Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism
Abstract
:1. Introduction
2. Results
2.1. Plant Growth and Physiological Parameters
2.2. Plant Metabolism
2.2.1. Proline and Protein Concentration
2.2.2. Total Nitrogen (N), Carbon (C), Nitrate (NO3−) Quantification
2.2.3. Nitrate Reductase and Glutamine Synthetase Activity
2.2.4. RuBisCO and N Metabolism-Related Transcript Accumulation
2.3. Principal Component Analysis
3. Discussion
3.1. Effect of Combined N and Water Deficit on Plant Growth and Physiological Parameters
3.2. Effect of Combined N and W Deficit on Plant Metabolism
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Plant Growth and Physiological Parameters
4.3. Plant Metabolism
4.3.1. Proline and Protein Quantification
4.3.2. Total Nitrogen (N), Carbon (C), Nitrate (NO3−) Quantification
4.3.3. Extraction and Quantification of N Metabolism-Related Enzymes
4.3.4. Gene Expression Quantification Analysis of RuBisCO and N Metabolism-Related Genes
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernandes, A.; Machado, J.; Fernandes, T.; Vasconcelos, M.; Carvalho, S. Water and nitrogen fertilization management in light of climate change: Impacts on food security and product quality. In Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: London, UK, 2022; pp. 147–178. [Google Scholar]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Peng, P.; Hang, S.; Wang, L.; Zhao, G. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- Elbehri, A. Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef]
- Wang, R.; Min, J.; Kronzucker, H.J.; Li, Y.; Shi, W. N and P runoff losses in China’s vegetable production systems: Loss characteristics, impact, and management practices. Sci. Total Environ. 2019, 663, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Liu, J.; Ma, K.; Ciais, P.; Polasky, S. Reducing human nitrogen use for food production. Sci. Rep. 2016, 6, 30104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schebesta, H.; Candel, J.J.L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- Heuvelink, E.; Okello, R.C.; Peet, M.; Giovannoni, J.J.; Dorais, M. Tomato; CABI International: Wallingford, UK, 2020; pp. 138–178. [Google Scholar]
- De Cicco, A. The Fruit and Vegetable Sector in the EU—A Statistical Overview Eurostat 2019; Eurostat: Luxembourg, 2019.
- Sandhu, R.K.; Boyd, N.S.; Zotarelli, L.; Agehara, S.; Peres, N. Effect of planting density on the yield and growth of intercropped tomatoes and peppers in Florida. HortScience 2021, 56, 286–290. [Google Scholar] [CrossRef]
- Du, Y.-D.; Niu, W.-Q.; Gu, X.-B.; Zhang, Q.; Cui, B.-J. Water-and nitrogen-saving potentials in tomato production: A meta-analysis. Agric. Water Manag. 2018, 210, 296–303. [Google Scholar] [CrossRef]
- Machado, J.; Fernandes, A.; Fernandes, T.; Heuvelink, E.; Vasconcelos, M.; Carvalho, S. Drought and nitrogen stress effects and tolerance mechanisms in tomato: A review. In Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: London, UK, 2022; pp. 315–359. [Google Scholar]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Lu, Z.; Gao, L.; Guo, S.; Shen, Q. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front. Plant Sci. 2018, 9, 1143. [Google Scholar] [CrossRef] [PubMed]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kavoosi, G.; Balotf, S.; Eshghi, H.; Hasani, H. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply. Mol. Biol. Res. Commun. 2014, 3, 75. [Google Scholar]
- Lemaître, T.; Gaufichon, L.; Boutet-Mercey, S.; Christ, A.; Masclaux-Daubresse, C. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol. 2008, 49, 1056–1065. [Google Scholar] [CrossRef]
