A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vine and Soil Sample Collection
2.3. Determination and Calculation Method
2.3.1. Selection of the Biomass Model
2.3.2. Base Diameter Measurement
2.3.3. Total Carbon Storage Calculation
2.3.4. Calculation of Carbon Sequestration
2.4. Data Analysis
3. Results
3.1. Establishment of an Allometric Model of Winegrape Biomass
3.2. Association between the Grapevine’s Biomass and Trunk Basal Diameter
3.3. Number of Grapevines of Different Ages in Different Base Diameter Ranges per Hectare
3.4. The Biomass of Various Organs in Individual Vines of Different Ages
3.5. The Amounts and Distribution Characteristics of Biomass Carbon Storage in Grapevines of Different Ages
3.6. Amount and Distribution Characteristics of Soil Carbon Storage in Vineyards of Different Ages
3.7. Differences in Total Carbon Storage in Vineyards of Different Ages
3.8. Carbon Sequestration of the Vineyard Ecosystem
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-de-la-Cuesta, D.; Mauritsen, T. Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 2019, 12, 902–905. [Google Scholar] [CrossRef]
- Goosse, H.; Crespin, E.; Montety, A.D.; Mann, M.E.; Renssen, H.; Timmermann, A. Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res. 2010, 115, D09108. [Google Scholar] [CrossRef]
- Karnauskas, K.B.; Miller, S.L.; Schapiro, A.C. Fossil Fuel Combustion Is Driving Indoor CO2 Toward Levels Harmful to Human Cognition. GeoHealth 2020, 4, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Ray, C.; Ming, X. Climate Change and Human Health: A Review of Allergies, Autoimmunity and the Microbiome. Int. J. Environ. Res. Public Health 2020, 17, 4814. [Google Scholar] [CrossRef]
- Wu, L.Z.; Zhao, C.Y.; Li, J.Y.; Yan, Y.Y.; Han, Q.F.; Li, C.F.; Zhu, J.T. Impact of extreme climates on land surface phenology in Central Asia. Ecol. Indic. 2023, 146, 109832. [Google Scholar] [CrossRef]
- Wu, L.W.; Zhang, Y.; Guo, X.; Ning, D.; Zhou, X.; Feng, J.; Yuan, M.M.; Liu, S.; Guo, J.; Zhou, J.; et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 2022, 7, 1054–1062. [Google Scholar] [CrossRef]
- Hallegatte, S.; Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Chang. 2017, 7, 250–256. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.G.; Leung, F. A framework to quantify impacts of elevated CO2 concentration, global warming and leaf area changes on seasonal variations of water resources on a river basin scale. J. Hydrol. 2019, 570, 508–522. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–323. [Google Scholar] [CrossRef]
- Yadav, V.S.; Yadav, S.S.; Gupta, S.R.; Meena, R.S.; Lal, R.; Sheoran, N.S.; Jhariya, M.K. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol. Eng. 2022, 176, 106541. [Google Scholar] [CrossRef]
- García Morote, F.A.; López Serrano, F.R.; Andrés, M.; Rubio, E.; González Jiménez, J.L.; de las Heras, J. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain. For. Ecol. Manag. 2012, 270, 85–93. [Google Scholar] [CrossRef]
- Xu, H.W.; Wang, X.K.; Qu, Q.; Zhai, J.Y.; Song, Y.H.; Qiao, L.L.; Liu, G.B.; Xue, S. Cropland abandonment altered grassland ecosystem carbon storage and allocation and soil carbon stability in the Loess Hilly Region, China. Land Degrad. Dev. 2020, 31, 1001–1013. [Google Scholar] [CrossRef]
- Fleishman, S.M.; Bock, H.W.; Eissenstat, D.M.; Centinari, M. Undervine groundcover substantially increases shallow but not deep soil carbon in a temperate vineyard. Agric. Ecosyst. Environ. 2021, 313, 107362. [Google Scholar] [CrossRef]
- Garcia-Diaz, A.; Marques, M.J.; Sastre, B.; Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 2018, 621, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Bethwell, C.; Burkhard, B.; Daedlow, K.; Sattler, C.; Reckling, M.; Zander, P. Towards an enhanced indication of provisioning ecosystem services in agro-ecosystems. Environ. Monit. Assess. 2021, 193, 269. [Google Scholar] [CrossRef]
- Buchadas, A.; Moreira, F.; McCracken, D.; Santos, J.L.; Lomba, A. Assessing the potential delivery of ecosystem services by farmlands under contrasting management intensities. Ecol. Soc. 2022, 27, 5. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Tellatin, S.; Myers, R.L. Cover crop impacts on US cropland carbon sequestration. J. Soil Water Conserv. 2018, 73, 117A–121A. [Google Scholar] [CrossRef]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability Assessment in Wine-Grape Growing in the New World: Economic, Environmental, and Social Indicators for Agricultural Businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef] [Green Version]
- OIV. OIV 2021 Report on the World Vitivinicultural Situation. 2021. Available online: https://www.oiv.int/what-we-do/country-report?oiv= (accessed on 10 October 2022).
