Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes
Abstract
:1. Introduction
2. Results
2.1. Experiment 1
2.1.1. Shoot and Root Traits: Harvested 49 DAS (Days after Sowing) at the Vegetative Stage
2.1.2. Carboxylates Measured in the Rhizosphere Roots at the Vegetative Stage
2.1.3. Shoot and Root P Acquisition and PUE at the Vegetative Stage
2.1.4. Pearson’s Correlation and Principal Component Analysis (PCA) among Different Traits at the Vegetative Stage
2.2. Experiment 2
2.2.1. Shoot and Root Traits at the Flowering Stage
2.2.2. Carboxylates Measured from Rhizosphere Root at the Flowering Stage
2.2.3. Shoot and Root P Acquisition and PUE at the Flowering Stage
2.2.4. Shoot, Root, and Seed P Acquisition, PUE at Maturity
2.2.5. Yield and Yield Components of Soybean at Maturity
3. Discussion
3.1. Plant Growth, Biomass Distribution, and Root Morphological Responses to Variable P Supply
3.2. Root Physiological Responses under Different P Supply
3.3. Yield and Yield-Contributing Traits under Different P Supply
4. Material and Methods
4.1. Plant Material and Growth Conditions (Experiment 1)
4.2. Plant Material and Growth Conditions (Experiment 2)
4.3. Soil Preparation, Fertilizer, and Water Application (Both Experiments)
4.4. Above- and Below-Ground Traits Measurement (Both Experiments)
4.5. Root Exudation Collection and Measurements (Both Experiments)
4.6. Shoot and Root P Acquisition and PUE (Both Experiments)
4.7. Yield and Yield-Contributing Traits of Soybean at Maturity (Experiment 2)
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tewari, S.; Arora, N.K.; Miransari, M. Plant growth promoting rhizobacteria to alleviate soybean growth under abiotic and biotic stresses. In Abiotic and Biotic Stresses in Soybean Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 131–155. [Google Scholar] [CrossRef]
- Stevenson, F.J. Cycles of Soils: Carbon, Nitrogen Phosphorus, Sulfur, Micronutrients; John Wiley & Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Wang, X.; Yan, X.; Liao, H. Genetic improvement for phosphorus efficiency in soybean: A radical approach. Ann. Bot. 2010, 106, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, S14–S22. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Pang, J.; Zhao, H.; Bansal, R.; Bohuon, E.; Lambers, H.; Ryan, M.H.; Siddique, K.H. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ. 2018, 41, 2069–2079. [Google Scholar] [CrossRef]
- Pang, J.; Bansal, R.; Zhao, H.; Bohuon, E.; Lambers, H.; Ryan, M.H.; Ranathunge, K.; Siddique, K.H.M. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol. 2018, 219, 518–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambers, H.; Albornoz, F.; Kotula, L.; Laliberté, E.; Ranathunge, K.; Teste, F.; Zemunik, G. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 2017, 424, 11–33. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.-W.; Du, Y.-L.; Turner, N.C.; Wang, B.-R.; Fang, Y.; Xi, Y.; Guo, X.-R.; Li, F.-M. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant Soil 2015, 392, 215–226. [Google Scholar] [CrossRef]
- Wu, A.; Fang, Y.; Liu, S.; Wang, H.; Xu, B.; Zhang, S.; Deng, X.; Palta, J.A.; Siddique, K.H.; Chen, Y. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere 2021, 19, 100391. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Turner, N.C.; Chen, Z.; Liu, H.-Y.; Wang, X.-L.; Siddique, K.H.; Li, F.-M. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environ. Exp. Bot. 2019, 166, 103816. [Google Scholar] [CrossRef]
- Lyu, Y.; Tang, H.; Li, H.; Zhang, F.; Rengel, Z.; Whalley, W.R.; Shen, J. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply. Front. Plant Sci. 2016, 7, 1939. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Jin, Y.; Du, Y.-L.; Wang, T.; Turner, N.C.; Yang, R.-P.; Siddique, K.H.M.; Li, F.-M. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gai, J.; Chang, W.; Zhang, C. Identification of phosphorus starvation tolerant soybean (Glycine max) germplasms. Front. Agric. China 2010, 4, 272–279. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, H.; Geng, L.; Kan, G.; Cui, S.; Meng, Q.; Gai, J.; Yu, D. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 2009, 167, 313–322. [Google Scholar] [CrossRef]