- Nacry, P.; Bouguyon, E.; Gojon, A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 2013, 370, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Plett, D.C.; Ranathunge, K.; Melino, V.J.; Kuya, N.; Uga, Y.; Kronzucker, H.J. The intersection of nitrogen nutrition and water use in plants: New paths toward improved crop productivity. J. Exp. Bot. 2020, 71, 4452–4468. [Google Scholar] [CrossRef]
- Cao, X.; Zhong, C.; Zhu, C.; Zhu, L.; Zhang, J.; Wu, L.; Jin, Q. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings. Plant Physiol. Biochem. 2018, 132, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Végh, K.R. Effect of soil water and nutrient supply on root characteristics and nutrient uptake of plants. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1991; Volume 24, pp. 143–148. [Google Scholar]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.; Blasco, B.; Constán-Aguilar, C.; Romero, L.; Ruiz, J. Variation in the use efficiency of N under moderate water deficit in tomato plants (Solanum lycopersicum) differing in their tolerance to drought. Acta Physiol. Plant. 2011, 33, 1861–1865. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; del Mar Rubio-Wilhelmi, M.; Ríos, J.J.; Blasco, B.; Rosales, M.Á.; Melgarejo, R.; Romero, L.; Ruiz, J.M. Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants. J. Plant Physiol. 2011, 168, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Yu, X.; Ottosen, C.-O.; Rosenqvist, E.; Zhao, L.; Wang, Y.; Yu, W.; Zhao, T.; Wu, Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017, 17, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.; Rodrigues, F.; Soares, C.; Martins, M.; Azenha, M.; Lino-Neto, T.; Santos, C.; Cunha, A.; Fidalgo, F. Impact of Combined Heat and Salt Stresses on Tomato Plants—Insights into Nutrient Uptake and Redox Homeostasis. Antioxidants 2022, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.; Vasconcelos, M.W.; Soares, C.; Fidalgo, F.; Heuvelink, E.; Carvalho, S.M.P. Enzymatic and Non-Enzymatic Antioxidant Responses of Young Tomato Plants (cv. Micro-Tom) to Single and Combined Mild Nitrogen and Water Deficit: Not the Sum of the Parts. Antioxidants 2023, 12, 375. [Google Scholar] [CrossRef]
- Ruggiero, A.; Punzo, P.; Van Oosten, M.J.; Cirillo, V.; Esposito, S.; Costa, A.; Maggio, A.; Grillo, S.; Batelli, G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. Front. Plant Sci. 2022, 13, 974048. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.-B.; Chu, L.-Y.; Jaleel, C.A.; Zhao, C.-X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Neményi, A.; Bőcs, A.; Pék, Z.; Helyes, L. Physiological Factors and their Relationship with the Productivity of Processing Tomato under Different Water Supplies. Water 2019, 11, 586. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Khan, M.J.; Ahmad, S.; Ali, A.; Khan, N.; Fahad, M.A. Effect of different nitrogen doses and deficit irrigation on nitrogen use efficiency and growth parameters of tomato crop under drip irrigation system. Sarhad J. Agric. 2020, 36, 319–323. [Google Scholar] [CrossRef]
- Sibomana, I.; Aguyoh, J.; Opiyo, A. Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill) plants. GJBB 2013, 2, 461–466. [Google Scholar]
- Khan, S.H.; Arsalan, K.; Uzma, L.; Shah, A.S.; Khan, M.A.; Muhammad, B.; Ali, M.U. Effect of drought stress on tomato cv. Bombino. J. Food Process. Technol. 2015, 6, 465. [Google Scholar] [CrossRef]
- Moles, T.M.; Mariotti, L.; De Pedro, L.F.; Guglielminetti, L.; Picciarelli, P.; Scartazza, A. Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiol. Biochem. 2018, 128, 24–31. [Google Scholar] [CrossRef]
- Selim, A.-F.H.; El-Nady, M.F. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronaut. 2011, 69, 387–396. [Google Scholar] [CrossRef]
- Pokluda, R.; Petříková, K.; Abdelaziz, M.E.; Jezdinský, A. Effect of water stress on selected physiological characteristics of tomatoes. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Scholberg, J.; McNeal, B.L.; Boote, K.J.; Jones, J.W.; Locascio, S.J.; Olson, S.M. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 2000, 92, 159–167. [Google Scholar] [CrossRef]
