Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Applied Irrigation Water
2.2. Fruit Bunch Characteristics
2.3. Physicochemical Characteristics of Fruit
2.4. Fruit Texture Profile Analysis
2.5. Fruit Color Characteristics
2.6. Fruit Grading and Total Yield
2.7. Correlation between the Fruit Parameters
3. Materials and Methods
3.1. Description of Experimental Site
3.2. Soil and Water Analysis
3.3. Meteorological Conditions
3.4. Experimental Design and Factors Studied
3.5. On-Site Bubbler Irrigation System
3.6. Fruit Bunch Parameters
3.7. Fruit Quality Parameters
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date palm status and perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization; Springer: Cham, Switzerland, 2015; pp. 49–95. [Google Scholar]
- Dhehibi, B.; Salah, M.B.; Frija, A. Date palm value chain analysis and marketing opportunities for the Gulf Cooperation Council (GCC) countries. In Agricultural Economics-Current Issues; IntechOpen: London, UK, 2018. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture Water for Sustainable Food and Agriculture. Available online: http://www.fao.org/3/i7959e/i7959e (accessed on 3 January 2023).
- Stoyanov, L.; Bachev, I.; Zarkov, Z.; Lazarov, V.; Notton, G. Multivariate analysis of a Wind–PV-Based water pumping hybrid system for irrigation purposes. Energies 2021, 14, 3231. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Mahdy, E.M.; Taha, H.S.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Abdel Latef, A.A.H.; Rezk, A.A.; Shehata, W.F.; Almaghasla, M.I.; Shalaby, T.A. Genetic and morphological diversity assessment of five kalanchoe genotypes by SCoT, ISSR and RAPD-PCR markers. Plants 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Shadeed, S. Spatio-temporal drought analysis in arid and semi-arid regions: A case study from Palestine. Arab. J. Sci. Eng. 2013, 38, 2303–2313. [Google Scholar] [CrossRef]
- Alabdulkader, A.M.; Al-Amoud, A.I.; Awad, F.S. Adaptation of the agricultural sector to the effects of climate change in arid regions: Competitive advantage date palm cropping patterns under water scarcity conditions. J. Water Clim. Chang. 2016, 7, 514–525. [Google Scholar] [CrossRef]
- Prakash, M.; Ramana, K.; Rastogi, N. Effect of low-dose c-irradiation on the shelf life and quality characteristics of minimally processed potato cubes under modified atmosphere packaging. Radiat. Phys. Chem. 2007, 76, 10421049. [Google Scholar]
- Baig, M.B.; Alotibi, Y.; Straquadine, G.S.; Alataway, A. Water resources in the Kingdom of Saudi Arabia: Challenges and strategies for improvement. In Water Policies in MENA Countries; Springer: Cham, Switzerland, 2020; pp. 135–160. [Google Scholar]
- Askri, B.; Ahmed, A.T.; Abichou, T.; Bouhlila, R. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use. J. Hydrol. 2014, 513, 81–90. [Google Scholar] [CrossRef]
- Mohammed, M.; Sallam, A.; Munir, M.; Ali-Dinar, H. Effects of deficit irrigation scheduling on water use, gas exchange, yield, and fruit quality of date palm. Agronomy 2021, 11, 2256. [Google Scholar] [CrossRef]
- Ahmed Mohammed, M.E.; Refdan Alhajhoj, M.; Ali-Dinar, H.M.; Munir, M. Impact of a novel water-saving subsurface irrigation system on water productivity, photosynthetic characteristics, yield, and fruit quality of date palm under arid conditions. Agronomy 2020, 10, 1265. [Google Scholar] [CrossRef]
- Wang, T.; Franz, T.E.; Yue, W.; Szilagyi, J.; Zlotnik, V.A.; You, J.; Chen, X.; Shulski, M.D.; Young, A. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network. J. Hydrol. 2016, 533, 250–265. [Google Scholar] [CrossRef]
- Dhaouadi, L.; Besser, H.; Karbout, N.; Al-Omran, A.; Wassar, F.; Wahba, M.S.; Yaohu, K.; Hamed, Y. Irrigation water management for sustainable cultivation of date palm. Appl. Water Sci. 2021, 11, 171. [Google Scholar] [CrossRef]
- Calzadilla, A.; Rehdanz, K.; Tol, R.S. Water scarcity and the impact of improved irrigation management: A computable general equilibrium analysis. Agric. Econ. 2011, 42, 305–323. [Google Scholar] [CrossRef]
- Ghazzawy, H.; Alhajhoj, M.; Sallam, A.; Munir, M. Impact of chemical thinning to improve fruit characteristics of date palm cultivar Khalas. Iraqi J. Agric. Sci. 2019, 50, 1361–1368. [Google Scholar]
- Ghazzawy, H.S.; Sobaih, A.E.E.; Mansour, H.A. The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment. Agriculture 2022, 12, 2018. [Google Scholar] [CrossRef]
- Arias-Jiménez, E. Date Palm Cultivation; FAO: Rome, Italy, 2002; Volume 156. [Google Scholar]
- Carr, M. The water relations and irrigation requirements of the date palm (Phoenix dactylifera L.): A review. Exp. Agric. 2013, 49, 91–113. [Google Scholar] [CrossRef]
- Al-Yahyai, R. Strategies to Improve date palm production and hence Dates Quality in the Sultanate of Oman. In Proceedings of the UNCTAD-CAMS Joint Workshop for Dates Farmers and Stakeholders (Processors and Exporters), Muscat, Oman, 19–21 March 2018. [Google Scholar]
- Singh, A.K.; Rahman, A.; Sharma, S.; Upadhyaya, A.; Sikka, A. Small holders’ irrigation—Problems and options. Water Resour. Manag. 2009, 23, 289–302. [Google Scholar] [CrossRef]
- Joshi, A.; Ali, L. A detailed survey on auto irrigation system. In Proceedings of the 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, India, 3–4 March 2017; pp. 90–95. [Google Scholar]
- Indhumathi, G.; Suresh, C.; Sangeetha, M. A study on modern techniques used in irrigation for farming in Coimbatore city. Int. J. Interdiscip. Res. Arts Humanit. 2017, 2, 166–170. [Google Scholar]
- Al-Omran, A.; Alshammari, F.; Eid, S.; Nadeem, M. Determination of date palm water requirements in Saudi Arabia. In Climate Change, Food Security and Natural Resource Management; Springer: Cham, Switzerland, 2019; pp. 179–201. [Google Scholar]
