Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive
Abstract
:1. Introduction
2. Mechanism of Action
3. Therapeutic Potential of Sesamol
3.1. Anti-Cancer
3.2. Cardioprotective
3.3. Neuroprotective
3.4. Hepatoprotection
3.5. Wound Healing
3.6. Anti-Aging
3.7. Anti-Candidal
3.8. Anti-Ulcer
4. Formulation Strategies for Sesamol
4.1. Lipid-Based Delivery Systems
4.1.1. Solid Lipid Nanoparticles (SLNs)
4.1.2. Nanostructured Lipid Carriers (NLCs)
4.2. Emulsion-Based Delivery Systems
4.2.1. Emulsion
4.2.2. Microemulsion-Based Hydrogel
4.3. Vesicular Delivery Systems
4.3.1. Micelles
4.3.2. Transfersomes
4.4. Miscellaneous Delivery Systems
4.4.1. Gelatin Nanoparticles (GNPs)
4.4.2. β-Cyclodextrin Inclusion Complex
4.4.3. Floating Beads
4.4.4. Nanofibers
4.4.5. Quantum Dots (QDs)
4.4.6. Nanosponges
4.4.7. Albumin Nanoparticles
5. Toxicity of Sesamol
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, P.; Pawar, A.; Mahadik, K.; Bothiraja, C. Emerging Novel Drug Delivery Strategies for Bioactive Flavonol Fisetin in Biomedicine. Biomed. Pharmacother. 2018, 106, 1282–1291. [Google Scholar] [CrossRef]
- Dalal, P.; Kadian, V.; Rao, R. Phytonanomedicines as Topical Alternatives for the Treatment of Skin Cancer. In Nanoformulations in Human Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 403–432. [Google Scholar]
- Dixit, N.; Baboota, S.; Kohli, K.; Ahmad, S.; Ali, J. Silymarin: A Review of Pharmacological Aspects and Bioavailability Enhancement Approaches. Indian J. Pharmacol. 2007, 39, 172. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Dalal, P.; Rao, R. Cyclodextrin Decorated Nanosponges of Sesamol: Antioxidant, Anti-Tyrosinase and Photostability Assessment. Food Biosci. 2021, 42, 101098. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, K.K.; Rao, R. Enhanced Anti-Psoriatic Efficacy and Regulation of Oxidative Stress of a Novel Topical Babchi Oil (Psoralea Corylifolia) Cyclodextrin-Based Nanogel in a Mouse Tail Model. J. Microencapsul. 2019, 36, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Kadian, V.; Dalal, S.; Dalal, P.; Kumar, S.; Garg, M.; Rao, R. A Fresh Look on Bergenin: Vision of Its Novel Drug Delivery Systems and Pharmacological Activities. Future Pharmacol. 2022, 2, 64–91. [Google Scholar] [CrossRef]
- Sharma, R.; Rao, R.; Kumar, S.; Mahant, S.; Khatkar, S. Therapeutic Potential of Citronella Essential Oil: A Review. Curr. Drug Discov. Technol. 2019, 16, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea Tree Oil: A Promising Essential Oil. J. Essent. Oil Res. 2017, 29, 201–213. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17, 1341–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Pathak, N.; Rai, A.K.; Kumari, R.; Bhat, K.V. Value Addition in Sesame: A Perspective on Bioactive Components for Enhancing Utility and Profitability. Pharmacogn. Rev. 2014, 8, 147. [Google Scholar]
- Pathak, N.; Bhaduri, A.; Rai, A.K. Sesame: Bioactive Compounds and Health Benefits. In Bioactive Molecules in Food; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–200. [Google Scholar]
- Majdalawieh, A.F.; Mansour, Z.R. Sesamol, a Major Lignan in Sesame Seeds (Sesamum indicum): Anti-Cancer Properties and Mechanisms of Action. Eur. J. Pharmacol. 2019, 855, 75–89. [Google Scholar] [CrossRef]
- Geetha, T.; Singh, N.; Deol, P.K.; Kaur, I.P. Biopharmaceutical Profiling of Sesamol: Physiochemical Characterization, Gastrointestinal Permeability and Pharmacokinetic Evaluation. RSC Adv. 2015, 5, 4083–4091. [Google Scholar] [CrossRef]
- Khan, S.; Choudhary, S.; Kumar, A.; Tripathi, A.M.; Alok, A.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Evaluation of Sesamol-Induced Histopathological, Biochemical, Haematological and Genomic Alteration after Acute Oral Toxicity in Female C57BL/6 Mice. Toxicol. Rep. 2016, 3, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Sesame Oil Mitigates Memory Impairment, Oxidative Stress, and Neurodegeneration in a Rat Model of Alzheimer’s Disease. A Pivotal Role of NF-ΚB/P38MAPK/BDNF/PPAR-γ Pathways. J. Ethnopharmacol. 2021, 267, 113468. [Google Scholar] [CrossRef]