- Wang, Z.L.; Cao, X.; Zhang, L.; Han, X.; Wang, Y.; Wang, H.; Li, H. Ecosystem Service Function and Assessment of the Value of Grape Industry in Soil-Burial Over-Wintering Areas. Horticulturae 2021, 7, 202. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.L.; Xue, T.T.; Gao, F.F.; Wei, R.T.; Wang, Y.; Han, X.; Li, H.; Wang, H. Combating Desertification through the Wine Industry in Hongsibu, Ningxia. Sustainability 2021, 13, 5654. [Google Scholar] [CrossRef]
- Marks, J.N.J.; Lines, T.E.P.; Penfold, C.; Cavagnaro, T.R. Cover crops and carbon stocks: How under-vine management influences SOC inputs and turnover in two vineyards. Sci. Total Environ. 2022, 831, 154800. [Google Scholar] [CrossRef]
- Zumkeller, M.; Yu, R.Z.; Torres, N.; Marigliano, L.E.; Zaccaria, D.; Kurtural, S.K. Site characteristics determine the effectiveness of tillage and cover crops on the net ecosystem carbon balance in California vineyard agroecosystems. Front. Plant Sci. 2022, 13, 1024606. [Google Scholar] [CrossRef]
- Nandal, A.; Yadav, S.S.; Rao, A.S.; Meena, R.S.; Lal, R. Advance methodological approaches for carbon stock estimation in forest ecosystems. Environ. Monit. Assess. 2023, 195, 315. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Ferreira, R.V.; Tavares, R.L.M.; Medeiros, S.F.D.; Silva, A.G.D.; Silva Júnior, J.F.D. Carbon stock and organic fractions in soil under monoculture and Sorghum bicolor–Urochloa ruziziensis intercropping systems. Bragantia 2020, 79, 425–433. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.C.; Li, X.H.; Li, Y.T.; Yang, X.D.; Lin, Z.A.; Song, Z.Z.; Cooper, J.M.; Zhao, B.Q. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Chiarawipa, R.; Wang, Y.; Zhang, X.Z.; Han, Z.H. Growing Season Carbon Dynamics and Stocks in Relation to Vine Ages under a Vineyard Agroecosystem in Northern China. Am. J. Plant Physiol. 2013, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wolff, M.W.; Alsina, M.M.; Stockert, C.M.; Khalsa, S.D.S.; Smart, D.R. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard. Soil Tillage Res. 2018, 175, 244–254. [Google Scholar] [CrossRef]
- Gargaglione, V.; Luis, P.P.; Gerardo, R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manag. 2010, 259, 1118–1126. [Google Scholar] [CrossRef]
- Singnar, P.; Das, M.C.; Sileshi, G.W.; Brahma, B.; Nath, A.J.; Das, A.K. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 2017, 395, 81–91. [Google Scholar] [CrossRef]
- Morandé, J.A.; Stockert, C.M.; Liles, G.C.; Williams, J.N.; Smart, D.R.; Viers, J.H. From berries to blocks: Carbon stock quantification of a California vineyard. Carbon Bal. Manag. 2017, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Smaje, C. The Strong Perennial Vision: A Critical Review. Agroecol. Sustain. Food 2015, 39, 471–499. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H.; Northup, B.K. Annual dynamics of carbon dioxide fluxes over a rainfed alfalfa field in the U.S. Southern Great Plains. Agric. For. Meteorol. 2018, 265, 208–217. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Hwang, H.Y.; Kim, P.J. Annual net carbon budget in rice soil. Nutr. Cycl. Agroecosystems 2019, 116, 31–40. [Google Scholar] [CrossRef]
- Sierra, C.A.; Crow, S.E.; Heimann, M.; Metzler, H.; Schulze, E.D. The climate benefit of carbon sequestration. Biogeosciences 2021, 18, 1029–1048. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, T.T.; Gao, F.F.; Wei, R.T.; Wang, Z.L.; Li, H.; Wang, H. Carbon Storage Distribution Characteristics of Vineyard Ecosystems in Hongsibu, Ningxia. Plants 2021, 10, 1199. [Google Scholar] [CrossRef]
- China Meteorological Administration. Climate Resources and Meteorological Conditions in Ningxia Province. 2022. Available online: http://www.cma.gov.cn (accessed on 20 May 2022).