- Ismail, S.M.; Al-Qurashi, A.D.; Awad, M.A. Optimization of irrigation water use, yield, and quality of nabbut-saif’date palm under dry land conditions. Irrig. Drain. 2014, 63, 29–37. [Google Scholar] [CrossRef]
- Nyamangara, J.; Kodzwa, J.; Masvaya, E.N.; Soropa, G. The role of synthetic fertilizers in enhancing ecosystem services in crop production systems in developing countries. In The Role of Ecosystem Services in Sustainable Food Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 95–117. [Google Scholar]
- Chen, R.; Chang, H.; Wang, Z.; Lin, H. Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China. Agric. Water Manag. 2023, 276, 108070. [Google Scholar] [CrossRef]
- Hernandez, T.; Chocano, C.; Coll, M.D.; Garcia, C. Composts as alternative to inorganic fertilization for cereal crops. Environ. Sci. Pollut. Res. 2019, 26, 35340–35352. [Google Scholar] [CrossRef]
- Muhammad, M.; Jalal-ud-Din, B.; Alizai, A.A.; Zia, A. Response of date palm cultivar Dhakki to NPK fertilizers in DI Khan. Pak. J. Agric. Res. 1992, 13, 347–349. [Google Scholar]
- Munir, M. Effect of NPK fertilizer on the physio-chemical characteristics of Dhakki dates in D I Khan. Gomal Univ. J. Res. 1993, 13, 1–7. [Google Scholar]
- Minikaev, D.; Zurgel, U.; Tripler, E.; Gelfand, I. Effect of increasing nitrogen fertilization on soil nitrous oxide emissions and nitrate leaching in a young date palm (Phoenix dactylifera L., cv. Medjool) orchard. Agric. Ecosyst. Environ. 2021, 319, 107569. [Google Scholar] [CrossRef]
- Ou-Zine, M.; Symanczik, S.; Rachidi, F.; Fagroud, M.; Aziz, L.; Abidar, A.; Mäder, P.; Achbani, E.H.; Haggoud, A.; Abdellaoui, M. Effect of organic amendment on soil fertility, mineral nutrition, and yield of majhoul date palm cultivar in Drâa-tafilalet region, Morocco. J. Soil Sci. Plant Nutr. 2021, 21, 1745–1758. [Google Scholar] [CrossRef]
- Al-Kharusi, L.M.; Elmardi, M.O.; Ali, A.; Al-Said, F.A.J.; Abdelbasit, K.M.; Al-Rawahi, S. Effect of mineral and organic fertilizers on the chemical characteristics and quality of date fruits. Int. J. Agric. Biol. 2009, 11, 290–296. [Google Scholar]
- Taha, F.; Abood, M. Influence of some organic fertilizers on date palm cv. barhi. Iraqi J. Agric. Sci. 2018, 49, 632–638. [Google Scholar]
- Ibrahim, M.; El-Beshbeshy, R.; Kamh, N.; Abou-Amer, A. Effect of NPK and biofertilizer on date palm trees grown in Siwa Oasis, Egypt. Soil Use Manag. 2013, 29, 315–321. [Google Scholar] [CrossRef]
- Aisueni, N.; Ikuenobe, C.; Okolo, E.; Ekhator, F. Response of date palm (Phoenix dactylifera) seedlings to organic manure, N and K fertilizers in polybag nursery. Afr. J. Agric. Res. 2009, 4, 162–165. [Google Scholar]
- Bar-Akiva, A. Effect of potassium nutrition on fruit splitting in Valencia oranget. J. Hortic. Sci. 1975, 50, 85–89. [Google Scholar] [CrossRef]
- Dennis, F., Jr. The history of fruit thinning. Plant Growth Regul. 2000, 31, 1–16. [Google Scholar] [CrossRef]
- Link, H. Significance of flower and fruit thinning on fruit quality. Plant Growth Regul. 2000, 31, 17–26. [Google Scholar] [CrossRef]
- Omar, A.E.; Alam-Eldein, S.M. Effect of strand thinning on yield and fruit quality of Egyptian Dry Date Palm (Phoenix dactylifera L.) cv. Sultani. J. Am. Pomol. Soc. 2014, 68, 135–140. [Google Scholar]
- M Al-Wasfy, M.; S El-Khawaga, A.-A. Effect of different methods of fruit thinning on Zaghloul date palm production and fruit quality. Assiut J. Agric. Sci. 2008, 39, 97–106. [Google Scholar] [CrossRef]
- Bashir, M.; Ahmad, M.; Altaf, F.; Shabir, K. Fruit quality and yield of date palm (Phoenix dactylifera L.) as affected by strand thinning. J. Anim. Plant Sci. 2014, 24, 951–954. [Google Scholar]
- Soliman, S.; Harhash, M. Effects of strands thinning on yield and fruit quality of Succary date palm. Afr. J. Biotechnol. 2012, 11, 2672–2676. [Google Scholar] [CrossRef]
- Martin, L.B.; Rose, J.K. There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. J. Exp. Bot. 2014, 65, 4639–4651. [Google Scholar] [CrossRef] [Green Version]
- Opara, L.U.; Studman, C.J.; Banks, N.H.; Opara, U. Fruit skin splitting and cracking. Hortic. Rev. 2010, 19, 217–262. [Google Scholar]
- Lustig, I.; Bernstein, Z.; Gophen, M. Skin separation in Majhul fruits. Int. J. Plant Res. 2014, 4, 29–35. [Google Scholar]
- Gophen, M. Skin separation in date fruits. Int. J. Plant Res. 2014, 4, 11–16. [Google Scholar]
- Cohen, Y.; Glasner, B.B. Date palm status and perspective in Israel. In Date Palm Genetic Resources and Utilization; Springer: Cham, Switzerland, 2015; pp. 265–298. [Google Scholar]
- Ibrahim, A.B.O. Palm Cultivation and Dates Quality: Environmental factors and care programs. In Proceedings of the Khalifa International Award for Dates and Agriculture, Abu Dhabi, United Arab Emirates, 16–18 March 2014; pp. 266–276. [Google Scholar]
- Ahmed, R.L.; Mazahreh, N.; Ayad, J.; Samra, O.A.; Al-Hiyari, M. Effect of peeling treatments on skin scaling of Medjool date palm fruits under Jordan valley conditions. Blessed Tree 2022, 3, 98–111. [Google Scholar]
- Chang, B.-M.; Keller, M. Cuticle and skin cell walls have common and unique roles in grape berry splitting. Hortic. Res. 2021, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Lampinen, B.; Shackel, K.; Crisosto, C.H. Fruit skin side cracking and ostiole-end splitting shorten postharvest life in fresh figs (Ficus carica L.), but are reduced by deficit irrigation. Postharvest Biol. Technol. 2013, 85, 154–161. [Google Scholar] [CrossRef]
