstad, T.R.; Greenwald, R.E. Integrated Weed Management Using Narrow Corn Row Spacing, Herbicides, and Cultivation. Agron. J. 1998, 90, 40–46. [Google Scholar] [CrossRef]
- Slinkard, A.E.; Vanderberg, A.; Holm, F.A. Lentil Plants Having Increased Resistance to Imidazolinone Herbicides. U.S. Patent 7232942, 19 June 2007. [Google Scholar]
- Turk, Z.; Kendal, E. Practice of AMMI and GGE Biplot Analysis of Lentil Genotypes Assessment in Multi-Environment Trials. Philipp. J. Crop Sci. 2017, 42, 39–48. [Google Scholar]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Sayar, M.S.; Anlarsal, A.E.; Basbag, M. Genotype-Environment Interactions and Stability Analysis for Dry-Matter Yield and Seed Yield in Hungarian Vetch (Vicia pannonica Crantz.). Turk. J. Field Crops 2013, 18, 238–246. [Google Scholar]
- De Leon, N.; Jannink, J.L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a Special Issue on Genotype by Environment Interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef]
- Sabaghnia, N.; Dehghani, H.; Sabaghpour, S.H. Graphic Analysis of Genotype by Environment Interaction for Lentil Yield in Iran. Agron. J. 2008, 100, 760–764. [Google Scholar] [CrossRef]
- Fan, X.M.; Kang, M.S.; Chen, H.; Zhang, Y.; Tan, J.; Xu, C. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China. Agron. J. 2007, 99, 220–228. [Google Scholar] [CrossRef]
- Sayar, M.S.; Han, Y. Determination of Seed Yield and Yield Components of Grasspea (Lathyrus sativus L.) Lines and Evaluations Using GGE Biplot Analysis Method. J. Agric. Sci. 2015, 21, 78–92. [Google Scholar]
- Abou-Khater, L.; Maalouf, F.; Jighly, A.; Rubiales, D.; Kumar, S. Adaptability and Stability of Faba Bean (Vicia faba L.) Accessions under Diverse Environments and Herbicide Treatments. Plants 2022, 11, 251. [Google Scholar] [CrossRef]
- Dehghani, H.; Sabaghpour, S.H.; Sabaghnia, N. Genotype × Environment Interaction for Grain Yield of Some Lentil Genotypes and Relationship among Univariate Stability Statistics. Span. J. Agric. Res. 2008, 6, 385–394. [Google Scholar] [CrossRef]
- Gauch, J.; Hugh, G. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.A.; Roustami, B.; Seyyedi, F.; Akbari, F. GGE Biplot Analysis of Yield Stability in Multi-Environment Trials of Lentil Genotypes under Rainfed Condition. Not. Sci. Biol. 2013, 5, 256–262. [Google Scholar] [CrossRef]
- Abou-Khater, L.; Maalouf, F.; Patil, S.B.; Balech, R.; Rubiales, D.; Kumar, S. Identification of Tolerance to Metribuzin and Imazethapyr Herbicides in Faba Bean (Vicia faba L.). Crop Sci. 2021, 61, 2593–2611. [Google Scholar] [CrossRef]
- Royuela, M.; Gonzalez, A.; Gonzalez, E.M.; Arrese-Igor, C.; Aparicio-Tejo, P.M.; Gonzalez-Murua, C. Physiological Consequences of Continuous, Sublethal Imazethapyr Supply to Pea Plants. J. Plant Physiol. 2000, 157, 345–354. [Google Scholar] [CrossRef]