- Mohanty, C.; Das, M.; Sahoo, S.K. Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin. Expert Opin. Drug Deliv. 2012, 9, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Yashaswini, P.S.; Kurrey, N.K.; Singh, S.A. Encapsulation of Sesamol in Phosphatidyl Choline Micelles: Enhanced Bioavailability and Anti-Inflammatory Activity. Food Chem. 2017, 228, 330–337. [Google Scholar] [CrossRef]
- Di Costanzo, A.; Angelico, R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019, 24, 2155. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Azzini, E.; Zucca, P.; Maria Varoni, E.; Anil Kumar, N.V.; Dini, L.; Panzarini, E.; Rajkovic, J.; Valere Tsouh Fokou, P.; Peluso, I. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Palheta, I.C.; Borges, R.S. Sesamol Is a Related Antioxidant to the Vitamin E. Chem. Data Collect. 2017, 11, 77–83. [Google Scholar] [CrossRef]
- Joshi, R.; Kumar, M.S.; Satyamoorthy, K.; Unnikrisnan, M.K.; Mukherjee, T. Free Radical Reactions and Antioxidant Activities of Sesamol: Pulse Radiolytic and Biochemical Studies. J. Agric. Food Chem. 2005, 53, 2696–2703. [Google Scholar] [CrossRef] [PubMed]
- Mahendra Kumar, C.; Singh, S.A. Bioactive Lignans from Sesame (Sesamum indicum L.): Evaluation of Their Antioxidant and Antibacterial Effects for Food Applications. J. Food Sci. Technol. 2015, 52, 2934–2941. [Google Scholar] [CrossRef] [Green Version]
- Granja, A.; Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. BioMed Res. Int. 2017, 2017, 5813793. [Google Scholar] [CrossRef] [Green Version]
- Chirag, P.J.; Tyagi, S.; Halligudi, N.; Yadav, J.; Pathak, S.; Singh, S.P.; Pandey, A.; Kamboj, D.S.; Shankar, P. Antioxidant Activity of Herbal Plants: A Recent Review. J. Drug Deliv. Ther. 2013, 1, 1–8. [Google Scholar]
- Kanimozhi, P.; Prasad, N.R. Antioxidant Potential of Sesamol and Its Role on Radiation-Induced DNA Damage in Whole-Body Irradiated Swiss Albino Mice. Environ. Toxicol. Pharmacol. 2009, 28, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Park, J.; Lee, J. Evaluation of Antioxidant Capacity of Sesamol and Free Radical Scavengers at Different Heating Temperatures. Eur. J. Lipid Sci. Technol. 2011, 113, 910–915. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’grady, M.N.; Kerry, J.P. Phenolic Composition and in Vitro Antioxidant Capacity of Four Commercial Phytochemical Products: Olive Leaf Extract (Olea europaea L.), Lutein, Sesamol and Ellagic Acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Srisayam, M.; Weerapreeyakul, N.; Barusrux, S.; Kanokmedhakul, K. Antioxidant, Antimelanogenic, and Skin-Protective Effect of Sesamol. J. Cosmet. Sci. 2014, 65, 69–79. [Google Scholar]
- Beg, S.; Swain, S.; Hasan, H.; Barkat, M.A.; Hussain, M.S. Systematic Review of Herbals as Potential Anti-Inflammatory Agents: Recent Advances, Current Clinical Status and Future Perspectives. Pharmacogn. Rev. 2011, 5, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, P.-Y.; Hsu, D.-Z.; Hsu, P.-Y.; Liu, M.-Y. Sesamol Down-Regulates the Lipopolysaccharide-Induced Inflammatory Response by Inhibiting Nuclear Factor-Kappa B Activation. Innate Immun. 2010, 16, 333–339. [Google Scholar] [CrossRef]
- Kondamudi, P.K.; Kovelamudi, H.; Mathew, G.; Nayak, P.G.; Rao, C.M.; Shenoy, R.R. Modulatory Effects of Sesamol in Dinitrochlorobenzene-Induced Inflammatory Bowel Disorder in Albino Rats. Pharmacol. Rep. 2013, 65, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Kondamudi, P.K.; Kovelamudi, H.; Mathew, G.; Nayak, P.G.; Rao, M.C.; Shenoy, R.R. Investigation of Sesamol on Myeloperoxidase and Colon Morphology in Acetic Acid-Induced Inflammatory Bowel Disorder in Albino Rats. Sci. World J. 2014, 2014, 802701. [Google Scholar]
- Periasamy, S.; Chu, P.-Y.; Li, Y.-H.; Hsu, D.-Z.; Liu, M.-Y. Sesamol Ameliorates Hypotension by Modulating Cytokines and PPAR-Gamma in Systemic Inflammatory Response. EXCLI J. 2015, 14, 948. [Google Scholar] [PubMed]