- Isaid, H.; Bitar, A.; Abu-Qaoud, H. Effect of Water Stress at Fruit Maturity Stage on Production and Skin Separation Phenomenon of Date Palm cv. Medjool. Hebron Univ. Res. J. A 2021, 1, 10. [Google Scholar]
- Alsmairat, N.; Othman, Y.; Ayad, J.; Al-Ajlouni, M.; Sawwan, J.; El-Assi, N. Anatomical assessment of skin separation in date palm (Phoenix dactylifera L. var. Mejhoul) fruit during maturation and ripening stages. Agriculture 2022, 13, 38. [Google Scholar] [CrossRef]
- Alikhani-Koupaei, M.; Fatahi, R.; Zamani, Z.; Salimi, S. Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’date palm and the fruit wilting and dropping disorder. Agric. Water Manag. 2018, 209, 219–227. [Google Scholar] [CrossRef]
- Khodair, O.; El-Rahman, A.; Radwan, E. Role of potassium fertilization in improving of Hayani date palm fruiting. J. Plant Prod. 2021, 12, 299–304. [Google Scholar] [CrossRef]
- Awad, M.A.; Ismail, S.M.; Al-Qurashi, A.D. Effect of potassium soil and foliar spray fertilization on yield, fruit quality and nutrient uptake of ‘Seweda’ date palm grown in sandy loam soil. J. Food Agric. Environ. 2014, 12, 305–311. [Google Scholar]
- Intrigliolo, D.S.; Castel, J.R. Response of plum trees to deficit irrigation under two crop levels: Tree growth, yield and fruit quality. Irrig. Sci. 2010, 28, 525–534. [Google Scholar] [CrossRef]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef]
- Alnaim, M.A.; Mohamed, M.S.; Mohammed, M.; Munir, M. Effects of automated irrigation systems and water regimes on soil properties, water productivity, yield and fruit quality of date palm. Agriculture 2022, 12, 343. [Google Scholar] [CrossRef]
- Mattar, M.A.; Soliman, S.S.; Al-Obeed, R.S. Effects of various quantities of three irrigation water types on yield and fruit quality of ‘succary’date palm. Agronomy 2021, 11, 796. [Google Scholar] [CrossRef]
- Osman, S. Effect of potassium fertilization on yield, leaf mineral content and fruit quality of Bartamoda date palm propagated by tissue culture technique under Aswan conditions. J. Appl. Sci. Res. 2010, 2, 184–190. [Google Scholar]
- Salama, A.; El-Sayed, O.M.; El Gammal, O.H. Effect of effective microorganisms (EM) and potassium sulphate on productivity and fruit quality of" Hayany" date palm grown under salinity stress. J. Agric. Vet. Sci. 2014, 7, 90–99. [Google Scholar] [CrossRef]
- Elsayd, I.E.-R.; El-Merghany, S.; Zaen El–Dean, E. Influence of potassium fertilization on Barhee date palms growth, yield and fruit quality under heat stress conditions. J. Plant Prod. 2018, 9, 73–80. [Google Scholar] [CrossRef]
- Mostafa, R.; El Akkad, M. Effect of fruit thinning rate on yield and fruit quality of Zaghloul and Haiany date palms. Aust. J. Basic Appl. Sci. 2011, 5, 3233–3239. [Google Scholar]
- Ghazzawy, H.S.; Gouda, M.M.; Awad, N.S.; Al-Harbi, N.A.; Alqahtani, M.M.; Abdel-Salam, M.M.; Abdein, M.A.; Al-Sobeai, S.M.; Hamad, A.A.; Alsberi, H.M. Potential bioactivity of Phoenix dactylifera fruits, leaves, and seeds against prostate and pancreatic cancer cells. Front. Nutr. 2022, 9, 998929. [Google Scholar] [CrossRef] [PubMed]
- Judet, D.; Bensoussan, M.; Perrier-Cornet, J.-M.; Dantigny, P. Distributions of the growth rate of the germ tubes and germination time of Penicillium chrysogenum conidia depend on water activity. Food Microbiol. 2008, 25, 902–907. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Elhoumaizi, A.; Hakkou, A.; Wathelet, B.; Sindic, M. Physico-chemical characterization, classification and quality evaluation of date palm fruits of some Moroccan cultivars. J. Sci. Res. 2011, 3, 139–149. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of date fruit quality attributes during cold storage based on their electrical properties using artificial neural networks models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef]
- Lipan, L.; Martín-Palomo, M.J.; Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez-Araújo, L.; Andreu, L.; Carbonell-Barrachina, Á.A. Almond fruit quality can be improved by means of deficit irrigation strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Giongo, L.; Ajelli, M.; Poncetta, P.; Ramos-García, M.; Sambo, P.; Farneti, B. Raspberry texture mechanical profiling during fruit ripening and storage. Postharvest Biol. Technol. 2019, 149, 177–186. [Google Scholar] [CrossRef]
- Wang, J.; Shi, D.; Bai, Y.; Ouyang, B.; Liu, Y. Effects of chitosan treatment on the texture parameters of okra fruit (Abelmoschus esculentus L. Moench). Qual. Assur. Saf. Crops Foods 2020, 12, 66–75. [Google Scholar] [CrossRef]
- Al-Abdoulhadi, I.; Al-Ali, S.; Khurshid, K.; Al-Shryda, F.; Al-Jabr, A.; Abdallah, A.B. Assessing fruit characteristics to standardize quality norms in date cultivars of Saudi Arabia. Indian J. Sci. Technol. 2011, 4, 1262–1266. [Google Scholar] [CrossRef]
- Jaradat, A.; Zaid, A. Quality traits of date palm fruits in a center of origin and center of diversity. J. Food Agric. Environ. 2004, 2, 208–217. [Google Scholar]
- Hammadi, H.; Mokhtar, R.; Mokhtar, E.; Ali, F. New approach for the morphological identification of date palm (Phoenix dactylifera L.) cultivars from Tunisia. Pak. J. Bot. 2009, 41, 2671–2681. [Google Scholar]
- Gill, P.; Ganaie, M.; Dhillon, W.; Singh, N.P. Effect of foliar sprays of potassium on fruit size and quality of ‘Patharnakh’pear. Indian J. Hortic. 2012, 69, 512–516. [Google Scholar]
- Proietti, P.; Antognozzi, E. Effect of irrigation on fruit quality of table olives (Olea europaea), cultivar ‘Ascolana tenera’. N. Z. J. Crop Hortic. Sci. 1996, 24, 175–181. [Google Scholar] [CrossRef]
- Lobos, T.; Retamales, J.; Luengo Escobar, A.; Hanson, E. Timing of foliar calcium sprays improves fruit firmness and antioxidants in “Liberty” blueberries. J. Soil Sci. Plant Nutr. 2021, 21, 426–436. [Google Scholar] [CrossRef]