- Wang, H.; Yang, A.; Yang, G.; Zhao, H.; Xie, F.; Zhang, H.; Ao, X. Screening and identification of soybean varieties with high phosphorus efficiency at seedling stage. Oil Crop Sci. 2021, 6, 41–49. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, Y.; Zhang, Y.; Ai, Y.; Feng, Y.; Moody, D.; Diggle, A.; Damon, P.; Rengel, Z. Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy 2021, 11, 1583. [Google Scholar] [CrossRef]
- Chen, Y.; Rengel, Z.; Palta, J.; Siddique, K.H.M. Efficient root systems for enhancing tolerance of crops to water and phosphorus limitation. Indian J. Plant Physiol. 2018, 23, 689–696. [Google Scholar] [CrossRef]
- Niu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of root architecture development to low phosphorus availability: A review. Ann. Bot. 2012, 112, 391–408. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Jin, Y.; Siddique, K.; Li, F.-M. Trade-Off between Root Efficiency and Root Size Is Associated with Yield Performance of Soybean under Different Water and Phosphorus Levels. Agriculture 2021, 11, 481. [Google Scholar] [CrossRef]
- Shen, W.; Guo, R.; Zhao, Y.; Liu, D.; Chen, J.; Miao, N.; Gao, S.; Zhang, T.; Shi, L. Nutrient Reabsorption Mechanism Adapted to Low Phosphorus in Wild and Cultivated Soybean Varieties. J. Plant Growth Regul. 2021, 41, 3046–3060. [Google Scholar] [CrossRef]
- Richardson, A.E.; Hocking, P.J.; Simpson, R.J.; George, T.S. Plant mechanisms to optimise access to soil phosphorus. Crop. Pasture Sci. 2009, 60, 124–143. [Google Scholar] [CrossRef]
- Shane, M.W.; Lambers, H. Cluster Roots: A Curiosity in Context. Plant Soil 2005, 274, 101–125. [Google Scholar] [CrossRef]
- Dong, D.; Peng, X.; Yan, X. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol. Plant. 2004, 122, 190–199. [Google Scholar] [CrossRef]
- Liao, H.; Wan, H.; Shaff, J.; Wang, X.; Yan, X.; Kochian, L. Phosphorus and Aluminum Interactions in Soybean in Relation to Aluminum Tolerance. Exudation of Specific Organic Acids from Different Regions of the Intact Root System. Plant Physiol. 2006, 141, 674–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Han, X.; Qiao, Y.; Zheng, S. Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L.) Murr.]. Environ. Exp. Bot. 2009, 67, 228–234. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser. Aust. J. Agric. Res. 2005, 56, 1041–1047. [Google Scholar] [CrossRef]
- Vengavasi, K.; Pandey, R.; Abraham, G.; Yadav, R.K. Comparative Analysis of Soybean Root Proteome Reveals Molecular Basis of Differential Carboxylate Efflux under Low Phosphorus Stress. Genes 2017, 8, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, M.; Evans, J. Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development. Plant Soil 2003, 248, 271–283. [Google Scholar] [CrossRef]
- Pang, J.; Ryan, M.H.; Tibbett, M.; Cawthray, G.; Siddique, K.; Bolland, M.D.A.; Denton, M.D.; Lambers, H. Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 2009, 331, 241–255. [Google Scholar] [CrossRef]
- Wouterlood, M.; Cawthray, G.R.; Scanlon, T.T.; Lambers, H.; Veneklaas, E.J. Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytol. 2004, 162, 745–753. [Google Scholar] [CrossRef]
- Vengavasi, K.; Pandey, R. Root exudation index as a physiological marker for efficient phosphorus acquisition in soybean: An effective tool for plant breeding. Crop Pasture Sci. 2016, 67, 1096–1109. [Google Scholar]
- Chen, Y.L.; Dunbabin, V.M.; Postma, J.A.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant Soil 2013, 372, 319–337. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Oki, Y.; Adachi, T. Genetic diversity of Brassica cultivars in relation to phosphorus uptake and utilization efficiency under P-stress environment. Arch. Agron. Soil Sci. 2008, 54, 93–108. [Google Scholar] [CrossRef]