- Wu, X.-L.; Liou, C.-J.; Li, Z.-Y.; Lai, X.-Y.; Fang, L.-W.; Huang, W.-C. Sesamol Suppresses the Inflammatory Response by Inhibiting NF-ΚB/MAPK Activation and Upregulating AMP Kinase Signaling in RAW 264.7 Macrophages. Inflamm. Res. 2015, 64, 577–588. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Qiao, Q.; Sun, Y.; Liu, Q.; Ren, B.; Liu, X. Sesamol Supplementation Prevents Systemic Inflammation-Induced Memory Impairment and Amyloidogenesis via Inhibition of Nuclear Factor KappaB. Mol. Nutr. Food Res. 2017, 61, 1600734. [Google Scholar] [CrossRef]
- Yashaswini, P.S.; Rao, A.A.; Singh, S.A. Inhibition of Lipoxygenase by Sesamol Corroborates Its Potential Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2017, 94, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-Derived Anticancer Agents: A Green Anticancer Approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Pangeni, R.; Sahni, J.K.; Ali, J.; Sharma, S.; Baboota, S. Resveratrol: Review on Therapeutic Potential and Recent Advances in Drug Delivery. Expert Opin. Drug Deliv. 2014, 11, 1285–1298. [Google Scholar] [CrossRef]
- JACKLIN, A.; RATLEDGE, C.; WELHAM, K.; BILKO, D.; NEWTON, C.J. The Sesame Seed Oil Constituent, Sesamol, Induces Growth Arrest and Apoptosis of Cancer and Cardiovascular Cells. Ann. N. Y. Acad. Sci. 2003, 1010, 374–380. [Google Scholar] [CrossRef]
- Parihar, V.K.; Prabhakar, K.R.; Veerapur, V.P.; Kumar, M.S.; Reddy, Y.R.; Joshi, R.; Unnikrishnan, M.K.; Rao, C.M. Effect of Sesamol on Radiation-Induced Cytotoxicity in Swiss Albino Mice. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2006, 611, 9–16. [Google Scholar] [CrossRef]
- Ramachandran, S.; Prasad, N.R.; Karthikeyan, S. Sesamol Inhibits UVB-Induced ROS Generation and Subsequent Oxidative Damage in Cultured Human Skin Dermal Fibroblasts. Arch. Dermatol. Res. 2010, 302, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiang, Q.; Du, L.; Song, G.; Wang, Y.; Liu, X. The Interaction of Sesamol with DNA and Cytotoxicity, Apoptosis, and Localization in HepG2 Cells. Food Chem. 2013, 141, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Fujii, G.; Takahashi, M.; Nakanishi, R.; Komiya, M.; Shimura, M.; Noma, N.; Onuma, W.; Terasaki, M.; Yano, T. Sesamol Suppresses Cyclooxygenase-2 Transcriptional Activity in Colon Cancer Cells and Modifies Intestinal Polyp Development in ApcMin/+ Mice. J. Clin. Biochem. Nutr. 2014, 54, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamphio, M.; Barusrux, S.; Weerapreeyakul, N. Sesamol Induces Mitochondrial Apoptosis Pathway in HCT116 Human Colon Cancer Cells via Pro-Oxidant Effect. Life Sci. 2016, 158, 46–56. [Google Scholar] [CrossRef]
- Siriwarin, B.; Weerapreeyakul, N. Sesamol Induced Apoptotic Effect in Lung Adenocarcinoma Cells through Both Intrinsic and Extrinsic Pathways. Chem.-Biol. Interact. 2016, 254, 109–116. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, B.; Wang, Y.; Zou, C.; Qiao, Q.; Diao, Z.; Mi, Y.; Zhu, D.; Liu, X. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci. Rep. 2017, 7, 45728. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sanyal, S.N.; Vaiphei, K.; Kakkar, V.; Kaur Deol, P.; Pal Kaur, I.; Kaur, T. Sesamol Induces Apoptosis by Altering Expression of Bcl-2 and Bax Proteins and Modifies Skin Tumor Development in Balb/c Mice. Anti-Cancer Agents Med. Chem. 2017, 17, 726–733. [Google Scholar] [CrossRef]
- Ma, Y.; Karunakaran, T.; Veeraraghavan, V.P.; Mohan, S.K.; Li, S. Sesame Inhibits Cell Proliferation and Induces Apoptosis through Inhibition of STAT-3 Translocation in Thyroid Cancer Cell Lines (FTC-133). Biotechnol. Bioprocess Eng. 2019, 24, 646–652. [Google Scholar] [CrossRef]
- Abd Elrazik, N.A.; El-Mesery, M.; El-Karef, A.; Eissa, L.A.; El Gayar, A.M. Sesamol Upregulates Death Receptors and Acts as a Chemosensitizer in Solid Ehrlich Carcinoma Model in Mice. Nutr. Cancer 2021, 74, 250–264. [Google Scholar] [CrossRef]