- Choukri, H.; Hejjaoui, K.; El-Baouchi, A.; Haddad, N.E.; Smouni, A.; Maalouf, F.; Thavarajah, D.; Kumar, S. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil (Lens culinaris Medikus). Front. Nutr. 2020, 7, 596307. [Google Scholar] [CrossRef]
- Rani, A.; Devi, P.; Jha, U.C.; Sharma, K.D.; Siddique, K.H.; Nayyar, H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches with a Focus on Temperature and Drought Stresses. Front. Plant Sci. 2020, 10, 1759. [Google Scholar] [CrossRef]
- Maalouf, F.; Nachit, M.; Ghanem, M.E.; Singh, M. Evaluation of Faba Bean Breeding Lines for Spectral Indices, Yield Traits and Yield Stability under Diverse Environments. Crop Pasture Sci. 2015, 66, 1012–1023. [Google Scholar] [CrossRef]
- Taran, B.; Warkentin, T.D.; Vandenberg, A.; Holm, F.A. Variation in Chickpea Germplasm for Tolerance to Imazethapyr and Imazamox Herbicides. Can. J. Plant Sci. 2010, 90, 139–142. [Google Scholar] [CrossRef]
- Mohammed, A.; Tesso, B.; Ojiewo, C.; Ahmed, S. Assessment of Genetic Variability and Heritability of Agronomic Traits of Ethiopian Chickpea (Cicer arietinum L.) Landraces. Black Sea J. Agric. 2019, 2, 10–15. [Google Scholar]
- Bicer, B.T.; Sakar, D. Evaluation of Lentil (Lens culinaris Medik.) Local Varieties in Southeastern Anatolia, Turkey. Bulg. J. Agric. Sci. 2006, 12, 751–760. [Google Scholar]
- Mohebodini, M.; Dehghani, H.; Hossain, S.S. Stability of Performance in Lentil (Lens culinaris Medik) Genotypes in Iran. Euphytica 2006, 149, 343–352. [Google Scholar] [CrossRef]
- Yadav, S.S.; Verma, A.K.; Rizvi, A.H.; Singh, D.; Kumar, J.; Andrews, M. Impact of Genotype× Environment Interactions on the Relative Performance of Diverse Groups of Chickpea (Cicer arietinum L.) Cultivars. Arch. Agron. Soil Sci. 2010, 56, 49–64. [Google Scholar] [CrossRef]
- Adugna, A. Assessment of Yield Stability in Sorghum. Afr. Crop Sci. J. 2007, 15, 83–92. [Google Scholar] [CrossRef]
- Shiringani, R.P.; Shimelis, H.A. Yield Response and Stability among Cowpea Genotypes at Three Planting Dates and Test Environments. Afr. J. Agric. Res. 2011, 6, 3259–3263. [Google Scholar]
- Makanda, I.; Tongoona, P.; Derera, J.; Sibiya, J.; Fato, P. Combining Ability and Cultivar Superiority of Sorghum Germplasm for Grain Yield across Tropical Low-and Mid-Altitude Environments. F Crop Res. 2010, 116, 75–85. [Google Scholar] [CrossRef]
- Fasahat, P. An Overview on the Use of Stability Parameters in Plant Breeding. Biom. Biostat. Int. J. 2015, 2, 00043. [Google Scholar] [CrossRef]
- Ramazani, S.H.R.; Tajalli, H.; Ghoudsi, M. Evaluation of Grain Yield Stability of Superior Triticale Genotypes. Bulg. J. Agric. Sci. 2016, 22, 976–981. [Google Scholar]
