Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment
Abstract
:1. Introduction
2. Results
2.1. Greenhouse Experiment
2.2. Field Experiment
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.1.1. Greenhouse Experiment
Seed Treatment and Cultivation Conditions
Application of Co and Mo
Evaluation of Production Components
4.1.2. Field Experiment
Installation and Treatments of the Experiment
Assessment of Production Components
4.1.3. Germination Test
4.1.4. Accelerated Aging Test
4.1.5. Computerized Analysis of Seedlings Vigor with SVIS® Software
4.2. Chemical Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef] [PubMed]
- Brazilian National Supply Company (CONAB). Acompanhamento da Safra Brasileira de Grãos-Safra 2020/2021. Oitavo Levantamento; CONAB: Brasilia, Brasil, 2021. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos/item/download/45085_57c7824c98301706be01288c77f460b7 (accessed on 10 December 2022).
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.S.; Farias, J.R.B.; Hampf, A.C.; Nendel, C. The soybean yield gap in Brazil-Magnitude, causes and possible solutions for sustainable production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.R.; Mendes, I.C.; Arihara, J. Nitrogen nutrition of soybean in Brazil: Contributions of biological N 2 fixation and N fertilizer to grain yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef] [Green Version]
- González-Guerrero, M.; Matthiadis, A.; Sáez, Á.; Long, T.A. Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front. Plant Sci. 2014, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Song, Z.; Yang, J.; Wang, Y.; Han, H. Cobalt ferrite nanozyme for efficient symbiotic nitrogen fixation via regulating reactive oxygen metabolism. Environ. Sci. Nano 2021, 8, 188–203. [Google Scholar] [CrossRef]
- Gopal, R.; Sharma, Y.K.; Shukla, A.K. Effect of molybdenum stress on growth, yield and seed quality in black gram. J. Plant Nutr. 2016, 39, 463–469. [Google Scholar] [CrossRef]
- Buekers, J.; Mertens, J.; Smolders, E. Toxicity of the molybdate anion in soil is partially explained by effects of the accompanying cation or by soil pH. Environ. Toxicol. Chem. 2010, 29, 1274–1278. [Google Scholar] [CrossRef]
- Lange, B.; Faucon, M.P.; Meerts, P.; Shutcha, M.; Mahy, G.; Pourret, O. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 2014, 379, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Dourado Neto, D.; Dario, G.J.A.; Martin, T.N.; Silva, M.R.; Pavinato, P.S.; Habitzreiter, T.L. Adubação mineral com cobalto e molibdênio na cultura da soja. Semin. Ciências Agrárias 2012, 33, 2741–2752. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Fixação Biológica do Nitrogênio na Cultura da Soja; Embrapa Soja: Londrina, Brasil, 2001; 48p, Circular Técnica, 35. [Google Scholar]
- Sfredo, G.J.; Oliveira, M.C.N. Soja: Molibdênio e Cobalto; Embrapa Soja: Londrina, Brasil, 2010; 36p, Documentos, 322. [Google Scholar]