- Xiong, J.; Sheng, J.; Wei, Y.; Sun, Z.; Xiao, X.; Zhang, L. Sesamol Augments Paclitaxel-Induced Apoptosis in Human Cervical Cancer Cell Lines. Nutr. Cancer 2022, 74, 3692–3700. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sil, P.C. Promising Natural Cardioprotective Agents in Drug-and Toxin-Induced Pathophysiology. Cardioprot. Nat. Prod. Promises Hopes 2017, 47, 47–120. [Google Scholar]
- Chang, C.C.; Lu, W.J.; Chiang, C.W.; Jayakumar, T.; Ong, E.T.; Hsiao, G.; Fong, T.H.; Chou, D.S.; Sheu, J.R. Potent Antiplatelet Activity of Sesamol in an in Vitro and in Vivo Model: Pivotal Roles of Cyclic AMP and P38 Mitogen-Activated Protein Kinase. J. Nutr. Biochem. 2010, 21, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lu, W.-J.; Ong, E.-T.; Chiang, C.-W.; Lin, S.-C.; Huang, S.-Y.; Sheu, J.-R. A Novel Role of Sesamol in Inhibiting NF-ΚB-Mediated Signaling in Platelet Activation. J. Biomed. Sci. 2011, 18, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periasamy, S.; Hsu, D.-Z.; Chen, S.-Y.; Yang, S.-S.; Chandrasekaran, V.R.M.; Liu, M.-Y. Therapeutic Sesamol Attenuates Monocrotaline-Induced Sinusoidal Obstruction Syndrome in Rats by Inhibiting Matrix Metalloproteinase-9. Cell Biochem. Biophys. 2011, 61, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Vennila, L.; Pugalendi, K.V. Efficacy of Sesamol on Plasma and Tissue Lipids in Isoproterenol-Induced Cardiotoxicity in Wistar Rats. Arch. Pharmacal Res. 2012, 35, 1465–1470. [Google Scholar] [CrossRef]
- Chennuru, A.; Saleem, M.T. Antioxidant, Lipid Lowering, and Membrane Stabilization Effect of Sesamol against Doxorubicin-Induced Cardiomyopathy in Experimental Rats. BioMed Res. Int. 2013, 2013, 934239. [Google Scholar] [CrossRef] [Green Version]
- Hemalatha, G.; Pugalendi, K.V.; Saravanan, R. Modulatory Effect of Sesamol on DOCA-Salt-Induced Oxidative Stress in Uninephrectomized Hypertensive Rats. Mol. Cell. Biochem. 2013, 379, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-Y.; Chen, F.-Y.; Lee, A.-S.; Ting, K.-H.; Chang, C.-M.; Hsu, J.-F.; Lee, W.-S.; Sheu, J.-R.; Chen, C.-H.; Shen, M.-Y. Sesamol Reduces the Atherogenicity of Electronegative L5 LDL in Vivo and in Vitro. J. Nat. Prod. 2015, 78, 225–233. [Google Scholar] [CrossRef]
- Yavarpour-Bali, H.; Ghasemi-Kasman, M.; Pirzadeh, M. Curcumin-Loaded Nanoparticles: A Novel Therapeutic Strategy in Treatment of Central Nervous System Disorders. Int. J. Nanomed. 2019, 14, 4449. [Google Scholar] [CrossRef] [Green Version]
- VanGilder, R.L.; Kelly, K.A.; Chua, M.D.; Ptachcinski, R.L.; Huber, J.D. Administration of Sesamol Improved Blood–Brain Barrier Function in Streptozotocin-Induced Diabetic Rats. Exp. Brain Res. 2009, 197, 23–34. [Google Scholar] [CrossRef]
- Kumar, P.; Kalonia, H.; Kumar, A. Protective Effect of Sesamol against 3-Nitropropionic Acid-Induced Cognitive Dysfunction and Altered Glutathione Redox Balance in Rats. Basic Clin. Pharmacol. Toxicol. 2010, 107, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Tiwari, V.; Kuhad, A.; Chopra, K. Modulation of Nitrergic Pathway by Sesamol Prevents Cognitive Deficits and Associated Biochemical Alterations in Intracerebroventricular Streptozotocin Administered Rats. Eur. J. Pharmacol. 2011, 659, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, P.; Arbabi, E.; Rostami, F. The Ameliorative Effects of Sesamol against Seizures, Cognitive Impairment and Oxidative Stress in the Experimental Model of Epilepsy. Iran. J. Basic Med. Sci. 2014, 17, 100. [Google Scholar]
- Hong, B.Y.; Kim, J.S.; Lee, K.B.; Lim, S.H. The Effect of Sesamol on Rats with Ischemic Stroke. J. Phys. Ther. Sci. 2015, 27, 1771–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; Yuan, T.; Diao, Z.; Zhang, C.; Liu, Z.; Liu, X. Protective Effects of Sesamol on Systemic Oxidative Stress-Induced Cognitive Impairments via Regulation of Nrf2/Keap1 Pathway. Food Funct. 2018, 9, 5912–5924. [Google Scholar] [CrossRef]
- Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, Á.; Esquivel-Soto, J.; Esquivel-Chirino, C.; y González-Rubio, M.G.-L.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective Effect of Silymarin. World J. Hepatol. 2014, 6, 144. [Google Scholar] [CrossRef]
