Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge
Abstract
:1. Introduction
2. Polyphenols
2.1. Classification
2.2. Types
2.2.1. Phenolic Acids
2.2.2. Flavonoids
Flavone and Flavonols
Isoflavones
Flavanones
Anthocyanins
2.2.3. Stilbenes
2.2.4. Lignans and Lignin
2.2.5. Tannins
2.3. Sources
3. Impacts of Polyphenols on Human Health
3.1. Antioxidant Activity
Polyphenols | Food Source | Content | Unit | Reference |
---|---|---|---|---|
Total phenols | Berry | 85.80–1097.44 | µg GAE/mL) | [56] |
Oat | 7.6–16.8 | mg GAE/g | [60] | |
Barley | 2890–3922 | μg FAE/g | [61] | |
Wheat | 1650–2095 | µg GAE/g | [62] | |
Wheat | 160 | µmol FAE/100 g | [63] | |
Rice | 20–47.84 | mg GAE/g | [64] | |
Rye | 0.984–3.369 | mg GAE/g | [65] | |
Corn | 451–4899 | mg/kg DW | [66] | |
Pearl millet | 2394–3137 | µg GAE/g | [67] | |
Broccoli | 40–100 | mg/L | [68] | |
Kiwi | 600–1000 | mg/L | [68] | |
Black carrot | 311.5 | mg/100 g | [69] | |
Grape | 9.95–146.32 | mg/100 g | [70] | |
Tea | 152–243 | mg GAE/g | [71] | |
Tomato | 1422–1564 | mg/100 g | [72] | |
Onion | 1221–1483 | mg/100 g | [72] | |
Apple | 905–1030 | mg/100 g | [72] | |
Phenolic acids | ||||
Caffeic acid | Grape | 9–138.21 | mg/100 g | [70] |
p-coumaric acid | Corn flour | 18.69 | μg/g | [73] |
Rye | 0.343–1.280 | mg/kg | [65] | |
Barley | 14.61–583.54 | μg/g | [74] | |
Finger millet | 1.81 | μg/g | [75] | |
Ferulic acid | Corn flour | 155.69 | μg/g | [73] |
Wheat | 25.40 | μg/g | [76] | |
Barley | 5.61–13.88 | μg/g | [74] | |
Rye | 1.903–6.227 | mg/kg | [65] | |
Pearl millet | 160 | μg/g | [77] | |
Coffee | 0.09–0.14 | g/kg | [78] | |
Broccoli | 1.95 | μg/g | [79] | |
Banana | 0.49–0.53 | g/kg | [80] | |
Mango | 0.75 | g/kg | [80] | |
Catechins | Rice | 0.26–3.98 | mg/100 g | [81] |
Tea | 3145.04–13,986.41 | mg/100 g | [82] | |
Theaflavins | Tea | 4.07–1109.78 | mg/100 g | [82] |
Gallic acid | Rice | 5.43 | mg/100 g | [81] |
Pearl millet | 120 | μg/g | [77] | |
Black rice | 1.4 | mg/g | [83] | |
Barley bran | 405.5 | μg/g | [84] | |
Vanillic acid | Rye | 1.086–3.130 | mg/kg | [65] |
Benzoic acid | Barley | 8.81–528.56 | μg/g | [74] |
3,4 dimethoxybenzoic acid | Barley | 18.51–110.85 | μg/g | [74] |
Ascorbic acid | Barley bran | 20.44 | μg/g | [84] |
Pearl millet | 320 | μg/g | [77] | |
Dried litchi peel | 225.98 | mg/100 g | [85] | |
Total flavonoids | Berry | 17.45–67.37 | µg RE/mL | [56] |
Wheat | 75–121 | µg CE/g | [62] | |
Barley | 1968–2198 | μg FAE/g | [61] | |
Rice | 3.35- 7.14 | µg RE/g | [64] | |
Rye | 0.042–0.203.36 | mg QE/g | [65] | |
Pearl millet | 1721–2484 | µg CE/g) | [67] | |
Grape | 20.15–46.27 | mg/100 g | [70] | |
Flavonoids | ||||
Kaempferol | Grape | 15.31–43.80 | mg/100 g | [70] |
Corn flour | 14.58 | μg/g | [73] | |
Broccoli | 3.42 | μg/g | [79] | |
Quercetin | Oat | 12.2–51.6 | μg/g | [86] |
Buckwheat | 3.1–6.71 | μg/g | [86] | |
Anthocyanins | Berry | 8.08–21.28 | µgC3GE/mL | [56] |
Black carrot | 837.9 | mg/100 g | [87] | |
Rice | 0.26–256.5 | mg/100 g | [81] | |
Corn | 307–321 | mg/kg DW | [66] | |
Black wheat | 185.8 | mg/kg | [48] | |
Pigmented maize | 23 to 252 | μg/g | [88] |
Sources | Compounds | Concentrations | Assays | Main Findings | Reference |
---|---|---|---|---|---|
Vaccinium corymbosum L. (Blueberry fruits) | Anthocyanins Phenolic acids Flavonols | 200 g/day | Ferric reducing antioxidant potential (FRAP). Total radical-trapping antioxidant parameter (TRAP). Total antioxidant capacity (TAC) assays. | The ingestion of blueberry fruits enriched with phenolic compounds contributes to the inducing of an important increase of endogenous plasmatic antioxidant protection. | [96] |
Thymus lotocephalus | Caffeic acids Rosmarinic acids Apigenin Luteolin |