- Vos, J.; Van Der Putten, P.; Birch, C. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res. 2005, 93, 64–73. [Google Scholar] [CrossRef]
- Cannella, D.; Möllers, K.; Frigaard, N.-U.; Jensen, P.; Bjerrum, M.; Johansen, K.; Felby, C. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat. Commun. 2016, 7, 11134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baquedano, F.; Castillo, F. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 2006, 20, 689–700. [Google Scholar] [CrossRef]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep. 2018, 8, 2327. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Harris, P.J. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Tamburino, R.; Vitale, M.; Ruggiero, A.; Sassi, M.; Sannino, L.; Arena, S.; Costa, A.; Batelli, G.; Zambrano, N.; Scaloni, A. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol. 2017, 17, 40. [Google Scholar] [CrossRef] [Green Version]
- Soval-Villa, M.; Wood, C.; Guertal, E. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength. J. Plant Nutr. 2002, 25, 2129–2142. [Google Scholar] [CrossRef]
- Safavi-Rizi, V.; Franzaring, J.; Fangmeier, A.; Kunze, R. Divergent N deficiency-dependent senescence and transcriptome response in developmentally old and young Brassica napus leaves. Front. Plant Sci. 2018, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakari, S.A.; Zaidi, S.H.R.; Sunusi, M.; Dauda, K.D. Nitrogen deficiency regulates premature senescence by modulating flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling. J. Genet. Eng. Biotechnol. 2021, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, E.; Moreno, D.A.; Ferreres, F.; del Mar Rubio-Wilhelmi, M.; Ruiz, J.M. Differential responses of five cherry tomato varieties to water stress: Changes on phenolic metabolites and related enzymes. Phytochemistry 2011, 72, 723–729. [Google Scholar] [CrossRef]
- Khapte, P.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development; Sinauer Associates Incorporated: Sunderland, MA, USA, 2015. [Google Scholar]
- Pirasteh-Anosheh, H.; Saed-Moucheshi, A.; Pakniyat, H.; Pessarakli, M. Stomatal responses to drought stress. Water Stress Crop Plants Sustain. Approach 2016, 1, 24–40. [Google Scholar]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Nahar, K.; Ullah, S. Fruit Quality and Osmotic Adjustment of Four Tomato Cultivars under Drought Stress. Asian J. Soil Sci. Plant Nutr. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Qazi, H.A.; Jan, N.; Ramazan, S.; John, R. Protein modification in plants in response to abiotic stress. In Protein Modificomics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171–201. [Google Scholar]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Kapilan, R.; Vaziri, M.; Zwiazek, J.J. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51, 4. [Google Scholar] [CrossRef]
- Afzal, Z.; Howton, T.; Sun, Y.; Mukhtar, M.S. The roles of aquaporins in plant stress responses. J. Dev. Biol. 2016, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Urbanczyk-Wochniak, E.; Fernie, A.R. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J. Exp. Bot. 2005, 56, 309–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khavari-Nejad, R.A.; Najafi, F.; Tofighi, C. Diverse responses of tomato to N and P deficiency. Int. J. Agric. Biol. 2009, 11, 209–213. [Google Scholar]
- Coruzzi, G.M.; Zhou, L. Carbon and nitrogen sensing and signaling in plants: Emerging ‘matrix effects’. Curr. Opin. Plant Biol. 2001, 4, 247–253. [Google Scholar] [CrossRef]
- Martin, T.; Oswald, O.; Graham, I.A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability. Plant Physiol. 2002, 128, 472–481. [Google Scholar] [CrossRef]