- Hsu, D.-Z.; Chen, K.-T.; Li, Y.-H.; Chuang, Y.-C.; Liu, M.-Y. Sesamol Delays Mortality and Attenuates Hepatic Injury after Cecal Ligation and Puncture in Rats: Role of Oxidative Stress. Shock 2006, 25, 528–532. [Google Scholar] [CrossRef]
- Hsu, D.-Z.; Chien, S.-P.; Chen, K.-T.; Liu, M.-Y. The Effect of Sesamol on Systemic Oxidative Stress and Hepatic Dysfunction in Acutely Iron-Intoxicated Mice. Shock 2007, 28, 596–601. [Google Scholar] [CrossRef]
- Jnaneshwari, S.; Hemshekhar, M.; Thushara, R.M.; Shanmuga Sundaram, M.; Sebastin Santhosh, M.; Sunitha, K.; Shankar, R.L.; Kemparaju, K.; Girish, K.S. Sesamol Ameliorates Cyclophosphamide-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammatory Mediators. Anti-Cancer Agents Med. Chem. 2014, 14, 975–983. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. [Google Scholar] [CrossRef]
- Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple Biological Activities of Curcumin: A Short Review. Life Sci. 2006, 78, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Kiran, K.; Asad, M. Wound Healing Activity of Sesamum indicum L Seed and Oil in Rats. Indian J. Exp. Biol. 2008, 46, 777–782. [Google Scholar]
- Shenoy, R.R.; Sudheendra, A.T.; Nayak, P.G.; Paul, P.; Kutty, N.G.; Rao, C.M. Normal and Delayed Wound Healing Is Improved by Sesamol, an Active Constituent of Sesamum indicum (L.) in Albino Rats. J. Ethnopharmacol. 2011, 133, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Sahoo, M.; Deb Roy, S.; Dasgupta, R. Anti-Ageing Natural Herbs: A Systemic Review. Indian Res. J. Pharm. Sci. 2018, 5, 1589–1598. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, I.P. Development and Evaluation of Sesamol as an Antiaging Agent. Int. J. Dermatol. 2006, 45, 200–208. [Google Scholar] [CrossRef]
- Hong, L.; Liangliang, C.; Yi, W.; Juncheng, H.; Qin, W.; Xiaoxiang, Z. Anti-Aging Effect of Sesamin and Its Mechanism of Action. Curr. Top. Nutraceuticals Res. 2012, 10, 173. [Google Scholar]
- Jayaraj, P.; Sarkar, P.; Routh, S.; Sarathe, C.; Rajagopal, D.; Thirumurugan, K. A Promising Discovery of Anti-Aging Chemical Conjugate Derived from Lipoic Acid and Sesamol Established in Drosophila Melanogaster. New J. Chem. 2022, 46, 11229–11241. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Fatima, Z.; Hameed, S. Sesamol: A Natural Phenolic Compound with Promising Anticandidal Potential. J. Pathog. 2014, 2014, 895193. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Fatima, Z.; Hameed, S. Mechanistic Insights into the Mode of Action of Anticandidal Sesamol. Microb. Pathog. 2016, 98, 140–148. [Google Scholar] [CrossRef]
- Gadekar, R.; Singour, P.K.; Chaurasiya, P.K.; Pawar, R.S.; Patil, U.K. A Potential of Some Medicinal Plants as an Antiulcer Agents. Pharmacogn. Rev. 2010, 4, 136. [Google Scholar]
- Hsu, D.-Z.; Chu, P.-Y.; Li, Y.-H.; Liu, M.-Y. Sesamol Attenuates Diclofenac-Induced Acute Gastric Mucosal Injury via Its Cyclooxygenase-Independent Antioxidative Effect in Rats. Shock 2008, 30, 456–462. [Google Scholar] [CrossRef]
- Hsu, D.-Z.; Chu, P.-Y.; Chandrasekaran, V.R.M.; Liu, M.-Y. Sesame Lignan Sesamol Protects against Aspirin-Induced Gastric Mucosal Damage in Rats. J. Funct. Foods 2009, 1, 349–355. [Google Scholar] [CrossRef]
- Hsu, D.-Z.; Chen, Y.-W.; Chu, P.-Y.; Periasamy, S.; Liu, M.-Y. Protective Effect of 3, 4-Methylenedioxyphenol (Sesamol) on Stress-Related Mucosal Disease in Rats. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sori, R.K.; Balaji, O.; Adiga, S.; Thomas, H. Evaluation of the Antipeptic Ulcer Activity of the Seed Extract of Sesame (Sesamum indicum) in Stress Induced Peptic Ulcers in Rats. Int. J. Basic Clin. Pharmacol. 2018, 7, 1131–1135. [Google Scholar] [CrossRef] [Green Version]
- Alencar, J.; Pietri, S.; Culcasi, M.; Orneto, C.; Piccerelle, P.; Reynier, J.; Portugal, H.; Nicolay, A.; Kaloustian, J. Interactions and Antioxidant Stability of Sesamol in Dry-Emulsions. J. Therm. Anal. Calorim. 2009, 98, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, V.; Kaur, I.P. Preparation, Characterization and Scale-up of Sesamol Loaded Solid Lipid Nanoparticles. Nanotechnol. Dev. 2012, 2, e8. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yang, L.; Chen, C.; Liu, Y.; Wang, X. Characterization and Antioxidant Activity of the Complex of Sesamol and Hydroxypropyl–Cyclodextrin. Afr. J. Pharm. Pharmacol. 2012, 6, 1204–1210. [Google Scholar]