- Dilmaghani, M.; Malakouti, M.; Neilsen, G.; Fallahi, E. Interactive effects of potassium and calcium on K/Ca ratio and its consequences on apple fruit quality in calcareous soils of Iran. J. Plant Nutr. 2005, 27, 1149–1162. [Google Scholar] [CrossRef]
- Demiral, M.A.; Köseoglu, A.T. Effect of potassium on yield, fruit quality, and chemical composition of greenhouse-grown galia melon. J. Plant Nutr. 2005, 28, 93–100. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bangerth, F. Effect of pre-harvest application of calcium on flesh firmness and cell-wall composition of apples—Influence of fruit size. J. Hortic. Sci. 1995, 70, 263–269. [Google Scholar] [CrossRef]
- Schwieterman, M.L.; Colquhoun, T.A.; Jaworski, E.A.; Bartoshuk, L.M.; Gilbert, J.L.; Tieman, D.M.; Odabasi, A.Z.; Moskowitz, H.R.; Folta, K.M.; Klee, H.J. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 2014, 9, e88446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Mula, H.M.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Zapata, P.J.; Guillén, F.; Serrano, M. Sensory, nutritive and functional properties of sweet cherry as affected by cultivar and ripening stage. Food Sci. Technol. Int. 2009, 15, 535–543. [Google Scholar] [CrossRef]
- Hazzouri, K.M.; Gros-Balthazard, M.; Flowers, J.M.; Copetti, D.; Lemansour, A.; Lebrun, M.; Masmoudi, K.; Ferrand, S.; Dhar, M.I.; Fresquez, Z.A. Genome-wide association mapping of date palm fruit traits. Nat. Commun. 2019, 10, 4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddeeg, A.; Faisal Manzoor, M.; Haseeb Ahmad, M.; Ahmad, N.; Ahmed, Z.; Kashif Iqbal Khan, M.; Aslam Maan, A.; Zeng, X.-A.; Ammar, A.-F. Pulsed electric field-assisted ethanolic extraction of date palm fruits: Bioactive compounds, antioxidant activity and physicochemical properties. Processes 2019, 7, 585. [Google Scholar] [CrossRef] [Green Version]
- Shahsavar, A.R.; Shahhosseini, A. The metaxenia effects of different pollen grains on secondary metabolites enzymes and sugars of ‘Piarom’date palm fruit. Sci. Rep. 2022, 12, 10058. [Google Scholar] [CrossRef] [PubMed]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant flavonoids—Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.J.; Tomas-Barberan, F.; Kader, A.A.; Mitchell, A.E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). J. Agric. Food Chem. 2006, 54, 2405–2411. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Sun, M.; Li, B.; Han, Y.; Zhao, Y.; Li, X.; Ding, N.; Li, C.; Ji, W. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 2013, 198, 453–465. [Google Scholar]
- Jia, H.; Xie, Z.; Wang, C.; Shangguan, L.; Qian, N.; Cui, M.; Liu, Z.; Zheng, T.; Wang, M.; Fang, J. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Funct. Integr. Genom. 2017, 17, 441–457. [Google Scholar] [CrossRef]
- Olivares, O.; Mayers, J.R.; Gouirand, V.; Torrence, M.E.; Gicquel, T.; Borge, L.; Lac, S.; Roques, J.; Lavaut, M.-N.; Berthezène, P. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 2017, 8, 16031. [Google Scholar] [CrossRef] [PubMed]
- Usherwood, N.R. The role of potassium in crop quality. In Potassium in Agriculture; Wiley: New York, NY, USA, 1985; pp. 489–513. [Google Scholar]
- Almeselmani, M.; Pant, R.; Singh, B. Potassium level and physiological response and fruit quality in hydroponically grown tomato. Int. J. Veg. Sci. 2009, 16, 85–99. [Google Scholar] [CrossRef]
- Kumar, A.R.; Kumar, N.; Kavino, M. Role of potassium in fruit crops—A review. Agric. Rev. 2006, 27, 284–291. [Google Scholar]
- Yahia, E.M. Postharvest Biology and Technology of Tropical and Subtropical Fruits: Fundamental Issues; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Phulpoto, N.N.; Shah, A.B.; Shaikh, F.M. Challenges faced by rural women in dates processing industry in Khairpur Mirs. Aust. J. Bus. Manag. Res. 2012, 2, 64. [Google Scholar] [CrossRef]
- Siddiq, M.; Greiby, I. Overview of date fruit production, postharvest handling, processing, and nutrition. In Dates: Postharvest Science, Processing Technology and Health Benefits; Wiley: New York, NY, USA, 2013; pp. 1–28. [Google Scholar]
- MEWA, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia. Available online: https://mewa.gov.sa/ar/Ministry/Agencies/AgencyofAgriculture/Topics/SiteAssets (accessed on 3 January 2023).
- Lobo, M.G.; Yahia, E.M.; Kader, A.A. Biology and postharvest physiology of date fruit. In Dates: Postharvest Science, Processing Technology and Health Benefits; Wiley: New York, NY, USA, 2013; pp. 57–80. [Google Scholar]
- Zhen, J.; Lazarovitch, N.; Tripler, E. Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms. Agric. Water Manag. 2020, 241, 106385. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements, FAO irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Mohammed, M.; Alqahtani, N.; El-Shafie, H. Development and evaluation of an ultrasonic humidifier to control humidity in a cold storage room for postharvest quality management of dates. Foods 2021, 10, 949. [Google Scholar] [CrossRef]
- Mohammed, M.E.; El-Shafie, H.A.; Alhajhoj, M.R. Design and efficacy evaluation of a modern automated controlled atmosphere system for pest management in stored dates. J. Stored Prod. Res. 2020, 89, 101719. [Google Scholar] [CrossRef]
- Gamea, G.R.; Aboamera, M.A.; Mohmed, M. Design and manufacturing of prototype for orange grading using phototransistor. Misr J. Agric. Eng. 2011, 28, 505–523. [Google Scholar] [CrossRef]
- Sadler, S.; Murphy, P. Chapter 13. pH and titratable acidity. In Food Analysis, 4th ed.; Springer Science+ Business Media LLC: New York, NY, USA, 2010; pp. 219–238. [Google Scholar]