- Aoyama, S.; Huarancca Reyes, T.; Guglielminetti, L.; Lu, Y.; Morita, Y.; Sato, T.; Yamaguchi, J. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant Cell Physiol. 2014, 55, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Valadier, M.-H.; Migge, A.; Becker, T.W. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 1998, 117, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, S.; Xiong, B.; Cao, B.; Deng, X. Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PLoS ONE 2015, 10, e0137026. [Google Scholar] [CrossRef]
- Ferrario-Méry, S.; Valadier, M.-H.; Foyer, C.H. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 1998, 117, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robredo, A.; Pérez-López, U.; Miranda-Apodaca, J.; Lacuesta, M.; Mena-Petite, A.; Muñoz-Rueda, A. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ. Exp. Bot. 2011, 71, 399–408. [Google Scholar] [CrossRef]
- Fukutoku, Y.; Yamada, Y. Sources of proline-nitrogen in water-stressed soybean (Glycine max). II. Fate of 15N-labelled protein. Physiol. Plant. 1984, 61, 622–628. [Google Scholar] [CrossRef]
- Kaiser, W.M.; Huber, S.C. Post-translational regulation of nitrate reductase: Mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 2001, 52, 1981–1989. [Google Scholar] [CrossRef] [Green Version]
- Lacrampe, N.; Lopez-Lauri, F.; Lugan, R.; Colombié, S.; Olivares, J.; Nicot, P.C.; Lecompte, F. Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. Ann. Bot. 2020, 127, 143–154. [Google Scholar] [CrossRef]
- Galangau, F.; Daniel-Vedele, F.; Moureaux, T.; Dorbe, M.-F.; Leydecker, M.-T.; Caboche, M. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol. 1988, 88, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Masclaux-Daubresse, C.; Reisdorf-Cren, M.; Orsel, M. Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol. 2008, 10, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Diaz, C.; Lemaître, T.; Christ, A.; Azzopardi, M.; Kato, Y.; Sato, F.; Morot-Gaudry, J.-F.; Le Dily, F.; Masclaux-Daubresse, C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol. 2008, 147, 1437–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malagoli, P.; Laine, P.; Rossato, L.; Ourry, A. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues. Ann. Bot. 2005, 95, 1187–1198. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.R.; Doelling, J.H.; Suttangkakul, A.; Vierstra, R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005, 138, 2097–2110. [Google Scholar] [CrossRef] [Green Version]
- Wingler, A.; Roitsch, T. Metabolic regulation of leaf senescence: Interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol. 2008, 10, 50–62. [Google Scholar] [CrossRef]
- Hunt, R. Basic Growth Analysis: Plant Growth Analysis for Beginners; Springer Science & Business Media: London, UK, 2012. [Google Scholar]
- Carvalho, D.R.A.; Vasconcelos, M.W.; Lee, S.; Vreugdenhil, D.; Heuvelink, E.; Carvalho, S.M.P. Moderate salinity improves stomatal functioning in rose plants grown at high relative air humidity. Environ. Exp. Bot. 2017, 143, 1–9. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Fidalgo, F.; Freitas, R.; Ferreira, R.; Pessoa, A.M.; Teixeira, J. Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ. Exp. Bot. 2011, 72, 312–319. [Google Scholar] [CrossRef]
- Mills, H.; Jones, J.B., Jr. Plant Analysis Handbook II; MicroMacro Publishing: Athens, GA, USA, 1996; pp. 185–414. [Google Scholar]
- Kaiser, W.M.; Brendle-Behnisch, E. Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis: I. Modulation in vivo by CO2 availability. Plant Physiol. 1991, 96, 363–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, B.M.; Stadtman, E. [130] Glutamine synthetase (Escherichia coli). In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1970; Volume 17, pp. 910–922. [Google Scholar]