- Zaborowska, M.; Kucharski, J.; Wyszkowska, J. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environ. Monit. Assess. 2016, 188, 398. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Huang, Q.; Su, Y.; Sun, L.; Wu, T.; Wang, G.; Kelly, R.M. Rice busk biochar treatment to cobalt-polluted fluvo-aquic soil: Speciation and enzyme activities. Ecotoxicology 2019, 28, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.M.; Lazarini, E.; Moreira, A.; Moraes, L.A.C.; Santos, F.L.D.; Dameto, L.S. Effect of Foliar Molybdenum Application on Seed Quality of Soybean Cultivars. Commun. Soil Sci. Plant Anal. 2021, 52, 666–672. [Google Scholar] [CrossRef]
- Rousk, K.; Degboe, J.; Michelsen, A.; Bradley, R.; Bellenger, J.P. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol. 2017, 214, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef]
- Riesen, O.; Feller, U. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J. Plant Nutr. 2005, 28, 421–430. [Google Scholar] [CrossRef]
- Campo, R.J.; Araujo, R.S.; Hungria, M. Molybdenum-enriched soybean seeds enhance N accumulation, seed yield, and seed protein content in Brazil. Field Crops Res. 2009, 110, 219–224. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, N.; Siddique, K.H.M.; Nayyar, H. Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [Google Scholar] [CrossRef]
- Korshunova, Y.O.; Eide, D.; Clark, W.G.; Guerinot, M.L.; Pakrasi, H.B. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 1999, 40, 37–44. [Google Scholar] [CrossRef]
- Morrissey, J.; Baxter, I.R.; Lee, J.; Li, L.; Lahner, B.; Grotz, N.; Kaplan, J.; Salt, D.E.; Guerinot, M. Lou. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 2009, 21, 3326–3338. [Google Scholar] [CrossRef] [Green Version]
- Quaggio, J.A.; Cantarella, H.; Rosolem, C.A.; Crusciol, C.A.C. Soja (Glycine max). In Boletim 100: Recomendações de Adubação e Calagem para o Estado de São Paulo; Cantarella, H., Quaggio, J.A., Mattos, D., Jr., Boaretto, R.M., Raij, B., Eds.; Instituto Agronômico–IAC: Campinas, SP, Brasil, 2022. [Google Scholar]
- Wa Lwalaba, J.L.; Zvogbo, G.; Mulembo, M.; Mundende, M.; Zhang, G. The effect of cobalt stress on growth and physiological traits and its association with cobalt accumulation in barley genotypes differing in cobalt tolerance. J. Plant Nutr. 2017, 40, 2192–2199. [Google Scholar] [CrossRef]
- Sinha, P.; Khurana, N.; Nautiyal, N. Induction of oxidative stress and antioxidant enzymes by excess cobalt in mustard. J. Plant Nutr. 2012, 35, 952–960. [Google Scholar] [CrossRef]
- Ambika, S.; Manonmani, V.; Deepika, S. Seed priming with Micronutrients for Quality and Yield. Pop. Kheti 2014, 2, 35–37. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais, 1st ed.; IAC: Campinas, Brasil, 2001. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas; IAC: Campinas, Brasil, 2009. [Google Scholar]