- Iqbal, Z.; Munir, M.; Sattar, M.N. Morphological, biochemical, and physiological response of butterhead lettuce to photo-thermal environments. Horticulturae 2022, 8, 515. [Google Scholar] [CrossRef]
- Hunter, R.S. Photoelectric color difference meter. Josa 1958, 48, 985–995. [Google Scholar] [CrossRef]
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | Bunch Length (cm) | Stalk Width (cm) | Empty Bunch Weight (g) | Strand Length (cm) |
---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 67.66 BG | 4.43 AD | 1.66 AC | 11.46 BG |
T2 (10 Bunches) | 64.00 G | 4.26 BE | 1.16 D | 11.46 BG | ||
T3 (12 Bunches) | 64.00 G | 3.3 F | 1.33 BD | 11.20 EG | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 73.33 AG | 4.70 AC | 1.60 AD | 12.23 BE | |
T2 (10 Bunches) | 73.33 AG | 4.70 AC | 1.60 AD | 11.46 BG | ||
T3 (12 Bunches) | 73.00 AG | 4.56 AD | 1.20 CD | 11.33 CG | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 77.33 AE | 4.56 AD | 1.60 AD | 12.30 BD | |
T2 (10 Bunches) | 77.33 AE | 4.20 BE | 1.60 AD | 12.13 BE | ||
T3 (12 Bunches) | 77.00 AF | 4.03 CF | 1.40 BD | 11.96 BF | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 70.66 AG | 4.83 AB | 1.56 AD | 11.77 BG |
T2 (10 Bunches) | 66.33 DG | 4.66 AC | 1.53 AD | 11.46 BG | ||
T3 (12 Bunches) | 65.33 EG | 4.60 AD | 1.20 CD | 11.30 DG | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 82.66 A | 5.16 A | 1.90 A | 13.43 A | |
T2 (10 Bunches) | 80.00 AB | 5.06 A | 1.70 AB | 12.43 AC | ||
T3 (12 Bunches) | 80.00 AB | 4.83 AB | 1.70 AB | 12.30 BE | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 79.00 AD | 4.60 AD | 1.53 AD | 12.40 AD | |
T2 (10 Bunches) | 79.00 AD | 4.50 AD | 1.50 AD | 12.10 BE | ||
T3 (12 Bunches) | 76.66 AG | 4.26 BE | 1.33 BD | 12.07 BE | ||
I3 (120% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 72.00 AG | 4.46 AD | 1.33 BD | 11.33 CG |
T2 (10 Bunches) | 70.66 AG | 4.30 BE | 1.30 BD | 10.90 FG | ||
T3 (12 Bunches) | 68.33 BG | 4.26 BE | 1.20 CD | 10.80 G | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 77.00 AE | 4.56 AD | 1.63 AD | 12.40 AD | |
T2 (10 Bunches) | 80.33 AB | 4.50 AD | 1.56 AD | 11.76 BG | ||
T3 (12 Bunches) | 75.66 AG | 4.00 CF | 1.53 AD | 11.46 BG | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 79.33 AC | 4.23 BE | 1.53 AD | 11.90 BG | |
T2 (10 Bunches) | 77.33 AE | 4.10 BF | 1.46 AD | 11.90 BG | ||
T3 (12 Bunches) | 74.66 AG | 3.90 DF | 1.36 BD | 11.26 EG | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 70.33 AG | 4.30 BE | 1.40 BD | 11.40 BG |
T2 (10 Bunches) | 66.66 CG | 4.10 BF | 1.20 CD | 11.40 G | ||
T3 (12 Bunches) | 64.33 FG | 4.10 BF | 1.16 D | 11.33 CG | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 73.33 AG | 4.46 AD | 1.70 AB | 11.83 BG | |
T2 (10 Bunches) | 73.33 AG | 4.46 AD | 1.56 AD | 11.76 BG | ||
T3 (12 Bunches) | 73.33 AG | 4.26 BF | 1.56 AD | 11.73 BG | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 77.33 AE | 4.23 BE | 1.36 BD | 11.73 BG | |
T2 (10 Bunches) | 75.66 AG | 3.90 DF | 1.33 BD | 11.60 BG | ||
T3 (12 Bunches) | 64.33 FG | 3.43 F | 1.30 BD | 11.60 BG |
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | Fruit Length (cm) | Fruit Width (cm) | Fruit Weight (g) | Seed Weight (g) | Pulp Weight (g) | Seed: Pulp Ratio |
---|---|---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 2.21 PQ | 1.88 HI | 8.69 F | 2.23 A | 6.97 FG | 0.30 A |
T2 (10 Bunches) | 2.16 PQ | 1.86 HI | 7.84 F | 2.20 A | 7.05 FG | 0.31 A | ||
T3 (12 Bunches) | 2.07 Q | 1.74 HI | 7.60 F | 2.23 A | 7.10 FG | 0.31 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 2.69 KM | 1.82 HI | 8.94 EF | 2.19 A | 6.82 FG | 0.30 A | |
T2 (10 Bunches) | 2.75 IM | 1.95 FH | 9.10 EF | 2.14 AC | 6.96 FG | 0.31 A | ||
T3 (12 Bunches) | 2.62 IN | 1.90 GI | 8.87 EF | 2.07 AF | 6.86 FG | 0.30 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 2.72 JM | 1.70 I | 8.69 F | 2.28 A | 7.18 FG | 0.31 A | |
T2 (10 Bunches) | 2.83 FL | 1.82 HI | 9.16 EF | 2.16 AB | 6.99 FG | 0.30 A | ||
T3 (12 Bunches) | 2.69 KM | 1.70 I | 8.54 F | 2.14 AC | 8.60 DF | 0.26 A | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 2.83 GL | 2.30 AE | 10.74 DE | 2.05 AF | 11.88 A | 0.18 B |
T2 (10 Bunches) | 2.85 GL | 2.26 AE | 12.26 BD | 2.05 AF | 11.57 AB | 0.18 BC | ||
T3 (12 Bunches) | 2.53 MO | 2.24 AE | 9.33 EF | 2.25 A | 11.49 AB | 0.17 BC | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 3.36 A | 2.40 A | 14.35 A | 1.15 K | 12.13 A | 0.12 C | |
T2 (10 Bunches) | 3.38 A | 2.41 AE | 14.59 A | 1.14 K | 11.87 A | 0.14 BC | ||
T3 (12 Bunches) | 3.36 A | 2.39 AB | 14.12 AB | 1.15 K | 12.44 A | 0.14 BC | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 3.34 AB | 2.37 AC | 14.55 A | 1.15 K | 12.44 A | 0.14 BC | |
T2 (10 Bunches) | 3.37 A | 2.36 AD | 13.53 AB | 1.16 K | 11.63 AB | 0.14 BC | ||
T3 (12 Bunches) | 3.29 AC | 2.29 AE | 13.49 AB | 1.13 K | 11.74 AB | 0.15 BC | ||
I3 (120% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 2.99 DJ | 2.21 AE | 10.71 DE | 2.25 A | 11.94 A | 0.18 BC |
T2 (10 Bunches) | 3.00 DI | 2.28 AE | 9.47 EF | 2.15 AC | 11.51 AB | 0.19 B | ||
T3 (12 Bunches) | 2.96 EK | 2.21 AE | 9.00 EF | 2.14 AC | 11.03 AB | 0.15 BC | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 3.25 AD | 2.23 AE | 13.69 AB | 1.50 HJ | 11.02 AB | 0.16 BC | |
T2 (10 Bunches) | 3.21 AE | 2.23 AE | 13.17 AC | 1.21 JK | 10.74 AC | 0.15 BC | ||
T3 (12 Bunches) | 3.20 AE | 2.21 AE | 12.83 AC | 1.15 K | 10.64 AC | 0.15 BC | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 3.07 BG | 2.21 AE | 14.07 AB | 1.40 IK | 10.98 AB | 0.15 BC | |
T2 (10 Bunches) | 3.15 AF | 2.23 AE | 13.74 AB | 1.50 HJ | 9.99 BD | 0.15 BC | ||