- Mustapha, M.; Bakari, H.R. Statistical Evaluation of Genotype by Environment Interactions for Grain Yield in Millet (Penniisetum glaucum (L.) R. Br.). Int. J. Eng. Sci. 2014, 3, 7–16. [Google Scholar]
- Westcott, B. Some Methods of Analysing Genotype—Environment Interaction. Heredity 1986, 56, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Islam, M.A.; Sarker, A.; Malek, M.A.; Rafii, M.Y.; Ismail, M.R. Determination of Genetic Diversity in Lentil Germplasm Based on Quantitative Traits. Aust. J. Crop Sci. 2013, 7, 14–21. [Google Scholar]
- Stewart, C.L.; Nurse, R.E.; Hamill, A.S.; Sikkema, P.H. Environment and Soil Conditions Influence Pre-and Postemergence Herbicide Efficacy in Soybean. Weed Technol. 2010, 24, 234–243. [Google Scholar] [CrossRef]
- Stewart, C.L.; Soltani, N.; Nurse, R.E.; Hamill, A.S.; Sikkema, P.H. Precipitation Influences Pre-and Post-Emergence Herbicide Efficacy in Corn. Am. J. Plant Sci. 2012, 3, 1193. [Google Scholar] [CrossRef]
- Rakshit, S.; Ganapathy, K.N.; Gomashe, S.S.; Rathore, A.; Ghorade, R.B.; Kumar, M.N.; Patil, J.V. GGE Biplot Analysis to Evaluate Genotype, Environment and Their Interactions in Sorghum Multi-Location Data. Euphytica 2012, 185, 465–479. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef]
- Yan, W.; Rajcan, I. Biplot Analysis of Test Sites and Trait Relations of Soybean in Ontario. Crop Sci. 2002, 42, 11–20. [Google Scholar] [CrossRef]
- Dehghani, H.; Ebadi, A.; Yousefi, A. Biplot Analysis of Genotype by Environment Interaction for Barley Yield in Iran. Agron. J. 2006, 98, 388–393. [Google Scholar] [CrossRef]
- Kaya, Y.; Akçura, M.; Taner, S. GGE-Biplot Analysis of Multi-Environment Yield Trials in Bread Wheat. Turk. J. Agric. For. 2006, 30, 325–337. [Google Scholar]
- Erdemci, I. Investigation of Genotype × Environment Interaction in Chickpea Genotypes Using AMMI and GGE Biplot Analysis. Turk. J. Field Crops 2018, 23, 20–26. [Google Scholar] [CrossRef]
- Rubiales, D.; Osuna-Caballero, S.; González-Bernal, M.J.; Cobos, M.J.; Flores, F. Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments. Agronomy 2021, 11, 769. [Google Scholar] [CrossRef]
- Rubiales, D.; Moral, A.; Flores, F. Heat Waves and Broomrape Are the Major Constraints for Lentil Cultivation in Southern Spain. Agronomy 2021, 11, 1871. [Google Scholar] [CrossRef]
- Lin, C.-S.; Binns, M.R. A Superiority Measure of Cultivar Performance for Cultivar × Location Data. Can. J. Plant Sci. 1988, 68, 193–198. [Google Scholar] [CrossRef]
- Kumar, S.; Rajendran, K. Lentil Ontology. Available online: https://cropontology.org/term/CO_339:ROOT (accessed on 20 June 2022).
- Goedhart, P.W.; Thissen, J.T.N.M. Biometris Genstat Procedure Library Manual, 19th ed.; Wageningen UR: Wageningen, The Netherlands, 2018. [Google Scholar]
