Organic Farming Favors phoD-Harboring Rhizospheric Bacterial Community and Alkaline Phosphatase Activity in Tropical Agroecosystem
Abstract
:1. Introduction
2. Results
2.1. Soil Variables and Crop Biomass
2.2. Soil Alkaline Phosphatase (ALP) and Abundance of phoD Gene
2.3. phoD-Gene-Containing Bacterial Community and Relationship with Soil Parameters
2.4. Relative Abundance of phoD Bacterial Community
3. Discussion
4. Materials and Methods
4.1. Study Site and Experimental Design
4.2. Soil Sampling and Soil Physicochemical Analyses
4.3. Assay of Soil Alkaline Phosphatase (ALP) Activity
4.4. Soil DNA Extraction and phoD Gene Quantification
4.5. Illumina MiSeq High-Throughput Sequencing for phoD Gene Amplicons and Data Analysis
4.6. Sequence Analysis
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J. Chemistry and dynamics of soil organic phosphorus. In Phosphorus: Agriculture and the Environment; Sims, J., Sharpley, A., Eds.; John Wiley & Sons, Ltd.: Madison, WI, USA, 2005; Volume 46, pp. 87–121. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct. Plant Biol. 2001, 28, 897–906. [Google Scholar] [CrossRef]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action; Springer: Berlin/Heidelberg, 2011; pp. 215–243. [Google Scholar] [CrossRef]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’gara, F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineralizer group in pasture soils. Biol. Fert. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xia, Y.; Sun, Q.; Liu, K.; Chen, X.; Ge, T.; Zhu, B.; Zhu, Z.; Zhang, Z.; Su, Y. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 2018, 628, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Fraser, T.D.; Lynch, D.H.; Gaiero, J.; Khosla, K.; Dunfield, K.E. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl. Soil Ecol. 2017, 111, 48–56. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Condron, L.M.; Dunfield, K.E.; Chen, Z.; Wang, J.; Chen, L. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 2019, 349, 36–44. [Google Scholar] [CrossRef]
- Fraser, T.; Lynch, D.H.; Entz, M.H.; Dunfield, K.E. Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 2015, 257, 115–122. [Google Scholar] [CrossRef]
- Fraser, T.D.; Lynch, D.H.; Bent, E.; Entz, M.H.; Dunfield, K. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol. Biochem. 2015, 88, 137–147. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Chen, Z.; Tian, J.; Sun, N.; Xu, M.; Chen, L. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 2017, 119, 197–204. [Google Scholar] [CrossRef]
- Ragot, S.A.; Huguenin-Elie, O.; Kertesz, M.A.; Frossard, E.; Bünemann, E.K. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant Soil 2016, 408, 15–30. [Google Scholar] [CrossRef]
- Sakurai, M.; Wasaki, J.; Tomizawa, Y.; Shinano, T.; Osaki, M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr. 2008, 54, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Lagos, L.M.; Acuña, J.J.; Maruyama, F.; Ogram, A.; de la Luz Mora, M.; Jorquera, M.A. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 2016, 52, 1007–1019. [Google Scholar] [CrossRef]
- Acuña, J.J.; Durán, P.; Lagos, L.M.; Ogram, A.; de la Luz Mora, M.; Jorquera, M.A. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biol. Fert. Soils 2016, 52, 763–773. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, F.; Wang, K.; Yue, H.; Lan, X. Responses of bacterial phoD gene abundance and diversity to crop rotation and feedbacks to phosphorus uptake in wheat. Appl. Soil Ecol. 2020, 154, 103604. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, X.; Lin, Q.; Li, G. Distribution characteristics of phoD-harbouring bacterial community structure and its roles in phosphorus transformation in steppe soils in Northern China. J. Soil Sci. Plant Nutr. 2021, 21, 1531–1541. [Google Scholar] [CrossRef]
- Hegyi, A.; Nguyen, T.B.K.; Posta, K. Metagenomic Analysis of Bacterial Communities in Agricultural Soils from Vietnam with Special Attention to Phosphate Solubilizing Bacteria. Microorganisms 2021, 9, 1796. [Google Scholar] [CrossRef] [PubMed]
- Neha; Bhardwaj, Y.; Sharma, M.P.; Pandey, J.; Dubey, S.K. Response of crop types and farming practices on soil microbial biomass and community structure in tropical agroecosystem by lipid biomarkers. J. Soil Sci. Plant Nutr. 2022, 22, 1618–1631. [Google Scholar] [CrossRef]