- Malavolta, E. Elementos de Nutrição Mineral de Plantas; Agronômica Ceres: São Paulo, Brasil, 1980; 251p. [Google Scholar]
- Brasil. Regras para Análise de Sementes; Ministério da Agricultura e Reforma Agrária: Brasília, Brazil, 1992; p. 365. [Google Scholar]
- Marcos Filho, J. Testes de envelhecimento acelerado. In Vigor de Sementes: Conceitos e Testes; Krzyzanowski, F.C., Ed.; ABRATES: Londrina, Brasil, 1999; p. 124. [Google Scholar]
- Hoffmaster, A.L.; Fujimura, K.; Mcdonald, M.B.; Bennet, M.A. An automated system for vigor testing three-day-old soybean seedlings. Seed Sci. Technol. 2003, 31, 701–713. [Google Scholar] [CrossRef]
- Yagushi, J.T. Testes de envelhecimento acelerado e análise computadorizada de imagens de plântulas para avaliação do desempenho de sementes de soja durante o armazenamento. Ph.D. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brasil, 2011; 102p. [Google Scholar]
- USEPA. Method 3051A. In Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; US Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1997; 319p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Dose (g ha−1) | Foliar | Soil | Foliar | Soil | Foliar | Soil | Foliar | Soil |
---|---|---|---|---|---|---|---|---|
Seeds | Shoots | Roots | Soil | |||||
Co/Mo | --------------------- Concentration of Co (mg kg−1, dry weight) --------------------- | |||||||
0/0 | 0.002 B | 0.40 B | 0.69 A | 0.19 A | ||||
0/800 | 0.04 aB | 0.07 aB | 0.5 aB | 0.5 aB | 0.7 A | 0.4 A | 0.20 A | 0.25 A |
10/800 | 0.79 aA | 0.10 bB | 20.7 aA | 1.5 bB | 0.5 A | 0.3 A | 0.19 A | 0.27 A |
20/800 | 1.48 aA | 0.22 bB | 23.7 aA | 1.2 bB | 1.7 A | 1.3 A | 0.18 A | 0.25 A |
30/800 | 2.02 aA | 0.42 bA | 47.2 aA | 0.9 bB | 1.3 A | 1.3 A | 0.21 A | 0.22 A |
Mean | 1.08 | 0.20 | 23.0 | 1.0 | 1.1 a | 0.8 a | 0.20 b | 0.25 a |
CV (%) | 19.9 | 76.4 | 54.0 | 23.2 | ||||
Co/Mo | --------------------- Concentration of Mo (mg kg−1, dry weight) --------------------- | |||||||
0/0 | 48 B | 10.6 B | 0.10 B | 0.52 B | ||||
0/800 | 77 bB | 232 aA | 1116 A | 194 A | 0.0 B | 63 A | 0.82 B | 3.59 A |
10/800 | 131 bA | 172 aA | 1209 A | 250 A | 1.4 B | 56 A | 0.70 B | 3.84 A |
20/800 | 132 bA | 237 aA | 821 A | 287 A | 2.2 B | 77 A | 0.90 B | 4.04 A |
30/800 | 98 bB | 292 aA | 1179 A | 283 A | 0.7 B | 110 A | 0.70 B | 3.25 A |
Mean | 110 | 233 | 1081 a | 253 b | 1.1 b | 76.7 a | 0.78 b | 3.68 a |
CV (%) | 19.1 | 44.9 | 71.5 | 17.1 |
Plant Part | Application Forms | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
---------------------- g kg−1, Dry Weight ------------------- | --------------- mg kg−1, Dry Weight -------------- | |||||||||||
Seeds | Via Foliar | 60 a | 8.2 a | 19.9 a | 1.9 a | 2.3 a | 3.4 a | 22.3 a | 3.6 a | 51 a | 34 a | 42 a |
Via Soil | 57 a | 8.0 a | 18.4 a | 1.8 a | 2.2 a | 3.3 a | 19.4 a | 3.3 a | 50 a | 37 a | 40 a | |