- Finlay, K.W.; Wilkinson, G.N. The Analysis of Adaptation in a Plant-Breeding Programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Shukla, G.K. Some Statistical Aspects of Partitioning Genotype-Environmental Components of Variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef]
- Becker, H.C.; Leon, J. Stability Analysis in Plant Breeding. Plant Breed. 1988, 101, 1–23. [Google Scholar] [CrossRef]
- Wricke, G. Uber Eine Methode zur Erfassung der Okologischen Streubreite in Feldverzuchen. Z. Pflanzenzuchtg 1962, 47, 92–96. [Google Scholar]
- Yan, W.; Tinker, N.A. Biplot Analysis of Multi-Environment Trial Data: Principles and Applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Kaya, Y.; Turkoz, M. Evaluation of Genotype by Environment Interaction for Grain Yield in Durum Wheat Using Non-Parametric Stability Statistics. Turk. J. Field Crops 2016, 21, 51–59. [Google Scholar] [CrossRef]
Trait | Genotypes (G) | Environment (E) | (GE) | h2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
d.f. | Wald Statistic | p-Value | d.f. | Wald Statistic | p-Value | d.f. | Wald Statistic | p-Value | ||
DFLR | 41 | 862.2 | <0.001 | 8 | 18,556 | <0.001 | 303 | 904 | <0.001 | 0.93 |
DMAT | 41 | 583.5 | <0.001 | 8 | 17,128.9 | <0.001 | 259 | 418.2 | <0.001 | 0.93 |
PH | 41 | 125.4 | <0.001 | 5 | 806.7 | <0.001 | 193 | 207.6 | 0.598 | 0.71 |
BY | 41 | 337.2 | <0.001 | 8 | 1995.7 | <0.001 | 298 | 296.9 | 0.506 | 0.21 |
SY | 41 | 46,522.1 | <0.001 | 8 | 2160.5 | <0.001 | 293 | 523.9 | <0.001 | 0.57 |
NSP | 41 | 125.1 | <0.001 | 2 | 64.1 | <0.001 | 81 | 114.5 | 0.01 | - |
NPP | 41 | 70 | 0.003 | 2 | 55.7 | <0.001 | 81 | 95.3 | 0.15 | - |
Environment | DFLR | DMAT | BY | SY | |
---|---|---|---|---|---|
E0 | Wald statistic | 72.8 | 33.9 | 65.8 | 27.7 |
p-value | 0.035 | 0.407 | 0.062 | 0.62 | |
h2 | 0.0 | 0.0 | 0.0 | 0.0 | |
E1 | Wald statistic | 132.1 | 36.7 | 92.4 | 60.4 |
p-value | 0.014 | 0.303 | 0.006 | 0.115 | |
h2 | 0.4 | 0.0 | 0.3 | 0.0 | |
E2 | Wald statistic | 112.2 | 179.1 | 123.3 | 203.6 |
p-value | <0.001 | <0.001 | 0.007 | <0.001 | |
h2 | 0.5 | 0.6 | 0.5 | 0.7 | |
E3 | Wald statistic | 598.4 | 262.3 | 81.7 | 206.0 |
p-value | <0.001 | <0.001 | 0.05 | <0.001 | |
h2 | 0.9 | 0.7 | 0.3 | 0.7 | |
E4 | Wald statistic | 462.2 | 93.5 | 87.8 | 152.4 |
p-value | <0.001 | 0.005 | 0.042 | 0.002 | |
h2 | 0.8 | 0.3 | 0.3 | 0.6 | |
E5 | Wald statistic | 535.9 | 77.4 | 66.6 | 138.4 |
p-value | <0.001 | 0.021 | 0.007 | <0.001 | |
h2 | 0.9 | 0.3 | 0.2 | 0.5 | |
E6 | Wald statistic | 418.9 | 54.1 | 56.6 | 200.4 |
p-value | <0.001 | 0.083 | 0.053 | 0.03 | |
h2 | 0.7 | 0.1 | 0.1 | 0.5 | |
E7 | Wald statistic | 152.6 | 66.6 | 81.3 | 153.0 |
p-value | <0.001 | 0.062 | 0.081 | 0.008 | |
h2 | 0.4 | 0.2 | 0.0 | 0.3 |
Environment | DFLR | DMAT | BY (g/Plant) | SY (g/Plant) | |
---|---|---|---|---|---|
E0 | Range | 98–118 | 133–167 | 0.3–2.4 | 0.0–0.4 |
Mean ± SE | 104 ± 0.67 | 141 ± 2.14 | 0.9 ± 0.11 | 0.1 ± 0.01 | |