- Chaudhary, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.M.; Steffen, J.M.; Yates, K.L. Sustainability of soil organic matter at organic mixed vegetable farms in Michigan, USA. Org. Agri. 2020, 10, 487–496. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Flanagan, L.B. Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon-13. Soil Sci. Soc. Am. J. 1999, 63, 1385–1396. [Google Scholar] [CrossRef]
- Chakraborty, A.; Chakrabarti, K.; Chakraborty, A.; Ghosh, S. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fert. Soils 2011, 47, 227–233. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 73–180. [Google Scholar] [CrossRef]
- Fraser, T.D.; Lynch, D.H.; O’Halloran, I.P.; Voroney, R.P.; Entz, M.H.; Dunfield, K.E. Soil phosphorus bioavailability as influenced by long-term management and applied phosphorus source. Can. J. Soil Sci. 2019, 99, 292–304. [Google Scholar] [CrossRef]
- Saha, S.; Prakash, V.; Kundu, S.; Kumar, N.; Mina, B.L. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in NW Himalaya. Eur. J. Soil Biol. 2008, 44, 309–315. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Luo, G.; Ling, N.; Nannipieri, P.; Chen, H.; Raza, W.; Wang, M.; Guo, S.; Shen, Q. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fert. Soils. 2017, 53, 375–388. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakur, M.P.; Mommer, L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef] [Green Version]
- Bardgett, R.; Mawdsley, J.; Edwards, S.; Hobbs, P.; Rodwell, J.; Davies, W.J. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct. Ecol. 1999, 13, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Hu, Y.; Razavi, B.S.; Zhou, J.; Shen, J.; Nannipieri, P.; Wu, J.; Ge, T. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem. 2019, 131, 62–70. [Google Scholar] [CrossRef]
- Tian, W.; Wang, L.; Li, Y.; Zhuang, K.; Li, G.; Zhang, J.; Xiao, X.; Xi, Y. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ. 2015, 213, 219–227. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L.; Sadowsky, M.J. Bacterial community composition in agricultural soils under long-term organic and conventional management. Agrosyst. Geosci. Environ. 2020, 3, e20063. [Google Scholar] [CrossRef]
- Xin, Y.Y.; Rahman, A.; Li, H.X.; Ting, X.U.; Ding, G.C.; Ji, L. Modification of total and phosphorus mineralizing bacterial communities associated with Zea mays L. through plant development and fertilization regimes. J. Integ. Agric. 2021, 20, 3026–3038. [Google Scholar] [CrossRef]
- Gitonga, N.M.; Njeru, E.M.; Cheruiyot, R.; Maingi, J.M. Genetic and morphological diversity of indigenous Bradyrhizobium nodulating soybean in organic and conventional family farming systems. Front. Sustain. Food Syst. 2021, 4, 606618. [Google Scholar] [CrossRef]
- Liao, J.; Liang, Y.; Huang, D. Organic farming improves soil microbial abundance and diversity under greenhouse condition: A case study in Shanghai (Eastern China). Sustainability 2018, 10, 3825. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, D.J.; Dini-Andreote, F.; Van Elsas, J.D. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol. Biofuels 2014, 7, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas, S.B.; Andrés, J.A.; Rovera, M.; Correa, N.S. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biol. Biochem. 2006, 38, 3502–3505. [Google Scholar] [CrossRef]
- Hamdali, H.; Hafidi, M.; Virolle, M.J.; Ouhdouch, Y. Rock phosphate-solubilizing Actinomycetes: Screening for plant growth-promoting activities. World J. Microbiol. Biotechnol. 2008, 24, 2565–2575. [Google Scholar] [CrossRef]
- Moura, R.S.; Martín, J.F.; Martín, A.; Liras, P. Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus the GenBank accession number for the sequence reported in this paper is AJ278740. Microbiology 2001, 147, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Nitta, M.; Goto, M.; Shibuya, N.; Okawa, Y. A novel protein with alkaline phosphatase and protease inhibitor activities in Streptomyces hiroshimensis. Biol. Pharma Bull. 2002, 25, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, S.; Fujinaga, S.; Kobayashi, Y.; Hobara, S.; Osono, T. Bacterial 16S rDNA and alkaline phosphatase gene diversity in soil applied with composted aquatic plants. Limnology 2020, 21, 357–364. [Google Scholar] [CrossRef]