- Geetha, T.; Kapila, M.; Prakash, O.; Deol, P.K.; Kakkar, V.; Kaur, I.P. Sesamol-Loaded Solid Lipid Nanoparticles for Treatment of Skin Cancer. J. Drug Target. 2015, 23, 159–169. [Google Scholar] [CrossRef]
- Geetha, T.; Deol, P.K.; Kaur, I.P. Role of Sesamol-Loaded Floating Beads in Gastric Cancers: A Pharmacokinetic and Biochemical Evidence. J. Microencapsul. 2015, 32, 478–487. [Google Scholar]
- Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I.P. Hepatoprotective Effects of Sesamol Loaded Solid Lipid Nanoparticles in Carbon Tetrachloride Induced Sub-Chronic Hepatotoxicity in Rats. Environ. Toxicol. 2016, 31, 520–532. [Google Scholar] [CrossRef]
- Puglia, C.; Lauro, M.R.; Offerta, A.; Crascì, L.; Micicchè, L.; Panico, A.M.; Bonina, F.; Puglisi, G. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity. Planta Med. 2017, 83, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R.; Dehpour, A.-R.; Azhdarzadeh, M.; Dinarvand, M. Application of Nanostructured Lipid Carriers: The Prolonged Protective Effects for Sesamol in in Vitro and in Vivo Models of Ischemic Stroke via Activation of PI3K Signalling Pathway. DARU J. Pharm. Sci. 2017, 25, 25. [Google Scholar] [CrossRef] [Green Version]
- ElMasry, S.R.; Hathout, R.M.; Abdel-Halim, M.; Mansour, S. In Vitro Transdermal Delivery of Sesamol Using Oleic Acid Chemically-Modified Gelatin Nanoparticles as a Potential Breast Cancer Medication. J. Drug Deliv. Sci. Technol. 2018, 48, 30–39. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, J.; Zhao, C.; Duan, X.; McClements, D.; Liu, X.; Liu, F. Formation and Characterization of Lactoferrin-Hyaluronic Acid Conjugates and Their Effects on the Storage Stability of Sesamol Emulsions. Molecules 2018, 23, 3291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbanzadeh, M.; Farhadian, N.; Golmohammadzadeh, S.; Karimi, M.; Ebrahimi, M. Formulation, Clinical and Histopathological Assessment of Microemulsion Based Hydrogel for UV Protection of Skin. Colloids Surf. B Biointerfaces 2019, 179, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N.; El-Bery, H.M.; Metwally, A.A.; Elshazly, M.; Hathout, R.M. Synthesis of CdS-Modified Chitosan Quantum Dots for the Drug Delivery of Sesamol. Carbohydr. Polym. 2019, 214, 90–99. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Wang, L.; Yan, X.; Ma, D.; Liu, Z.; Liu, X. Sesamol Incorporated Cellulose Acetate-Zein Composite Nanofiber Membrane: An Efficient Strategy to Accelerate Diabetic Wound Healing. Int. J. Biol. Macromol. 2020, 149, 627–638. [Google Scholar] [CrossRef]
- Alkhalidi, H.M.; Hosny, K.M.; Rizg, W.Y. Oral Gel Loaded by Fluconazole–Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity. Pharmaceutics 2021, 13, 27. [Google Scholar] [CrossRef]
- Zaher, S.; Soliman, M.E.; Elsabahy, M.; Hathout, R.M. Sesamol Loaded Albumin Nanoparticles: A Boosted Protective Property in Animal Models of Oxidative Stress. Pharmaceuticals 2022, 15, 733. [Google Scholar] [CrossRef]
- Kammari, R.; Das, N.G.; Das, S.K. Nanoparticulate Systems for Therapeutic and Diagnostic Applications. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 105–144. [Google Scholar]
- Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances. Pharmaceutics 2022, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Mirhadi, E.; Rezaee, M.; Malaekeh-Nikouei, B. Nano Strategies for Berberine Delivery, a Natural Alkaloid of Berberis. Biomed. Pharmacother. 2018, 104, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Akhtar, N.; Khan, H.M.S.; Waseem, K.; Mahmood, T.; Rasul, A.; Iqbal, M.; Khan, H. Basics of Pharmaceutical Emulsions: A Review. Afr. J. Pharm. Pharmacol. 2011, 5, 2715–2725. [Google Scholar]