E1 | Range | 88–107 | 141–171 | −0.2–6.8 | −0.2–1.7 |
Mean ± SE | 100 ± 0.93 | 158 ± 4.4 | 2.4 ± 0.42 | 0.3 ± 0.21 | |
E2 | Range | 64–74 | 96–106 | 1.6–5.4 | 0.4–2.1 |
Mean ± SE | 70 ± 0.17 | 102 ± 0.61 | 3.9 ± 0.08 | 1.1 ± 0.04 | |
E3 | Range | 52–74 | 89–106 | 2.3–6.3 | 0.6–2.7 |
Mean ± SE | 63 ± 0.63 | 98 ± 0.33 | 4.5 ± 0.12 | 1.5 ± 0.03 | |
E4 | Range | 52–73 | 89–105 | 2.6–6.4 | 0.7–2.5 |
Mean ± SE | 63 ± 0.45 | 97 ± 1.33 | 5.1 ± 0.1 | 1.6 ± 0.04 | |
E5 | Range | 91–119 | 134–143 | 1.1–5.9 | −0.0–2.2 |
Mean ± SE | 104 ± 0.56 | 139 ± 0.72 | 3.4 ± 0.37 | 0.8 ± 0.10 | |
E6 | Range | 90.3–114 | 120–140 | 1.8–7.2 | 0.4–3.0 |
Mean ± SE | 97 ± 0.26 | 129 ± 0.63 | 3.7 ± 0.25 | 1.4 ± 0.04 | |
E7 | Range | 91–107 | 118–138 | 1.7–12.6 | 0.8–4.2 |
Mean ± SE | 96 ± 1.76 | 127 ± 1.5 | 4.8 ± 0.25 | 2.0 ± 0.13 |
Accession Number | Accession Name | Cultivar Superiority (CS) | Static Stability (SS) | Wricke’s Ecovalence (WE) | Shukla (SH) | Finlay and Wilkinson (FW) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CS | RCS | SS | RSS | WE | RWE | SH | RSH | FW | RFW | ||
1 | IG1455 | 1.63 | 40 | 0.12 | 4 | 1.72 | 30 | 0.35 | 35 | 0.82 | 2 |
2 | IG2445 | 1.35 | 36 | 0.12 | 2 | 1.06 | 26 | 0.20 | 27 | 1.01 | 5 |
3 | IG257 | 1.68 | 42 | 0.19 | 7 | 0.12 | 2 | 0.02 | 2 | 0.67 | 12 |
4 | IG918 | 0.80 | 8 | 0.12 | 3 | 0.54 | 11 | 0.10 | 14 | 1.34 | 7 |
5 | IG5626 | 0.74 | 7 | 0.51 | 28 | 0.66 | 13 | 0.13 | 17 | 1.26 | 32 |
6 | IG195 | 0.41 | 1 | 1.30 | 41 | 2.83 | 40 | 0.58 | 41 | 1.62 | 41 |
7 | IG462 | 1.35 | 35 | 0.40 | 22 | 1.00 | 24 | 0.20 | 28 | 0.98 | 16 |
8 | IG590 | 1.17 | 27 | 0.82 | 39 | 1.92 | 34 | 0.39 | 38 | 1.12 | 36 |
9 | IG857 | 1.26 | 30 | 0.62 | 33 | 1.32 | 28 | 0.24 | 29 | 0.86 | 33 |
10 | IG156514 | 1.14 | 26 | 0.26 | 12 | 0.19 | 4 | 0.03 | 4 | 1.00 | 19 |
11 | IG156633 | 0.98 | 19 | 0.48 | 26 | 0.47 | 8 | 0.09 | 12 | 1.13 | 30 |
12 | IG156635 | 0.48 | 3 | 1.67 | 42 | 5.19 | 42 | 0.92 | 42 | 1.60 | 42 |
13 | IG156648 | 0.74 | 6 | 0.63 | 34 | 0.77 | 16 | 0.09 | 11 | 1.42 | 37 |
14 | IG156656 | 0.88 | 12 | 0.60 | 31 | 0.89 | 20 | 0.15 | 22 | 1.23 | 34 |
15 | IG156771 | 1.21 | 28 | 0.48 | 25 | 0.95 | 21 | 0.19 | 26 | 1.03 | 25 |
16 | IG2684 | 1.03 | 22 | 0.37 | 19 | 0.53 | 10 | 0.09 | 13 | 1.05 | 23 |
17 | IG4400 | 0.99 | 20 | 0.15 | 5 | 2.15 | 37 | 0.14 | 19 | 1.25 | 3 |
18 | IG4401 | 1.25 | 29 | 0.47 | 24 | 0.72 | 14 | 0.15 | 21 | 0.86 | 29 |
19 | IG4605 | 0.90 | 14 | 0.83 | 40 | 2.86 | 41 | 0.47 | 39 | 1.55 | 27 |
20 | IG5244 | 0.95 | 18 | 0.46 | 23 | 0.36 | 6 | 0.07 | 7 | 1.11 | 31 |
21 | IG5562 | 0.45 | 2 | 0.79 | 37 | 1.42 | 29 | 0.29 | 32 | 1.56 | 38 |
22 | IG5588 | 1.08 | 25 | 0.31 | 13 | 0.78 | 17 | 0.14 | 20 | 1.06 | 13 |
23 | IG69492 | 1.06 | 24 | 0.36 | 17 | 0.09 | 1 | 0.01 | 1 | 1.06 | 28 |