T3 (12 Bunches) | 3.03 CH | 2.19 AE | 13.70 AB | 1.61 GI | 9.10 CE | 0.17 BC | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 2.76 HM | 2.15 DF | 9.12 EF | 2.10 AE | 7.78 EG | 0.19 B |
T2 (10 Bunches) | 2.73 IM | 2.12 EG | 9.25 EF | 1.86 BG | 6.68 G | 0.19 B | ||
T3 (12 Bunches) | 2.64 LN | 2.10 EG | 8.95 EF | 1.79 EH | 6.46 G | 0.17 BC | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 2.52 MO | 2.17 BE | 11.49 CD | 1.82 CH | 7.85 EG | 0.14 BC | |
T2 (10 Bunches) | 2.37 NP | 2.16 CF | 9.39 EF | 1.68 GI | 7.55 EG | 0.15 BC | ||
T3 (12 Bunches) | 2.28 OQ | 2.15 DF | 9.28 EF | 1.61 GI | 6.28 G | 0.15 BC | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 3.14 AF | 2.18 BE | 12.84 AC | 1.74 FH | 7.53 EG | 0.15 BC | |
T2 (10 Bunches) | 3.01 CI | 2.22 AE | 12.42 BD | 1.66 GI | 8.18 DG | 0.17 BC | ||
T3 (12 Bunches) | 3.01 CI | 2.17 CF | 12.39 BD | 1.80 DH | 7.80 EG | 0.16 BC |
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | TSS (Brix) | Titratable Acidity (%) | TSS: Titratable Acidity ratio | Total Sugars (%) | Moisture Content (%) | Water Activity (aw) |
---|---|---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 59.00 JK | 0.17 C | 347.05 AB | 61.66 I | 14.80 EF | 0.435 A |
T2 (10 Bunches) | 58.00 K | 0.17 C | 341.01 C | 61.66 I | 14.80 EF | 0.434 A | ||
T3 (12 Bunches) | 59.00 JK | 0.17 C | 347.05 BC | 63.33 FI | 14.80 EF | 0.434 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 60.00 GK | 0.17 C | 353.29 BC | 63.33 FI | 14.80 EF | 0.419 A | |
T2 (10 Bunches) | 58.00 K | 0.17 C | 345.05 C | 63.00 GI | 14.91 EF | 0.420 A | ||
T3 (12 Bunches) | 59.33 IK | 0.17 C | 349.00 BC | 63.00 GI | 14.67 F | 0.429 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 59.66 HK | 0.18 C | 330.83 CD | 63.00 GI | 14.60 F | 0.432 A | |
T2 (10 Bunches) | 59.66 HK | 0.16 C | 372.87 AB | 61.66 I | 14.67 F | 0.429 A | ||
T3 (12 Bunches) | 60.33 FK | 0.17 C | 353.52 BC | 62.66 HI | 14.80 EF | 0.432 A | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 63.66 CH | 0.37 A | 169.05 Q | 71.00 B | 14.80 EF | 0.456 A |
T2 (10 Bunches) | 67.00 C | 0.37 A | 181.08 OQ | 70.00 BD | 15.02 DF | 0.435 A | ||
T3 (12 Bunches) | 65.33 CE | 0.37 A | 178.05 OQ | 70.00 BD | 15.83 CF | 0.434 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 76.66 A | 0.37 A | 207.18 KM | 77.33 A | 17.59 AD | 0.444 A | |
T2 (10 Bunches) | 76.66 A | 0.37 A | 207.18 KM | 77.00 A | 16.02 BE | 0.437 A | ||
T3 (12 Bunches) | 74.66 AB | 0.37 A | 201.78 LN | 77.00 A | 17.31 AC | 0.436 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 73.66 AB | 0.37 A | 199.08 NO | 76.66 A | 18.56 AB | 0.440 A | |
T2 (10 Bunches) | 73.66 AB | 0.37 A | 198.18 NO | 77.00 A | 17.34 AE | 0.442 A | ||
T3 (12 Bunches) | 73.33 AB | 0.37 A | 198.18 NO | 77.00 A | 17.18 AF | 0.440 A | ||
I3 (120% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 62.66 DJ | 0.25 B | 250.64 HJ | 68.33 BE | 16.75 AF | 0.443 A |
T2 (10 Bunches) | 64.33 CE | 0.26 B | 247.42 JK | 68.33 BE | 16.97 AF | 0.425 A | ||
T3 (12 Bunches) | 64.00 CG | 0.25 B | 250.04 HJ | 68.66 BE | 15.27 DF | 0.456 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 74.00 AB | 0.25 B | 296.00 EF | 75.00 A | 16.52 AF | 0.457 A | |
T2 (10 Bunches) | 74.00 AB | 0.26 B | 284.61 FG | 75.33 A | 16.78 AF | 0.456 A | ||
T3 (12 Bunches) | 72.33 B | 0.25 B | 289.32 FG | 75.66 A | 16.45 AF | 0.447 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 67.33 C | 0.26 B | 258.96 HJ | 70.00 BD | 18.62 AB | 0.442 A | |
T2 (10 Bunches) | 66.66 CD | 0.25 B | 266.64 GH | 71.00 B | 18.56 AB | 0.449 A | ||
T3 (12 Bunches) | 66.00 CD | 0.26 B | 253.84 HJ | 69.66 BD | 17.35 AE | 0.449 A | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 66.66 CD | 0.18 C | 370.33 AB | 70.66 BC | 14.91 EF | 0.457 A |
T2 (10 Bunches) | 65.66 CE | 0.18 C | 364.77 B | 69.00 BE | 14.80 EF | 0.456 A | ||
T3 (12 Bunches) | 63.33 CI | 0.19 C | 333.31 CD | 67.66 BE | 14.80 EF | 0.457 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 61.66 EK | 0.16 C | 385.37 A | 68.33 BE | 16.90 AF | 0.457 A | |
T2 (10 Bunches) | 62.66 DJ | 0.18 C | 348.11 BC | 67.00 CF | 14.80 BF | 0.457 A | ||
T3 (12 Bunches) | 60.33 FK | 0.19 C | 317.52 D | 65.66 EH | 16.40 AF | 0.457 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 60.33 FK | 0.19 C | 317.52 D | 65.66 EH | 18.53 AB | 0.457 A | |
T2 (10 Bunches) | 60.66 FK | 0.19 C | 319.26 D | 67.33 BE | 18.73 A | 0.456 A | ||
T3 (12 Bunches) | 60.66 FK | 0.20 C | 303.30 E | 66.66 DG | 18.46 AB | 0.456 A |
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | Hardness (N) | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience |
---|---|---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 18.48 AB | 0.686 FI | 0.710 A | 1278.6 A | 779.29 AB | 0.129 I |
T2 (10 Bunches) | 18.08 AC | 0.693 FI | 0.669 AB | 1035.3 AE | 895.72 A | 0.129 I | ||
T3 (12 Bunches) | 21.12 A | 0.638 I | 0.669 AB | 1067. 7 AD | 812.3 BF | 0.143 HI | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 11.46 CJ | 0.686 FI | 0.638 AC | 1102. 3 AC | 725.78 AC | 0.148 GI | |
T2 (10 Bunches) | 11.00 DJ | 0.678 GI | 0.648 AD | 1125.8 AB | 748.56 AC | 0.149 GI | ||
T3 (12 Bunches) | 17.13 AD | 0.638 I | 0.645 AE | 1084.6 AC | 757.47 AB | 0.146 HI | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 14.61 BF | 0.638 I | 0.660 AE | 929. 0 BF | 663.26 AD | 0.145 HI | |
T2 (10 Bunches) | 15.50 AE | 0.677 HI | 0.657 AC | 944.4 AF | 695.02 AC | 0.143 HI | ||
T3 (12 Bunches) | 18.01 AC | 0.678 GI | 0.645 AE | 912. 3 BF | 668.13 AD | 0.146 HI | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 15.78 AE | 0.712 CI | 0.608 AG | 771.4 CH | 561.26 BG | 0.150 GI |
T2 (10 Bunches) | 15.54 AE | 0.724 BH | 0.613 AG | 709.7 EI | 574.45 BF | 0.147 HI | ||