- Vengavasi, K.; Pandey, R. Root exudation potential in contrasting soybean genotypes in response to low soil phosphorus availability is determined by photo-biochemical processes. Plant Physiol. Biochem. 2018, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.M.D.S.; Meier, S.; Morales, A.; Borie, F.; Cornejo, P.; Ruiz, A.; Seguel, A. Root traits distinguish phosphorus acquisition of two wheat cultivars growing in phosphorus-deficient acid soil. Rhizosphere 2022, 22, 100549. [Google Scholar] [CrossRef]
- Tshewang, S.; Rengel, Z.; Siddique, K.H.M.; Solaiman, Z.M. Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy 2020, 10, 2017. [Google Scholar] [CrossRef]
- Vengavasi, K.; Pandey, R.; Soumya, P.R.; Hawkesford, M.J.; Siddique, K.H.M. Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiol. Rep. 2021, 26, 600–613. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; He, J.; Jin, Y.; Li, F.-M. High Phosphorus Acquisition and Allocation Strategy Is Associated with Soybean Seed Yield under Water- and P-Limited Conditions. Agronomy 2021, 11, 574. [Google Scholar] [CrossRef]
- Jin, J.; Wang, G.; Liu, X.; Pan, X.; Herbert, S.J.; Tang, C. Interaction Between Phosphorus Nutrition and Drought on Grain Yield, and Assimilation of Phosphorus and Nitrogen in Two Soybean Cultivars Differing in Protein Concentration in Grains. J. Plant Nutr. 2006, 29, 1433–1449. [Google Scholar] [CrossRef]
- Salim, M.; Chen, Y.; Ye, H.; Nguyen, H.T.; Solaiman, Z.M.; Siddique, K.H.M. Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique. Agronomy 2021, 12, 56. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans, Glycine max (L.) Merrill 1. Crop. Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Gao, X.-B.; Guo, C.; Li, F.-M.; Li, M.; He, J. High Soybean Yield and Drought Adaptation Being Associated with Canopy Architecture, Water Uptake, and Root Traits. Agronomy 2020, 10, 608. [Google Scholar] [CrossRef]
- Kibria, M.G.; Barton, L.; Rengel, Z. Foliar application of magnesium mitigates soil acidity stress in wheat. J. Agron. Crop. Sci. 2020, 207, 378–389. [Google Scholar] [CrossRef]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop. Pasture Sci. 2013, 64, 588–599. [Google Scholar] [CrossRef]
- Cawthray, G. An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J. Chromatogr. A 2003, 1011, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Ushio, M.; Fujiki, Y.; Hidaka, A.; Kitayama, K. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Funct. Ecol. 2015, 29, 1235–1245. [Google Scholar] [CrossRef]
- Motomizu, S.; Wakimoto, T.; Tôei, K. Spectrophotometric determination of phosphate in river waters with molybdate and malachite green. Analyst 1983, 108, 361–367. [Google Scholar] [CrossRef]
- Hammond, J.P.; Broadley, M.R.; White, P.J.; King, G.J.; Bowen, H.C.; Hayden, R.; Meacham, M.C.; Mead, A.; Overs, T.; Spracklen, W.P.; et al. Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J. Exp. Bot. 2009, 60, 1953–1968. [Google Scholar] [CrossRef] [Green Version]
Genotypes | P Rates | Shoot Dry Weight | Root Dry Weight | Total Dry Weight | Root:Shoot Ratio | Average Root Diameter | Total Root Length |
---|---|---|---|---|---|---|---|
(g plant−1) | (g plant−1) | (g plant−1) | (mm) | (m) | |||
PI 561271 | P0 P60 | 0.71c 2.55b | 0.26e 0.83ab | 0.97de 3.38bc | 0.36cde 0.33cde | 0.43 0.45 | 21.4h 67.1bcd |
PI 398595 | P0 P60 | 1.15c 3.39a | 0.60c 1.03a | 1.75d 4.42a | 0.53a 0.31de | 0.40 0.42 | 50.3def 85.2b |
PI 654356 | P0 P60 | 0.58c 2.42b | 0.25e 0.65bc | 0.84e 3.07bc | 0.43abcd 0.27e | 0.46 0.48 | 18.8h 46.7efg |
PI 647960 | P0 P60 | 0.77c 2.63b | 0.36de 1.01a | 1.14de 3.63ab | 0.47abc 0.38bcde | 0.46 0.48 | 30.5gh 81.9b |
PI 595362 | P0 P60 | 0.75c 2.04b | 0.34de 0.72bc | 1.09de 2.76c | 0.46abc 0.37bcde | 0.44 0.46 | 35.9fgh 73.6bc |