- Sabale, V.; Vora, S. Formulation and Evaluation of Microemulsion-Based Hydrogel for Topical Delivery. Int. J. Pharm. Investig. 2012, 2, 140. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Ling, P.; Zhang, T. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. J. Drug Deliv. 2013, 2013, 340315. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as Versatile and Flexible Nano-Vesicular Carriers in Skin Cancer Therapy: The State of the Art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Yasmin, R.; Shah, M.; Khan, S.A.; Ali, R. Gelatin Nanoparticles: A Potential Candidate for Medical Applications. Nanotechnol. Rev. 2017, 6, 191–207. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B. Cyclodextrin Complexes: Perspective from Drug Delivery and Formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar] [CrossRef]
- Gidwani, B.; Vyas, A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. BioMed Res. Int. 2015, 2015, 198268. [Google Scholar] [CrossRef] [Green Version]
- Pawar, V.K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G.T. Gastroretentive Dosage Forms: A Review with Special Emphasis on Floating Drug Delivery Systems. Drug Deliv. 2011, 18, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Deepak, A.; Goyal, A.K.; Rath, G. Nanofiber in Transmucosal Drug Delivery. J. Drug Deliv. Sci. Technol. 2018, 43, 379–387. [Google Scholar] [CrossRef]
- Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence Nanoparticles “Quantum Dots” as Drug Delivery System and Their Toxicity: A Review. J. Drug Target. 2011, 19, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dalal, P.; Rao, R. Cyclodextrin Nanosponges: A Promising Approach for Modulating Drug Delivery. In Colloid Science in Pharmaceutical Nanotechnology; IntechOpen: London, UK, 2019. [Google Scholar]
- Kadian, V.; Dalal, P.; Kumar, S.; Kapoor, A.; Rao, R. Comparative Evaluation of Dithranol-Loaded Nanosponges Fabricated by Solvent Evaporation Technique and Melt Method. Future J. Pharm. Sci. 2023, 9, 13. [Google Scholar] [CrossRef]
- Kumar, S.; Trotta, F.; Rao, R. Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics 2018, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin-Based Nanosponges for Improving Solubility and Sustainable Release of Curcumin. ChemistrySelect 2020, 5, 1734–1738. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, R. Enhancing Efficacy and Safety of Azelaic Acid via Encapsulation in Cyclodextrin Nanosponges: Development, Characterization and Evaluation. Polym. Bull. 2020, 78, 5275–5302. [Google Scholar] [CrossRef]
- Sharma, K.; Kadian, V.; Kumar, A.; Mahant, S.; Rao, R. Evaluation of Solubility, Photostability and Antioxidant Activity of Ellagic Acid Cyclodextrin Nanosponges Fabricated by Melt Method and Microwave-Assisted Synthesis. J. Food Sci. Technol. 2021, 59, 898–908. [Google Scholar] [CrossRef]
- Guineo-Alvarado, J.; Quilaqueo, M.; Hermosilla, J.; González, S.; Medina, C.; Rolleri, A.; Lim, L.-T.; Rubilar, M. Degree of Crosslinking in β-Cyclodextrin-Based Nanosponges and Their Effect on Piperine Encapsulation. Food Chem. 2021, 340, 128132. [Google Scholar] [CrossRef]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef]
- Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin Nanostructures as Advanced Drug Delivery Systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, A.M.; Cox, A.J., Jr.; DeEds, F. Antioxidant Toxicity, Toxicological Studies on Sesamol. J. Agric. Food Chem. 1958, 6, 600–604. [Google Scholar] [CrossRef]
- Ito, N.; Tsuda, H.; Tatematsu, M.; Inoue, T.; Tagawa, Y.; Aoki, T.; Uwagawa, S.; Kagawa, M.; Ogiso, T.; Masui, T. Enhancing Effect of Various Hepatocarcinogens on Induction of Preneoplastic Glutathione S-Transferase Placental Form Positive Foci in Rats—An Approach for a New Medium-Term Bioassay System. Carcinogenesis 1988, 9, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cameron, T.P.; Stump, J.M.; Schofield, L. Chemical Carcinogenesis Research Information System (Ccris) Data Bank, 1981-June 1986 (1988 Version). Data File; National Cancer Inst.: Bethesda, MD, USA, 1986.