CV (%) | 5.9 | 15.1 | 12.6 | 31.6 | 12.0 | 13.8 | 17.7 | 20.8 | 16.8 | 15.3 | 16.8 | |
Shoots | Via Foliar | 21 a | 11.5 a | 15.3 a | 10.5 a | 1.6 a | 2.6 a | 53 a | 3.0 a | 174 a | 41 a | 24 a |
Via Soil | 23 a | 10.7 a | 15.6 a | 9.4 a | 1.8 a | 2.3 a | 61 a | 3.5 a | 218 a | 53 a | 29 a | |
CV (%) | 9.1 | 19.7 | 26.5 | 15.0 | 13.0 | 48.7 | 33.9 | 52.1 | 28.8 | 35.1 | 47.3 | |
Roots | Via Foliar | - | 0.85 a | 1.56 a | 2.6 a | 1.1 a | 2.6 a | 40.7 b | 11.3 a | 3521 a | 52 a | 40 a |
Via Soil | - | 1.19 a | 2.09 a | 3.0 a | 2.1 a | 3.5 a | 73.2 a | 12.9 a | 3370 a | 81 a | 44 a | |
CV (%) | - | 88.7 | 69.4 | 56.4 | 50.8 | 39.8 | 23.4 | 22.6 | 34.2 | 49.1 | 37.2 |
Dose (g ha−1) | CI | FI | BNI | Yield | GR | AAGR | GI | UI | VI |
---|---|---|---|---|---|---|---|---|---|
Co/Mo | ----------- Dualex ----------- | kg ha−1 | ------- % ------- | -------- SVIS® ---------- | |||||
0/0 | 36 A | 0.63 A | 58 A | 4448 A | 93 A | 47 B | 834 A | 876 B | 846 B |
0/800 | 34 A | 0.60 A | 57 A | 4190 A | 91 A | 54 B | 855 A | 895 B | 867 B |
10/800 | 35 A | 0.57 A | 61 A | 4186 A | 92 A | 63 B | 817 A | 887 B | 838 B |
20/800 | 35 A | 0.64 A | 55 A | 4298 A | 92 A | 65 B | 922 A | 896 B | 915 A |
30/800 | 35 A | 0.61 A | 59 A | 4588 A | 94 A | 68 A | 865 A | 901 A | 875 B |
CV (%) | 6.4 | 12.9 | 13.2 | 17.8 | 3.4 | 22.7 | 3.8 | 1.6 | 2.8 |
Dose (g ha−1) | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
------------------------ g kg−1, Dry Weight ------------------------ | --------------- mg kg−1, Dry Weight --------------- | ||||||||||
Co/Mo | ----------------------------------------------------- Seeds ----------------------------------------------------- | ||||||||||
0/0 | 57 A | 5.1 A | 19.1 A | 2.5 A | 3.1 A | 3.9 A | 40 A | 12.9 A | 90 A | 36 A | 52 A |
0/800 | 56 A | 5.0 A | 19.5 A | 2.3 A | 3.1 A | 3.9 A | 41 A | 12.3 A | 72 B | 35 A | 45 A |
10/800 | 55 A | 4.7 A | 17.8 A | 2.1 B | 2.9 A | 3.6 A | 38 A | 12.4 A | 64 B | 32 B | 40 A |
20/800 | 57 A | 4.7 A | 19.5 A | 2.2 B | 3.0 A | 3.8 A | 42 A | 11.0 A | 64 B | 32 B | 40 A |
30/800 | 56 A | 4.7 A | 18.4 A | 1.9 B | 2.7 B | 3.3 B | 35 A | 8.6 B | 64 B | 30 B | 39 B |
L | ns | ns | ns | *** | *** | ** | ns | ns | *** | ** | ** |
Q | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
CV (%) | 5.6 | 10.2 | 11.5 | 6.0 | 3.8 | 7.7 | 7.8 | 9.3 | 4.2 | 6.5 | 18.0 |
Co/Mo | -------------------------------------------------- Shoots -------------------------------------------------- | ||||||||||
0/0 | 36 A | 2.9 A | 8.6 A | 19.0 A | 5.6 A | 2.6 A | 46 B | 5.1 A | 82 A | 173 A | 20 A |
0/800 | 31 A | 2.7 A | 9.7 A | 19.6 A | 5.5 A | 2.6 A | 55 A | 5.3 A | 81 A | 167 A | 22 A |
10/800 | 34 A | 2.7 A | 9.9 A | 17.7 A | 5.2 A | 2.6 A | 50 B | 6.3 A | 82 A | 152 A | 26 A |
20/800 | 36 A | 2.3 A | 9.4 A | 18.0 A | 5.8 A | 2.4 A | 49 B | 5.3 A | 78 A | 153 A | 26 A |