- Enang, R.K.; Yerima, B.P.K.; Kome, G.K.; Ranst, E.V. Assessing the Effectiveness of the Walkley-Black Method for Soil Organic Carbon Determination in Tephra Soils of Cameroon. Commun. Soil Sci. Plan. 2018, 49, 2379–2386. [Google Scholar] [CrossRef]
- Zhu, D.H.; Hui, D.F.; Wang, M.Q.; Yang, Q.; Li, Z.; Huang, Z.J.; Yuan, H.M.; Yu, S.X. Allometric growth and carbon storage in the mangrove Sonneratia apetala. Wetlands Ecol. Manag. 2021, 29, 129–141. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.L. Comparison of CAR and VAR Biomass Models. J. Biol. Sci. 2001, 1, 529–531. [Google Scholar] [CrossRef] [Green Version]
- Pilli, R.; Anfodillo, T.; Carrer, M. Towards a functional and simplified allometry for estimating forest biomass. For. Ecol. Manag. 2006, 237, 583–593. [Google Scholar] [CrossRef]
- Alvarez, R.; Berhongaray, G. Soil organic carbon sequestration potential of Pampean soils: Comparing methods and estimation for surface and deep layers. Soil Res. 2021, 59, 346–358. [Google Scholar] [CrossRef]
- Williams, J.N.; Morandé, J.A.; Vaghti, M.G.; Medellin-Azuara, J.; Viers, J.H. Ecosystem services in vineyard landscapes: A focus on aboveground carbon storage and accumulation. Carbon Balance Manag. 2020, 15, 23. [Google Scholar] [CrossRef]
- McNicol, I.M.; Berry, N.J.; Bruun, T.B.; Hergoualc’h, K.; Mertz, O.; Neergaard, A.D.; Ryan, C.M. Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos. For. Ecol. Manag. 2015, 357, 104–116. [Google Scholar] [CrossRef]
- Vejpustková, M.; Zahradník, D.; Čihák, T.; Šrámek, V. Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J. For. Sci. 2015, 61, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Miranda, C.; Santesteban, L.G.; Escalona, J.M.; Herralde, F.D.; Aranda, X.; Nadal, M.; Intrigliolo, D.S.; Castel, J.R.; Royo, J.B.; Medrano, H. Allometric relationships for estimating vegetative and reproductive biomass in grapevine (Vitis vinifera L.). Aust. J. Grape Wine R. 2017, 23, 441–451. [Google Scholar] [CrossRef]
- Deurer, M.; Müller, K.; Kim, I.; Huh, K.Y.; Young, I.; Jun, G.I.; Clothier, B.E. Can minor compaction increase soil carbon sequestration? A case study in a soil under a wheel-track in an orchard. Geoderma 2012, 183–184, 74–79. [Google Scholar] [CrossRef]
- Payen, F.T.; Sykes, A.; Aitkenhead, M.; Alexander, P.; Moran, D.; MacLeod, M. Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. J. Clean. Prod. 2021, 290, 125736. [Google Scholar] [CrossRef]
- Tezza, L.; Vendrame, N.; Pitacco, A. Disentangling the carbon budget of a vineyard: The role of soil management. Agric. Ecosyst. Environ. 2019, 272, 52–62. [Google Scholar] [CrossRef]