24 | IG70079 | 0.82 | 10 | 0.77 | 36 | 1.79 | 31 | 0.28 | 31 | 1.42 | 35 |
25 | IG71366 | 1.05 | 23 | 0.36 | 16 | 2.08 | 36 | 0.29 | 33 | 1.16 | 6 |
26 | IG75929 | 1.32 | 33 | 0.22 | 9 | 0.15 | 3 | 0.03 | 3 | 0.88 | 15 |
27 | IG75932 | 0.85 | 11 | 0.57 | 30 | 1.97 | 35 | 0.36 | 36 | 1.25 | 21 |
28 | IG76251 | 0.80 | 9 | 0.38 | 21 | 0.48 | 9 | 0.07 | 8 | 1.30 | 24 |
29 | IG114663 | 1.44 | 37 | 0.22 | 8 | 0.25 | 5 | 0.05 | 5 | 0.84 | 11 |
30 | IG114670 | 0.93 | 16 | 0.18 | 6 | 2.17 | 38 | 0.07 | 9 | 1.25 | 1 |
31 | IG114703 | 0.91 | 15 | 0.81 | 38 | 1.27 | 27 | 0.26 | 30 | 1.10 | 39 |
32 | IG115370 | 1.27 | 31 | 0.35 | 15 | 0.39 | 7 | 0.08 | 10 | 0.96 | 22 |
33 | IG117684 | 1.31 | 32 | 0.38 | 20 | 1.92 | 33 | 0.31 | 34 | 1.07 | 8 |
34 | ILL8009 | 1.35 | 34 | 0.56 | 29 | 1.88 | 32 | 0.37 | 37 | 1.08 | 18 |
35 | IG138106 | 1.55 | 39 | 0.35 | 14 | 0.58 | 12 | 0.12 | 15 | 0.79 | 20 |
36 | ILX87075 | 1.66 | 41 | 0.10 | 1 | 0.99 | 23 | 0.14 | 18 | 0.76 | 4 |
37 | L24 | 0.90 | 13 | 0.61 | 32 | 2.50 | 39 | 0.51 | 40 | 1.25 | 14 |
38 | IG70056 | 0.58 | 4 | 0.73 | 35 | 0.74 | 15 | 0.05 | 6 | 1.44 | 40 |
39 | 2009S 96568-1 | 0.58 | 5 | 0.37 | 18 | 0.80 | 18 | 0.16 | 23 | 1.64 | 17 |
40 | IG156801 | 1.54 | 38 | 0.23 | 10 | 1.04 | 25 | 0.16 | 24 | 0.81 | 9 |
41 | 010S 96130-1 | 0.93 | 17 | 0.51 | 27 | 0.99 | 22 | 0.18 | 25 | 1.29 | 26 |
42 | 010S 96155-2 | 1.03 | 21 | 0.26 | 11 | 0.84 | 19 | 0.13 | 16 | 1.14 | 10 |
Cultivar Superiority | Finlay and Wilkinson | Shukla | Static Stability | |
---|---|---|---|---|
Finlay and Wilkinson | −0.57 *** | - | ||
Shukla | −0.17 | 0.15 | - | |
Static Stability | −0.60 *** | 0.87 *** | 0.52 *** | - |
Wricke’s Ecovalence | −0.24 | −0.01 | 0.87 *** | 0.39 * |
No | Accessions | Tolerance to Imazethapyr (75 g a.i. ha−1) | Tolerance to Metribuzin (210 g a.i. ha−1) |
---|---|---|---|
1 | IG1455 | Moderately Tolerant | Moderately Tolerant |
2 | IG2445 | Moderately Tolerant | Tolerant |
3 | IG257 | Moderately Tolerant | Highly Tolerant |
4 | IG918 | Moderately Tolerant | Tolerant |
5 | IG5626 | Moderately Tolerant | Tolerant |
6 | IG195 | Moderately Tolerant | Highly Tolerant |
7 | IG462 | Moderately Tolerant | Highly Tolerant |
8 | IG590 | Moderately Tolerant | Tolerant |
9 | IG857 | Moderately Tolerant | Tolerant |
10 | IG156514 | Moderately Tolerant | Tolerant |
11 | IG156633 | Moderately Tolerant | Moderately Tolerant |
12 | IG156635 | Moderately Tolerant | Tolerant |
13 | IG156648 | Moderately Tolerant | Tolerant |
14 | IG156656 | Moderately Tolerant | Tolerant |
15 | IG156771 | Moderately Tolerant | Tolerant |
16 | IG2684 | Moderately Tolerant | Moderately Tolerant |
17 | IG4400 | Moderately Tolerant | Tolerant |
18 | IG4401 | Moderately Tolerant | Tolerant |
19 | IG4605 | Moderately Susceptible | Tolerant |
20 | IG5244 | Moderately Tolerant | Tolerant |