- Watts, D.B.; Torbert, H.A.; Feng, Y.; Prior, S.A. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Sci. 2010, 175, 474–486. [Google Scholar] [CrossRef] [Green Version]
- Neal, A.; McLaren, T.; Lourenço Campolino, M.; Hughes, D.; Coelho, A.M.; Gomes de Paula Lana, U.; Aparecida Gomes, E.; Morais de Sousa, S. Crop type exerts greater influence upon rhizosphere phosphohydrolase gene abundance and phylogenetic diversity than phosphorus fertilization. FEMS Microbiol. Ecol. 2021, 97, fiab033. [Google Scholar] [CrossRef]
- Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PloS ONE 2012, 7, e35498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Robert, C.A.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Na. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.B.; Heuberger, A.L.; Broeckling, C.D.; Jahn, C.E. Non-targeted metabolomics reveals sorghum rhizosphere-associated exudates are influenced by the belowground interaction of substrate and sorghum genotype. Int. J. Mol. Sci. 2019, 20, 431. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Kumar, N.; Tyagi, A. Nutrient dynamics and decomposition rates during composting of sulphitation pressmud by different methods. J. Environ. Sci. Eng. 2007, 49, 183–188. [Google Scholar]
- Bhardwaj, Y.; Sharma, M.P.; Pandey, J.; Dubey, S.K. Variations in microbial community in a tropical dry deciduous forest across the season and topographical gradient assessed through signature fatty acid biomarkers. Ecol. Res. 2020, 35, 139–153. [Google Scholar] [CrossRef]
- Allen, S. Chemical analysis. In Methods in Plant Ecology; Blackwell: Hoboken, NJ, USA, 1986; pp. 285–344. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Bhardwaj, Y.; Reddy, B.; Dubey, S.K. Temporal shift in methanotrophic community and methane oxidation potential in forest soils of dry tropics: High-throughput metagenomic approach. Biol. Fert. Soils 2020, 56, 859–867. [Google Scholar] [CrossRef]
- Andrew, S. A Quality Control Tool for High Throughput Sequence Data. 2018. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 January 2019).
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
Crop Type | Farming Practice | Observed OTUs | Chao 1 | Shannon | Simpson | Good’s Coverage |
---|---|---|---|---|---|---|
Chickpea | Organic | 492 | 768 | 7.7 | 1.0 | 0.9 |
Conventional | 477 | 805 | 7.0 | 1.0 | 0.9 | |
Mustard | Organic | 396 | 612 | 6.4 | 1.0 | 0.9 |
Conventional | 383 | 825 | 6.1 | 0.9 | 0.9 | |
Soybean | Organic | 376 | 598 | 6.6 | 1.0 | 0.9 |
Conventional | 346 | 540 | 6.1 | 0.9 | 0.9 | |
Maize | Organic | 672 | 1121 | 8.1 | 1.0 | 0.9 |
Conventional | 515 | 736 | 7.6 | 1.0 | 0.9 |
pH | Available P | ALP Activity | MBP | Mineral N | phoD Gene Copy Number | Root Biomass | Shoot Biomass | |
---|---|---|---|---|---|---|---|---|
Observed OTUs | 0.23 | −0.46 | 0.840 ** | 0.790 * | 0.22 | 0.885 ** | 0.90 ** | 0.88 ** |
Chao1 | 0.08 | −0.29 | 0.59 | 0.64 | 0.23 | 0.68 | 0.861 ** | 0.69 |
Shannon Index | 0.23 | −0.53 | 0.906 ** | 0.815 * | 0.26 | 0.935 ** | 0.78 * | 0.81 * |
Simpson Index | 0.27 | −0.58 | 0.867 ** | 0.795 * | 0.21 | 0.879 ** | 0.67 | 0.63 |
Good’s coverage | −0.15 | 0.34 | −0.64 | −0.67 | −0.18 | −0.725 * | − 0.894 ** | −0.747 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neha; Bhardwaj, Y.; Reddy, B.; Dubey, S.K. Organic Farming Favors phoD-Harboring Rhizospheric Bacterial Community and Alkaline Phosphatase Activity in Tropical Agroecosystem. Plants 2023, 12, 1068. https://doi.org/10.3390/plants12051068
Neha, Bhardwaj Y, Reddy B, Dubey SK. Organic Farming Favors phoD-Harboring Rhizospheric Bacterial Community and Alkaline Phosphatase Activity in Tropical Agroecosystem. Plants. 2023; 12(5):1068. https://doi.org/10.3390/plants12051068
Chicago/Turabian StyleNeha, Yashpal Bhardwaj, Bhaskar Reddy, and Suresh Kumar Dubey. 2023. "Organic Farming Favors phoD-Harboring Rhizospheric Bacterial Community and Alkaline Phosphatase Activity in Tropical Agroecosystem" Plants 12, no. 5: 1068. https://doi.org/10.3390/plants12051068
APA StyleNeha, Bhardwaj, Y., Reddy, B., & Dubey, S. K. (2023). Organic Farming Favors phoD-Harboring Rhizospheric Bacterial Community and Alkaline Phosphatase Activity in Tropical Agroecosystem. Plants, 12(5), 1068. https://doi.org/10.3390/plants12051068