- Merriman, L.S.; Moore, T.L.C.; Wang, J.W.; Osmond, D.L.; Al-Rubaei, A.M.; Smolek, A.P.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones. Sci. Total Environ. 2017, 583, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.J.; Allakhverdiev, S.I.; Yang, X.H.; Safdar, M.E.; Yang, W.Y.; Liu, W.G. Photosynthesis research under climate change. Photosynth Res. 2021, 150, 5–19. [Google Scholar] [CrossRef]
Vine Age | Allometrics | Leaves | Fruit | Stem | Canes | Perennial Branches | Roots |
---|---|---|---|---|---|---|---|
5-year-old | Model | y = 0.0481x1.1361 | y = 0.0459x0.9478 | y = 0.0058x1.1655 | y = 0.0537x0.8719 | y = 0.1267x0.9286 | y = 0.275x0.763 |
Determination coefficient | 0.8258 * | 0.9091 * | 0.8772 * | 0.9002 * | 0.907 * | 0.8077 * | |
10-year-old | Model | y = 0.0080x2.4902 | y = 0.0493x1.343 | y = 0.0216x0.792 | y = 0.0018x3.6312 | y = 0.0079x3.2602 | y = 0.0290x2.3563 |
Determination coefficient | 0.9113 * | 0.9406 ** | 0.9728 ** | 0.9360 ** | 0.9313 ** | 0.8077 * | |
15-year-old | Model | y = 0.0018x2.9243 | y = 0.0208x2.0449 | y = 0.0004x2.9118 | y = 0.0073x2.2897 | y = 0.0851x1.3100 | y = 0.0436x1.6383 |
Determination coefficient | 0.9127 ** | 0.9587 ** | 0.9019 * | 0.9176 ** | 0.9122 ** | 0.9692 ** | |
20-year-old | Model | y = 0.0190x1.5904 | y = 0.0076x2.2211 | y = 0.0044x1.5712 | y = 0.0250x1.5015 | y = 0.0223x2.2023 | y = 0.1681x1.2044 |
Determination coefficient | 0.9677 ** | 0.8921 * | 0.9782 ** | 0.9279 ** | 0.9695 ** | 0.9386 ** |
Vine-Age | Organs | Total Biomass of Each Organ (kg·ha−1) | Carbon Content (g/kg) | Carbon Storage (t·ha−1) | Percentage of Total (%) | Total Carbon Storage (t·ha−1) |
---|---|---|---|---|---|---|
5-year-old | Leaves | 623.40 | 432.38 ± 4.64 b | 0.27 | 12.22 | 2.21 |
Fruit | 473.27 | 411.76 ± 6.44 c | 0.19 | 8.83 | ||
Stem | 77.91 | 408.02 ± 10.58 c | 0.03 | 1.44 | ||
Canes | 505.14 | 441.72 ± 7.88 a | 0.22 | 10.11 | ||
Perennial branches | 1276.38 | 421.00 ± 5.35 c | 0.54 | 24.35 | ||
Roots | 2268.55 | 418.72 ± 10.07 c | 0.95 | 43.05 | ||
10-year-old | Leaves | 970.31 | 433.46 ± 6.42 a | 0.42 | 10.67 | 3.94 |
Fruit | 1115.31 | 414.54 ± 12.96 b | 0.46 | 11.73 | ||
Stem | 214.91 | 416.02 ± 9.43 b | 0.09 | 2.27 | ||
Canes | 1202.47 | 442.32 ± 6.12 a | 0.53 | 13.49 | ||
Perennial branches | 3019.70 | 409.84 ± 7.42 b | 1.24 | 31.40 | ||
Roots | 2885.49 | 415.72 ± 10.75 b | 1.20 | 30.44 | ||
15-year-old | Leaves | 1041.61 | 445.27 ± 5.67 a | 0.46 | 10.49 | 4.42 |
Fruit | 2476.01 | 410.79 ± 11.73 c | 1.02 | 23.00 | ||
Stem | 226.29 | 408.12 ± 12.11 c | 0.09 | 2.09 | ||
Canes | 1346.32 | 453.12 ± 2.16 a | 0.61 | 13.79 | ||
Perennial branches | 2754.14 | 430.27 ± 8.09 b | 1.19 | 26.79 | ||
Roots | 2519.06 | 418.68 ± 7.05 c | 1.05 | 23.85 | ||
20-year-old | Leaves | 1096.99 | 430.46 ± 6.61 bc | 0.47 | 8.60 | 5.49 |