21 | IG5562 | Moderately Tolerant | Moderately Tolerant |
22 | IG5588 | Moderately Tolerant | Tolerant |
23 | IG69492 | Moderately Tolerant | Tolerant |
24 | IG70079 | Moderately Tolerant | Tolerant |
25 | IG71366 | Moderately Tolerant | Highly Tolerant |
26 | IG75929 | Moderately Tolerant | Tolerant |
27 | IG75932 | Moderately Tolerant | Tolerant |
28 | IG76251 | Moderately Tolerant | Tolerant |
29 | IG114663 | Moderately Tolerant | Tolerant |
30 | IG114670 | Moderately Tolerant | Tolerant |
31 | IG114703 | Moderately Tolerant | Tolerant |
32 | IG115370 | Moderately Susceptible | Tolerant |
33 | IG117684 | Moderately Tolerant | Tolerant |
34 | ILL8009 | Tolerant | Tolerant |
35 | IG138106 | Moderately Tolerant | Tolerant |
36 | ILX87075 | Moderately Tolerant | Tolerant |
37 | L24 | Moderately Tolerant | Tolerant |
38 | IG70056 | Moderately Tolerant | Tolerant |
39 | 2009S 96568-1 | Moderately Tolerant | Tolerant |
40 | IG156801 | Moderately Tolerant | Highly Tolerant |
41 | 010S 96130-1 | Moderately Tolerant | Tolerant |
42 | 010S 96155-2 | Moderately Tolerant | Tolerant |
Environment | Environment (Location-Cropping Season-Treatment) | Soil Type | Rainfall (mm) | Air Temperature (°C) | ||
---|---|---|---|---|---|---|
AVG | AVG Min | AVG Max | ||||
E0 | Marchouch-2015/16-metribuzin at 210 g a.i. ha−1 | Vertisols and silty clay | 168 | 18.24 | 6.71 | 34.03 |
E1 | Marchouch-2015/16-no herbicide treatment | |||||
E2 | Marchouch-2016/17-imazethapyr at 75 g a.i. ha−1 | Vertisols and silty clay | 211 | 14.05 | −2.4 | 42.99 |
E3 | Marchouch-2016/17-metribuzin at 210 g a.i. ha−1 | |||||
E4 | Marchouch-2016/17-No Herbicide Treatment | |||||
E5 | Terbol-2018/19-imazethapyr at 75 g a.i. ha−1 | Clay loam | 810 | 11.7 | −0.28 | 32.3 |
E6 | Terbol-2018/19-metribuzin at 210 g a.i. ha−1 | |||||
E7 | Terbol-2018/19-no herbicide treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balech, R.; Maalouf, F.; Patil, S.B.; Rajendran, K.; Abou Khater, L.; Rubiales, D.; Kumar, S. Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments. Plants 2023, 12, 854. https://doi.org/10.3390/plants12040854
Balech R, Maalouf F, Patil SB, Rajendran K, Abou Khater L, Rubiales D, Kumar S. Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments. Plants. 2023; 12(4):854. https://doi.org/10.3390/plants12040854
Chicago/Turabian StyleBalech, Rind, Fouad Maalouf, Somanagouda B. Patil, Karthika Rajendran, Lynn Abou Khater, Diego Rubiales, and Shiv Kumar. 2023. "Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments" Plants 12, no. 4: 854. https://doi.org/10.3390/plants12040854
APA StyleBalech, R., Maalouf, F., Patil, S. B., Rajendran, K., Abou Khater, L., Rubiales, D., & Kumar, S. (2023). Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments. Plants, 12(4), 854. https://doi.org/10.3390/plants12040854