- Little, A.D. National Toxicology Program. 30. Available online: https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/sesamol_508.pdf (accessed on 28 February 2023).
- Fennell, T.R.; Bridges, J.W. Structure-Activity Relationship for ‘Safrole-Type’ Cytochrome P-450 Induction. Biochem. Soc. Trans. 1979, 7, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Fukushima, S.; Shirai, T.; Hasegawa, R.; Kato, T.; Tanaka, H.; Asakawa, E.; Ito, N. Stomach Carcinogenicity of Caffeic Acid, Sesamol and Catechol in Rats and Mice. Jpn. J. Cancer Res. 1990, 81, 207–212. [Google Scholar] [CrossRef]
Type of Formulations | Techniques | Methods | Results | References |
---|---|---|---|---|
Emulsion | Spray-Drying or Freeze-Drying Techniques | In vitro and in vivo (murine 3T3 fibroblasts, male Wistar rats) | Improved antioxidant activity Improved UV protection | [88] |
Solid Lipid Nanoparticles | Micro-Emulsification Technique | Increased stability | [89] | |
Hydroxypropyl-β-Cyclodextrin | Freeze-Drying Technique | Improved in solubility | [90] | |
Solid Lipid Nanoparticles | In vitro and in vivo (Molt-4 and HL-60 Cell lines; Laca mice) | Improved in bioavailability Improved anti-cancer effect | [91] | |
Floating Beads | Orifice Ionic Gelation Technique | In vitro and in vivo (male Wistar rats) | Improved diffusion controlled release, enhanced t50% (31 times), decreased clearance 41.5 times), improved therapeutic action against gastric cancer | [92] |
Solid Lipid Nanoparticles | Micro-Emulsification Technique | In vitro and in vivo (male Wistar rats) | Improved oral bioavailability, improved controlled release, reduced irritation and toxicity, improved hepatoprotection | [93] |
Nanostructured Lipid Carriers | High Shear Homogenization with Ultrasound | In vitro (excised human skin membranes i.e., SCE) | Improved diffusion controlled release, improved antioxidant activity | [94] |
Nanostructured Lipid Carriers | High-Pressure Homogenization | In vitro and in vivo (PC12 cells, Wistar rats) | Improved stability, improved controlled released, enhanced retention and efficiency, prolonged neuroprotective effect | [95] |
Micelles | Solvent Evaporation Technique | In vitro (Caco-2 cells and RAW 264.7 cells) | Improved bioavailability, improved anti-inflammatory activity | [19] |
Gelatin Nanoparticles | Desolvation Technique | In vitro (MCF-7 breast cancer cells) | Improved targeting by intracellular delivery, improved cytotoxic effect | [96] |
Emulsion | High-Pressure Homogenization Technique | Improved stability | [97] | |
Microemulsion-Based Hydrogel | In vivo (guinea pig) | Improved stability, improved UV protection | [98] | |
CDs-Modified Chitosan Quantum Dots | Ultrasonication Technique | In vitro | Improved anti-cancer activity | [99] |
Nanofibers | In vitro and in vivo (mice) | Promoted myofibroblasts formation, promoted keratinocyte growth, enhanced wound healing | [100] | |
Transfersomes | Thin-layer Evaporation Technique | In vitro | Enhanced anti-fungal activity | [101] |
Nanosponges | Solvent Evaporation Technique | In vitro | Enhanced stability, preserved antioxidant and anti-tyrosinase activity | [4] |
Albumin Nanoparticles | Desolvation Technique | In vitro and in vivo | Enhanced stability and protective effect of oxidative stress | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, A.B.; Dalal, P.; Kadian, V.; Kumar, S.; Garg, M.; Rao, R.; Almuqbil, R.M.; Alnaim, A.S.; Aldhubiab, B.; Alqattan, F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. Plants 2023, 12, 1168. https://doi.org/10.3390/plants12051168
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. Plants. 2023; 12(5):1168. https://doi.org/10.3390/plants12051168
Chicago/Turabian StyleNair, Anroop B., Pooja Dalal, Varsha Kadian, Sunil Kumar, Minakshi Garg, Rekha Rao, Rashed M. Almuqbil, Ahmed S. Alnaim, Bandar Aldhubiab, and Fatemah Alqattan. 2023. "Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive" Plants 12, no. 5: 1168. https://doi.org/10.3390/plants12051168
APA StyleNair, A. B., Dalal, P., Kadian, V., Kumar, S., Garg, M., Rao, R., Almuqbil, R. M., Alnaim, A. S., Aldhubiab, B., & Alqattan, F. (2023). Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. Plants, 12(5), 1168. https://doi.org/10.3390/plants12051168