Fruit | 1383.64 | 422.45 ± 4.01 c | 0.58 | 10.64 | ||
Stem | 245.35 | 404.00 ± 7.70 d | 0.10 | 1.80 | ||
Canes | 1228.64 | 455.19 ± 5.98 a | 0.56 | 10.18 | ||
Perennial branches | 3922.72 | 423.59 ± 8.94 c | 1.66 | 30.25 | ||
Roots | 4829.06 | 438.26 ± 9.06 b | 2.12 | 38.53 |
Vine-Age | Soil Layer (cm) | Bulk Density (g/cm3) | Carbon Content (g/kg) | Carbon Storage (t·hm−2) | Percentage of Total (%) |
---|---|---|---|---|---|
5-year-old | 0–20 | 1.16 ± 0.05 b | 5.81 ± 0.59 a | 13.46 ± 1.25 a | 28.03 |
20–40 | 1.26 ± 0.05 ab | 5.24 ± 0.44 a | 12.96 ± 0.94 a | 27.00 | |
40–60 | 1.35 ± 0.05 a | 3.91 ± 0.46 b | 10.68 ± 1.01 a | 22.24 | |
60–100 | 1.34 ± 0.05 ab | 2.06 ± 0.58 c | 10.91 ± 2.77 a | 22.73 | |
10-year-old | 0–20 | 1.19 ± 0.08 b | 6.18 ± 0.22 a | 14.94 ± 0.80 a | 28.30 |
20–40 | 1.33 ± 0.05 a | 5.20 ± 0.27 b | 13.77 ± 0.86 a | 26.09 | |
40–60 | 1.33 ± 0.06 a | 4.78 ± 0.34 c | 12.31 ± 0.91 b | 23.33 | |
60–100 | 1.35 ± 0.04 a | 2.23 ± 0.12 d | 11.76 ± 1.06 b | 22.28 | |
15-year-old | 0–20 | 1.14 ± 0.07 b | 6.73 ± 0.15 a | 15.24 ± 0.33 a | 27.88 |
20–40 | 1.27 ± 0.06 a | 5.36 ± 0.13 b | 14.29 ± 0.80 a | 26.14 | |
40–60 | 1.29 ± 0.04 a | 4.82 ± 0.17 c | 12.53 ± 0.66 b | 22.91 | |
60–100 | 1.29 ± 0.02 a | 2.45 ± 0.29 d | 12.62 ± 1.58 b | 23.07 | |
20-year-old | 0–20 | 1.20 ± 0.04 c | 6.37 ± 0.50 a | 15.80 ± 1.05 a | 28.43 |
20–40 | 1.25 ± 0.05 b | 5.75 ± 0.16 b | 14.38 ± 0.92 b | 25.88 | |
40–60 | 1.26 ± 0.05 b | 4.80 ± 0.22 c | 12.31 ± 0.61 c | 22.16 | |
60–100 | 1.29 ± 0.05 a | 2.48 ± 0.16 d | 13.08 ± 1.05 c | 23.53 |
Vine Age Gradient | Vines | Soil | Total Carbon Sequestration (t·ha−1·a−1) | ||
---|---|---|---|---|---|
Increment of Carbon Storage (t·ha−1) | Carbon Sequestration (t·ha−1·a−1) | Increment of Carbon Storage (t·ha−1) | Carbon Sequestration (t·ha−1·a−1) | ||
5 year–10 year | 1.73 | 0.35 | 4.78 | 0.96 | 1.31 |
10 year–15 year | 0.48 | 0.10 | 1.89 | 0.38 | 0.28 |
15 year–20 year | 1.07 | 0.21 | 0.89 | 0.18 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, R.; Zhu, Z.; Zhang, L.; Li, H.; Wang, H. A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards. Plants 2023, 12, 997. https://doi.org/10.3390/plants12050997
Song R, Zhu Z, Zhang L, Li H, Wang H. A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards. Plants. 2023; 12(5):997. https://doi.org/10.3390/plants12050997
Chicago/Turabian StyleSong, Rui, Zongwen Zhu, Liang Zhang, Hua Li, and Hua Wang. 2023. "A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards" Plants 12, no. 5: 997. https://doi.org/10.3390/plants12050997
APA StyleSong, R., Zhu, Z., Zhang, L., Li, H., & Wang, H. (2023). A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards. Plants, 12(5), 997. https://doi.org/10.3390/plants12050997