PI 597387 | P0 P60 | 1.11c 2.63b | 0.56cd 1.00a | 1.67de 3.63ab | 0.51ab 0.38bcde | 0.44 0.46 | 61.0cde 106.0a |
Genotype | *** | *** | *** | *** | *** | *** | |
P rate | *** | *** | *** | *** | *** | *** | |
Genotype × P | * | * | * | * | ns | * |
Measurable Traits | Shoot Dry Weight | Root Dry Weight | Total Root Length | OXALIC ACID | Malic Acid | Malonic Acid | Citric Acid | Total Carboxylates | Shoot P Content | Root P Content |
---|---|---|---|---|---|---|---|---|---|---|
Root dry weight | 0.90 *** | |||||||||
Total root length | 0.81 *** | 0.95 *** | ||||||||
Oxalic acid | 0.55 *** | 0.49 *** | 0.53 *** | |||||||
Malic acid | 0.89 *** | 0.75 *** | 0.61 *** | 0.51 *** | ||||||
Malonic acid | 0.82 *** | 0.79 *** | 0.79 *** | 0.62 *** | 0.76 *** | |||||
Citric acid | 0.60 *** | 0.45 *** | 0.29 * | 0.35 ** | 0.76 *** | 0.33 * | ||||
Total carboxylates | 0.91 *** | 0.79 *** | 0.69 *** | 0.62 *** | 0.97 *** | 0.84 *** | 0.75 *** | |||
Shoot P content | 0.93 *** | 0.81 *** | 0.74 *** | 0.60 *** | 0.86 *** | 0.82 *** | 0.52 *** | 0.87 *** | ||
Root P content | 0.91 *** | 0.88 *** | 0.78 *** | 0.48 *** | 0.84 *** | 0.72 *** | 0.53 *** | 0.83 *** | 0.88 *** | |
Physiological P-use efficiency | 0.77 *** | 0.76 *** | 0.68 *** | 0.22ns | 0.61 *** | 0.54 *** | 0.50 *** | 0.63 *** | 0.51 *** | 0.64 *** |
Genotypes | P Rate | Shoot Dry Weight | Root Dry Weight | Total Dry Weight | Root:Shoot Ratio | Average Root Diameter | Total Root Length |
---|---|---|---|---|---|---|---|
(g plant−1) | (g plant−1) | (g plant−1) | (mm) | (m) | |||
PI 561271 | P0 P60 P120 | 0.79d 7.74b 10.25a | 0.52d 4.24b 5.40a | 1.31d 11.97b 15.65a | 0.65 0.55 0.54 | 0.41 0.44 0.45 | 46.1e 327.9b 440.3a |
PI 595362 | P0 P60 P120 | 0.80d 3.75c 4.74c | 0.36d 1.64c 2.32c | 1.16d 5.39c 7.06c | 0.45 0.45 0.50 | 0.42 0.44 0.46 | 41.4e 175.8d 244.1c |
Genotype | *** | *** | *** | ** | ns | *** | |
P rate | *** | *** | *** | ns | * | *** | |
Genotype × P rate | *** | *** | *** | ns | ns | *** |
Genotypes | P Rates | Shoot Dry Weight | Root Dry Weight | Pods/ Plant | Seeds/Pod | Seeds/ Plant | 100 Seeds Weight | Seed Yield/Plant | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|---|
(g) | (g) | (g) | (g) | ||||||
PI 561271 | P0 | 1.61c | 0.81cd | 5 | 2 | 10 | 15.10 | 1.51c | 40b |
P60 | 12.33ab | 4.72a | 22 | 3 | 66 | 15.30 | 10.10a | 44ab | |
P120 | 15.70a | 5.91a | 25 | 3 | 75 | 16.00 | 12.00a | 48a | |
PI 595362 | P0 | 1.06c | 0.50d | 4 | 2 | 8 | 8.62 | 0.69c | 41ab |
P60 | 9.21b | 1.97bc | 21 | 3 | 63 | 11.41 | 7.19b | 44ab | |
P120 | 9.76b | 2.03b | 23 | 3 | 69 | 11.59 | 8.00b | 47ab | |
Genotype | *** | *** | ns | ns | ns | *** | *** | ns | |
P rate | *** | *** | *** | *** | *** | * | *** | ** | |
Genotype × P rate | ** | *** | ns | ns | ns | ns | * | ns |
Property | Value |
---|---|
Texture | 2 |
Ammonium nitrogen (mg kg−1) | <1 |
Nitrate nitrogen (mg kg−1) | 4.0 |
Phosphorus Colwell (mg kg−1) | 6.5 |
Potassium Colwell (mg kg−1) | 117 |
Sulfur (mg kg−1) | 5.1 |
Organic carbon (%) | 0.67 |
Conductivity (dS m−1) | 0.04 |
pH (CaCl2) | 6.3 |
pH (H2O) | 7.35 |
Phosphorus buffering index (PBI) | 61.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, M.; Chen, Y.; Solaiman, Z.M.; Siddique, K.H.M. Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes. Plants 2023, 12, 1110. https://doi.org/10.3390/plants12051110
Salim M, Chen Y, Solaiman ZM, Siddique KHM. Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes. Plants. 2023; 12(5):1110. https://doi.org/10.3390/plants12051110
Chicago/Turabian StyleSalim, Mohammad, Yinglong Chen, Zakaria M. Solaiman, and Kadambot H. M. Siddique. 2023. "Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes" Plants 12, no. 5: 1110. https://doi.org/10.3390/plants12051110
APA StyleSalim, M., Chen, Y., Solaiman, Z. M., & Siddique, K. H. M. (2023). Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes. Plants, 12(5), 1110. https://doi.org/10.3390/plants12051110