T3 (12 Bunches) | 17.80 AC | 0.731 BH | 0.611 AG | 724.4 DI | 588.04 BE | 0.145 HI | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 6.38 IJ | 0.841 A | 0.565 G | 383.0 I | 289.23 H | 0.197 AB | |
T2 (10 Bunches) | 6.59 HJ | 0.841 A | 0.569 FG | 381.3 I | 288.37 H | 0.191 AD | ||
T3 (12 Bunches) | 5.84 J | 0.784 AD | 0.569 FG | 399.4 I | 304.01 GH | 0.192 AC | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 7.02 GJ | 0.727 BH | 0.602 BG | 408.6 I | 336.14 EH | 0.206 AB | |
T2 (10 Bunches) | 7.80 FI | 0.777 AD | 0.601 BG | 405.0 I | 327.06 EH | 0.190 AD | ||
T3 (12 Bunches) | 9.85 EJ | 0.712 CI | 0.606 AG | 403.7 I | 357.46 EH | 0.190 AD | ||
I3 (120 ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 12.47 BI | 0.767 AE | 0.630 AF | 944.4 AF | 545.82 BH | 0.151 GI |
T2 (10 Bunches) | 12.72 BH | 0.708 DI | 0.602 BG | 935.6 AF | 486.60 CH | 0.176 BG | ||
T3 (12 Bunches) | 15.59 AE | 0.732 BH | 0.608 AG | 912.3 BF | 574.45 BF | 0.151 GI | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 6.29 IJ | 0.731 BH | 0.591 DG | 422.6 I | 316.68 FH | 0.201 AB | |
T2 (10 Bunches) | 6.32 IJ | 0.766 AE | 0.571 FG | 419.7 I | 322.25 FH | 0.202 AB | ||
T3 (12 Bunches) | 6.35 IJ | 0.732 BH | 0.582 EG | 411.8 I | 326.47 EH | 0.203 A | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 9.85 EJ | 0.727 BH | 0.608 AG | 616.1 FI | 334.06 EH | 0.159 EH | |
T2 (10 Bunches) | 6.94 GJ | 0.710 CI | 0.606 AG | 452.0 HI | 335.06 EH | 0.150 GI | ||
T3 (12 Bunches) | 6.51 IJ | 0.753 BG | 0.606 AG | 437.0 HI | 355.67 FH | 0.149 GI | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 12.72 BH | 0.775 AD | 0.632 AE | 777.3 CH | 523.34 BH | 0.176 BG |
T2 (10 Bunches) | 15.54 AE | 0.780 AD | 0.637 AE | 882. 5 BF | 523.34 BH | 0.176 BG | ||
T3 (12 Bunches) | 15.78 AE | 0.775 AD | 0.632 AF | 834. 7 BG | 523.95 BH | 0.180 AF | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 6.31 IJ | 0.788 AB | 0.592 CG | 460.8 HI | 407.17 DH | 0.165 CH | |
T2 (10 Bunches) | 6.51 IJ | 0.770 AD | 0.598 BG | 455. 0 HI | 411.80 I | 0.153 FI | ||
T3 (12 Bunches) | 6.37 IJ | 0.757 BF | 0.593 CG | 536.4 GI | 491.96 CH | 0.164 DH | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 8.08 GJ | 0.759 BF | 0.613 AG | 616.1 FI | 666.25 AD | 0.182 AE | |
T2 (10 Bunches) | 8.82 FJ | 0.747 BH | 0.611 AG | 771.4 CH | 668.13 AD | 0.175 BG | ||
T3 (12 Bunches) | 12.91 BG | 0.740 BH | 0.629 AG | 882.5 BF | 695.02 AC | 0.183 AE |
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | L | C | h° | ∆E |
---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 42.33 A | 40.80 AB | 70.30 A | 58.79 A |
T2 (10 Bunches) | 44.42 A | 40.99 A | 70.38 A | 60.44 A | ||
T3 (12 Bunches) | 45.68 A | 41.03 A | 70.50 A | 61.40 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 29.50 EJ | 39.83 AC | 60.14 DH | 49.56 AC | |
T2 (10 Bunches) | 30.24 EI | 39.18 AC | 61.81 CG | 49.49 AC | ||
T3 (12 Bunches) | 31.23 EH | 38.98 BC | 62.07 AG | 49.95 AC | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 29.72 EI | 40.41 AB | 64.56 AG | 50.16 AB | |
T2 (10 Bunches) | 27.18 FK | 41.16 A | 64.90 AG | 49.32 AC | ||
T3 (12 Bunches) | 29.87 EI | 41.33 A | 70.54 A | 51.00 AB | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 33.95 CF | 40.82 AB | 65.34 AE | 53.09 AB |
T2 (10 Bunches) | 32.65 DG | 39.69 AC | 64.85 AG | 51.40 AB | ||
T3 (12 Bunches) | 34.86 BE | 41.09 A | 66.83 AE | 53.89 AB | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 21.05 K | 41.20 A | 51.51 H | 46.27 C | |
T2 (10 Bunches) | 21.15 K | 41.32 A | 52.45 H | 46.42 C | ||
T3 (12 Bunches) | 21.45 K | 40.83 AB | 52.31 H | 46.12 C | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 23.96 HK | 39.90 AC | 60.25 DH | 46.54 C | |
T2 (10 Bunches) | 24.39 HK | 39.61 AC | 61.88 CG | 46.51 C | ||
T3 (12 Bunches) | 26.14 GK | 38.36 BC | 63.19 AG | 46.42 C | ||
I3 (120% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 42.93 A | 39.81 AC | 64.99 AG | 58.55 A |
T2 (10 Bunches) | 39.90 AD | 40.75 AB | 67.52 AD | 57.03 A | ||
T3 (12 Bunches) | 45.74 A | 39.12 AC | 67.64 AD | 60.19 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 21.05 K | 38.79 BC | 57.37 FH | 44.14 D | |
T2 (10 Bunches) | 21.16 K | 39.08 AC | 57.01 FH | 44.44 D | ||
T3 (12 Bunches) | 21.46 K | 38.56 BC | 59.05 EH | 44.13 D | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 24.39 HK | 39.83 AC | 63.38 AG | 46.71 C | |
T2 (10 Bunches) | 25.01 HK | 41.29 A | 63.19 AG | 48.27 AC | ||
T3 (12 Bunches) | 25.35 GK | 39.81 AC | 64.63 AG | 48.13 AC | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 41.26 AC | 40.28 AB | 67.09 AD | 57.66 A |
T2 (10 Bunches) | 41.79 AB | 40.68 AB | 65.78 AE | 58.32 A | ||
T3 (12 Bunches) | 44.74 A | 40.73 AB | 70.58 A | 60.50 A | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 22.30 JK | 38.18 BC | 60.72 DH | 44.21 D | |
T2 (10 Bunches) | 23.62 IK | 38.68 BC | 59.31 EH | 45.32 C | ||
T3 (12 Bunches) | 23.62 IK | 37.80 C | 61.50 CG | 44.57 D | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 27.97 EK | 39.65 AC | 64.75 AG | 48.52 AC | |
T2 (10 Bunches) | 27.63 EK | 39.35 AC | 64.68 AG | 48.08 AC | ||
T3 (12 Bunches) | 29.94 EI | 40.96 A | 63.98 AG | 50.74 AB |
Irrigation Levels | SOP Fertilizer Doses | Thinning Levels (Bunches Palm−1) | Third Grade (%) | Second Grade (%) | First Grade (%) | Excellent Grade (%) | Skin Separated Fruits (%) | Biser Fruit (%) | Fruit Yield (kg/Palm) |
---|---|---|---|---|---|---|---|---|---|
I1 (80% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 38.37 A | 23.16 AB | 0.02 C | 0.67 E | 25.17 AC | 12.61 AD | 33.26 Q |
T2 (10 Bunches) | 36.01 A | 22.47 AB | 1.31 C | 0.52 E | 29.00 AB | 10.70 AD | 33.60 Q | ||