30/800 | 36 A | 2.2 A | 10.0 A | 17.8 A | 4.6 A | 2.5 A | 42 B | 5.0 A | 84 A | 122 A | 27 A |
L | ns | ns | ns | ns | ns | ns | ** | ns | ° | ns | ns |
Q | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
CV (%) | 16.9 | 29.9 | 26.4 | 12.4 | 24.5 | 25.5 | 11.5 | 15.1 | 24.6 | 32.2 | 24.0 |
Experiment | Attributes | Co | Mo | ||||||
---|---|---|---|---|---|---|---|---|---|
Seed | Shoot | Root | Soil | Seed | Shoot | Root | |||
Greenhouse | Co | Seed | - | - | - | - | - | - | - |
Shoot | 0.84 | - | - | - | - | - | - | ||
Root | 0.63 | 0.42 | - | - | - | - | - | ||
Soil | 0.15 | 0.24 | 0.13 | - | - | - | - | ||
Mo | Seed | 0.59 | 0.46 | 0.32 | −0.06 | - | - | - | |
Shoot | 0.51 | 0.69 | 0.28 | 0.13 | 0.56 | - | - | ||
Root | 0.33 | 0.16 | 0.42 | 0.18 | 0.05 | 0.25 | - | ||
Soil | 0.34 | 0.04 | 0.35 | −0.04 | 0.49 | 0.16 | 0.19 | ||
Field | Co | Seed | - | - | - | - | - | - | - |
Shoot | 0.90 | - | - | - | - | - | - | ||
Soil | −0.23 | −0.29 | - | - | - | - | - | ||
Mo | Seed | 0.48 | 0.43 | - | 0.16 | - | - | - | |
Shoot | 0.46 | 0.55 | - | −0.18 | 0.75 | - | - | ||
Soil | −0.27 | −0.32 | - | 0.44 | 0.17 | −0.16 | - |
Physical-Chemical Properties | Unit (in Terms of Soil Mass or Volume) | Greenhouse | Field |
---|---|---|---|
pH (CaCl2) | - | 4.8 | 5.3 |
Resin-P | mg kg−1 | 9.0 | 21 |
K+ | cmolc dm−3 | 0.3 | 2.8 |
Ca2+ | cmolc dm−3 | 20 | 66 |
Mg2+ | cmolc dm−3 | 2.0 | 25 |
Al3+ | cmolc dm−3 | 0.0 | 1.0 |
H+ + Al3+ | cmolc dm−3 | 25 | 34 |
CEC | cmolc dm−3 | 49 | 127 |
SO42− | mg kg−1 | 46 | 42 |
B | mg kg−1 | 0.43 | 2.3 |
Cu | mg kg−1 | 0.20 | 0.30 |
Fe | mg kg−1 | 18.0 | 2.70 |
Mn | mg kg−1 | 0.40 | 5.0 |
Zn | mg kg−1 | 0.20 | 33 |
Co | mg kg−1 | 0.20 | 3.10 |
Mo | mg kg−1 | 0.50 | 0.80 |
Clay | % | 9.90 | 56.0 |
Silt | % | 0.10 | 13.0 |
Sand | % | 90.0 | 31.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu-Junior, C.H.; Gruberger, G.A.C.; Cardoso, P.H.S.; Gonçalves, P.W.B.; Nogueira, T.A.R.; Capra, G.F.; Jani, A.D. Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. Plants 2023, 12, 1164. https://doi.org/10.3390/plants12051164
Abreu-Junior CH, Gruberger GAC, Cardoso PHS, Gonçalves PWB, Nogueira TAR, Capra GF, Jani AD. Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. Plants. 2023; 12(5):1164. https://doi.org/10.3390/plants12051164
Chicago/Turabian StyleAbreu-Junior, Cassio Hamilton, Gabriel Asa Corrêa Gruberger, Paulo Henrique Silveira Cardoso, Paula Wellen Barbosa Gonçalves, Thiago Assis Rodrigues Nogueira, Gian Franco Capra, and Arun Dilipkumar Jani. 2023. "Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment" Plants 12, no. 5: 1164. https://doi.org/10.3390/plants12051164
APA StyleAbreu-Junior, C. H., Gruberger, G. A. C., Cardoso, P. H. S., Gonçalves, P. W. B., Nogueira, T. A. R., Capra, G. F., & Jani, A. D. (2023). Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. Plants, 12(5), 1164. https://doi.org/10.3390/plants12051164