- Mariz-Ponte, N.; Mendes, R.J.; Sario, S.; Correia, C.V.; Correia, C.M.; Moutinho-Pereira, J.; Melo, P.; Dias, M.C.; Santos, C. Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in Solanum lycopersicum. Plants 2021, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.W.; Du, S.T.; Zhang, Y.S.; Lin, X.Y.; Tang, C.X. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann. Bot. 2009, 104, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vaerman, J.; Saussoy, P.; Ingargiola, I. Evaluation of real-time PCR data. J. Biol. Regul. Homeost. Agents 2004, 18, 212–214. [Google Scholar] [PubMed]
Parameters | CTR | N Deficit | W Deficit | N+W Deficit | p-Value |
---|---|---|---|---|---|
Total DW (g) | 0.774 ± 0.051 a | 0.567 ± 0.040 b | 0.750 ± 0.028 a | 0.566 ± 0.037 b | 0.0010 |
Shoot DW (g) | 0.592 ± 0.037 a | 0.429 ± 0.029 b | 0.536 ± 0.030 ab | 0.402 ± 0.028 b | 0.0009 |
Root DW (g) | 0.182 ± 0.016 ab | 0.138 ± 0.012 b | 0.214 ± 0.013 a | 0.164 ± 0.011 ab | 0.0035 |
Shoot-to-Root Ratio (g/g dw) | 3.65 ± 0.15 a | 3.14 ± 0.09 ab | 2.55 ± 0.22 bc | 2.46 ± 0.11 c | <0.0001 |
Leaf Weight Ratio (g/g dw) | 0.62 ± 0.01 a | 0.60 ± 0.01 a | 0.55 ± 0.02 b | 0.55 ± 0.01 b | 0.0012 |
Leaf Area (cm2) | 61.29 ± 2.94 a | 42.08 ± 2.50 b | 58.94 ± 2.24 a | 39.40 ± 2.76 b | <0.0001 |
Specific Leaf Area (cm2/g dw) | 130 ± 9.91 | 125 ± 4.69 | 143 ± 5.42 | 125 ± 6.52 | 0.1092 |
Plant Height (cm) | 9.00 ± 0.73 | 8.83 ± 0.48 | 10.67 ± 0.61 | 9.33 ± 0.56 | 0.1606 |
Internode Number | 6.17 ± 0.40 | 6.00 ± 0.37 | 6.83 ± 0.40 | 5.83 ± 0.31 | 0.2728 |
Average Internode Length (cm) | 1.48 ± 0.14 | 1.49 ± 0.10 | 1.56 ± 0.04 | 1.61 ± 0.11 | 0.7753 |
Root Length (cm) | 23.5 ± 1.71 | 26.0 ± 2.12 | 26.4 ± 0.51 | 24.2 ± 2.85 | 0.7162 |
Chlorophyll Content (SPAD) | 61.7 ± 0.42 a | 53.0 ± 1.28 b | 61.04 ± 0.55 a | 50.82 ± 0.98 b | 0.0888 |
Nitrogen Use Efficiency (g dw/g N applied) | 14.9 ± 2.15 b | 26.4 ± 1.94 a | 17.0 ± 0.65 b | 25.7 ± 1.68 a | 0.0001 |
Nitrogen Accumulation (mg) | 11.6 ± 1.03 b | 7.58 ± 0.79 c | 16.15 ± 0.88 a | 7.38 ± 0.44 c | 0.0002 |
Water Use Efficiency (mg dw/mL) | 3.50 ± 0.12 | 3.73 ± 0.21 | 4.02 ± 0.13 | 3.46 ± 0.14 | 0.0682 |
Ψshoot (MPa) | −4.67 ± 0.40 | −5.50 ± 0.18 | −5.05 ± 0.59 | −4.67 ± 0.42 | 0.4725 |
Gene (Accession Number) | Primer Sequence (5′-3′) | Tann. | |
---|---|---|---|
Forward | Reverse | ||
rcbL | ATC TTG CTC GGG AAG GTA ATG | TCT TTC CAT ACC TCA CAA GCA G | 55.9 |
rcbS | TGA GAC TGA GCA CGG ATT TG | TTT AGC CTC TTG AAC CTC AGC | 55.7 |
GS1 NM_001319855.1 | ACA GCA CCA AGT CGA TGA GG | TGA TGT TGG CTG TTT CGT GC | 58.8 |
GS2.1 NM_001323669.1 | TGC ATT GTC CAC TTA GTT GGT T | TTC AGC ACC ACA GAG CTC CA | 57.7 |
GS2.1 NM_001323670.1 | TGC ATT GTC CAC TTA GGA GGT | CAC CAC AGA GCT CCA CAT CTT | 56.2 |
NR | CAA GCA ATC CAT CTC CCA T | CAT CTC TGT ATC GTC TTC AGG A | 53.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, J.; Vasconcelos, M.W.; Soares, C.; Fidalgo, F.; Heuvelink, E.; Carvalho, S.M.P. Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism. Plants 2023, 12, 1181. https://doi.org/10.3390/plants12051181
Machado J, Vasconcelos MW, Soares C, Fidalgo F, Heuvelink E, Carvalho SMP. Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism. Plants. 2023; 12(5):1181. https://doi.org/10.3390/plants12051181
Chicago/Turabian StyleMachado, Joana, Marta W. Vasconcelos, Cristiano Soares, Fernanda Fidalgo, Ep Heuvelink, and Susana M. P. Carvalho. 2023. "Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism" Plants 12, no. 5: 1181. https://doi.org/10.3390/plants12051181
APA StyleMachado, J., Vasconcelos, M. W., Soares, C., Fidalgo, F., Heuvelink, E., & Carvalho, S. M. P. (2023). Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism. Plants, 12(5), 1181. https://doi.org/10.3390/plants12051181