T3 (12 Bunches) | 38.99 A | 24.99 AB | 1. 65 C | 0.49 E | 20.15 DF | 13.73 AD | 32.08 R | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 26.94 AB | 26.41 AB | 1.04 C | 0.55 E | 34.00 A | 11.06 AD | 35.45 NO | |
T2 (10 Bunches) | 30.68 AB | 25.62 AB | 0.94 C | 0.49 E | 31.68 A | 16.80 AD | 37.30 L | ||
T3 (12 Bunches) | 32.34 AB | 22.31 AB | 0.97 C | 0.10 E | 33.28 A | 11.00 AD | 35.23 O | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 16.00 AB | 27.31 AB | 0.83 C | 0.40 E | 31.49 A | 24.11 A | 39.60 J | |
T2 (10 Bunches) | 13.96 AB | 31.09 A | 0.89 C | 0.51 E | 33.55 A | 20.00 AD | 39.70 J | ||
T3 (12 Bunches) | 18.66 AB | 25.34 AB | 0.86 C | 0.11 E | 33.10 A | 21.93 AB | 38.47 K | ||
I2 (100% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 15.07 AB | 14.68 B | 37.57 AB | 14.53 D | 7.57 BC | 10.58 AD | 38.12 K |
T2 (10 Bunches) | 15.63 AB | 20.21 AB | 36.00 AB | 24.25 AC | 7.22 BC | 11.87 AD | 37.59 L | ||
T3 (12 Bunches) | 18.29 AB | 14.41 B | 33.55 AB | 15.23 D | 6.90 BC | 11.62 AD | 35.03 O | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 13.80 AB | 14.40 B | 33.00 AB | 19.71 CD | 2.26 C | 1.65 D | 62.90 B | |
T2 (10 Bunches) | 12.95 AB | 21.89 AB | 30.79 AB | 29.49 A | 2.38 C | 2.50 CD | 68.00 A | ||
T3 (12 Bunches) | 11.26 AB | 21.81 AB | 34.52 AB | 20.60 BD | 2.99 C | 5.59 BD | 62.78 B | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 15.39 AB | 19.35 AB | 32.98 AB | 20.00 BD | 2.96 C | 10.82 AD | 59.32 EF | |
T2 (10 Bunches) | 17.44 AB | 20.34 AB | 25.26 B | 28.69 AB | 2.68 C | 8.79 AD | 60.23 D | ||
T3 (12 Bunches) | 15.13 AB | 19.94 AB | 29.41 AB | 19.72 CD | 4.33 C | 12.83 AD | 58.12 GH | ||
I3 (120% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 15.38 AB | 15.01 B | 36.34 AB | 14.67 D | 7.73 BC | 15.38 AB | 39.94 J |
T2 (10 Bunches) | 14.21 AB | 14.81 B | 35.54 AB | 16.04 CD | 7.41 BC | 11.99 AD | 38.17 K | ||
T3 (12 Bunches) | 19.16 AB | 15.12 B | 30.11 AB | 16.17 CD | 7.24 BC | 12.18 AD | 35.86 N | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 17.10 AB | 22.05 AB | 43.76 A | 12.82 D | 2.47 C | 1.80 D | 59.38 EF | |
T2 (10 Bunches) | 14.22 AB | 24.16 AB | 43.31 A | 13.06 D | 2.38 C | 2.95 CD | 61.15 C | ||
T3 (12 Bunches) | 17.33 AB | 21.25 AB | 40.41 AB | 13.30 D | 2.14 C | 5.57 BD | 60.13 D | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 15.27 AB | 19.11 AB | 39.57 AB | 12.20 D | 2.97 C | 10.88 AD | 58.56 G | |
T2 (10 Bunches) | 11.40 AB | 22.03 AB | 42.47 A | 12.58 D | 3.03 C | 8.94 AD | 57.00 I | ||
T3 (12 Bunches) | 16.13 AB | 21.25 AB | 33.58 AB | 12.19 D | 3.15 C | 13.70 AD | 57.66 H | ||
I4 (140% ETc) | F1 (2.5 kg palm−1) | T1 (8 Bunches) | 25.99 AB | 25.67 AB | 0.99 C | 0.67 E | 35.97 A | 10.79 AD | 36.74 M |
T2 (10 Bunches) | 25.46 AB | 23.74 AB | 1.33 C | 0.44 E | 33.97 A | 15.06 AD | 35.36 NO | ||
T3 (12 Bunches) | 27.65 AB | 20.42 AB | 0.88 C | 0.49 E | 35.45 A | 15.12 AD | 34.41 P | ||
F2 (5 kg palm−1) | T1 (8 Bunches) | 28.76 AB | 26.36 AB | 1.03 C | 1.01 E | 32.12 A | 10.72 AD | 59.22 F | |
T2 (10 Bunches) | 31.74 AB | 22.00 AB | 1.26 KC | 0.44 E | 31.87 A | 12.69 AD | 59.73 DE | ||
T3 (12 Bunches) | 33.20 AB | 23.20 AB | 1.22 C | 0.91 E | 33.20 A | 18.37 AD | 58.50 G | ||
F3 (7.5 kg palm−1) | T1 (8 Bunches) | 16.91 AB | 25.82 AB | 1.01 C | 0.49 E | 36.75 A | 19.01 AD | 57.71 H | |
T2 (10 Bunches) | 18.49 AB | 26.20 AB | 1.45 C | 0.50 E | 37.25 A | 16.09 AD | 58.15 GH | ||
T3 (12 Bunches) | 18.99 AB | 26.30 AB | 1.03 C | 0.53 E | 37.03 A | 24.06 AD | 56.56 I |
Months | Season 2020/2021 | Season 2021/2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Temp (°C) | RH (%) | WS (km) | S. Rad (W m−2) | AP (psi) | Temp (°C) | RH (%) | WS (km) | S. Rad (W m−2) | AP (psi) | |
JAN | 16.77 | 45.15 | 2.61 | 173.07 | 14.78 | 16.42 | 51.07 | 2.87 | 175.68 | 14.76 |
FEB | 18.93 | 42.63 | 2.55 | 213.55 | 14.75 | 18.15 | 45.47 | 3.15 | 221.41 | 14.73 |
MAR | 24.05 | 25.55 | 3.16 | 231.63 | 14.69 | 23.34 | 25.98 | 3.54 | 238.11 | 14.71 |
APR | 29.68 | 18.99 | 3.01 | 243.80 | 14.66 | 29.17 | 19.47 | 3.41 | 249.88 | 14.65 |
MAY | 35.26 | 14.59 | 2.86 | 289.89 | 14.57 | 33.54 | 14.62 | 3.34 | 297.57 | 14.61 |
JUN | 38.70 | 11.42 | 2.92 | 356.29 | 14.53 | 38.76 | 12.17 | 3.42 | 341.04 | 14.52 |
JUL | 39.13 | 11.03 | 3.10 | 314.19 | 14.47 | 38.89 | 12.85 | 3.19 | 322.08 | 14.47 |
AUG | 38.65 | 12.40 | 3.49 | 295.18 | 14.52 | 38.71 | 12.74 | 3.21 | 301.47 | 14.49 |
SEP | 34.52 | 11.88 | 2.59 | 277.30 | 14.56 | 35.55 | 13.47 | 2.38 | 281.63 | 14.57 |
OCT | 30.51 | 22.65 | 2.63 | 241.50 | 14.66 | 30.49 | 24.98 | 2.74 | 249.85 | 14.68 |
NOV | 24.72 | 37.22 | 2.93 | 174.24 | 14.72 | 25.17 | 37.84 | 2.99 | 175.84 | 14.72 |
DEC | 18.44 | 42.43 | 2.30 | 170.85 | 14.76 | 19.09 | 52.47 | 2.44 | 171.91 | 14.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazzawy, H.S.; Alqahtani, N.; Munir, M.; Alghanim, N.S.; Mohammed, M. Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits. Plants 2023, 12, 1003. https://doi.org/10.3390/plants12051003
Ghazzawy HS, Alqahtani N, Munir M, Alghanim NS, Mohammed M. Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits. Plants. 2023; 12(5):1003. https://doi.org/10.3390/plants12051003
Chicago/Turabian StyleGhazzawy, Hesham S., Nashi Alqahtani, Muhammad Munir, Naser S. Alghanim, and Maged Mohammed. 2023. "Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits" Plants 12, no. 5: 1003. https://doi.org/10.3390/plants12051003
APA StyleGhazzawy, H. S., Alqahtani, N., Munir, M., Alghanim, N. S., & Mohammed, M. (2023). Combined Impact of Irrigation, Potassium Fertilizer, and Thinning Treatments on Yield, Skin Separation, and Physicochemical Properties of Date Palm Fruits. Plants, 12(5), 1003. https://doi.org/10.3390/plants12051003