| Trolox equivalent antioxidant capacity (TEAC) assay. Oxygen radical absorbance capacity (ORAC) assay. Fe2+ chelation assay. Lipid peroxidation assay. | The phenolic compounds found in Thymus lotocephalus are characterized by efficient antioxidant activities. The use of different antioxidant assays (ORAC and TEAC assays) can neutralize free radicals by leading to the production of complexes with Fe2+ and then the protection of mousse brains against lipid peroxidation induced by Fe2+. | [97] |
Artemisia campestris L. | Condensed tannin Other phenolic compounds |
| DPPH radical scavenging activity. Total antioxidant capacity by phosphomolybdenum. | The Artemisia campestris enriched with phenolic compounds have demonstrated their excellent antioxidant activity, with radical-scavenging activity (85.48%). Further, the polyphenol compounds exhibited a strong total antioxidant capacity (55.75 mg AAE/g DW). | [91] |
Thymelaea hirsuta L. | Condensed tannin Other phenolic compounds |
| DPPH radical scavenging activity. Total antioxidant capacity by phosphomolybdenum. | The phenolic compounds and condensed tannin found in the plant of Thymelaea hirsuta exhibited an important antioxidant activity, which was demonstrated by their highest DPPH radical-scavenging activity (85.8%) and their excellent total antioxidant capacity (57.54 mg AAE/g DW). | [91] |
Ipomoea batatas [L.] Lam (leaves harvested at BBCH stage 51 of development). | Phenolic acids:
| 5026.8 mg/100 g−1 DM | Ferric-Reducing/antioxidant power assay (FRAP). ABTS assay. DPPH assay. | The results of this study have demonstrated that important correlations existed between the level of polyphenol compounds and antioxidant properties determined by means of ABTS, DPPH, and FRAP assays. | [98] |
Ugni molinae | Tannins Flavonoids Phenolic acids | 10 mg/mL | DPPH assay. TBARS assay. TEAC-CUPRAC | The results of this study reported that the plant extract enriched with phenolic compounds was characterized by a considerable in vitro antioxidant activity via the DPPH assay. The consumption of leaves of Ugni molinae contribute to the decrease of TBARS and the increase of plasma antioxidant capacity (TEAC-CUPRAC). | [99] |
3.2. Antihypertensive Activity
3.3. Immunomodulatory Activity
3.4. Antimicrobial Activity
Source | Compound | Main Findings | Reference |
---|---|---|---|
Turmeric powder | Polyphenol | Grinding, i.e., reducing the particle size increased the antimicrobial activity. Polyphenol content also improved efficiency. | [158] |
Matricariaaurea | Phenols | Gram positive bacteria were inhibited (MIC—0.4–12.5 mg/mL) and gram negative bacteria were found resistant (MIC—25–50 mg/mL). | [159] |
Grape seed extract and pine bark extract | Gallic acid, vanillic acid, caffeic acid, ferullic acid | Inhibited E. coli, Salmonella, L. monocytogenes, and A. hydrophila. | [160] |
Grapefruit seed extract | Naringin | Effective inhibition of pathogenic indicator organism was observed at lower concentration in comparison with positive control. | [161] |
Rumextingitanus leaves extract | Total phenolics and flavonoids | Ethyl acetate extract inhibited gram positive (MIC—0.312–10 mg/mL) and pathogenic microorganisms. | [162] |
American cranberry (Vacciniummacrocarpon) fruit pomace | Polyphenols (34%)––catechins, procatechuic acid, chlorogenic acid, epicatechin, trans-cinnamic acid | Extract (2–8 mg/mL) exhibited significant inhibition of 12 strains of Listeria strains. In meat, a model protein rich matrix had impact on antibacterial activity. | [163] |
Arugula (Erucasativa) seeds extract | Flavonoids | Methanol extract inhibited S. aureus and B. Cereus (MIC- 80 µg/mL). | [164] |
Olive leaf extract | Luteolin-7-o-Glucoside, Luteolin-4-o-Glucoside, Oleuropein, and Vabascoside | Complete inhibition of L. monocytogenes and S. entertidis and E. coli (95%) was obtained using 62.5 mg/mL extract. Biofilm formation of L. monocytogenes and S. entertidis was also inhibited. | [165] |
Clove essential oil | Phenols | Encapsulation masked the strong odor of clove limiting application. In vitro inhibition of S. aureus, E. coli, and S. Typhimurium. High total phenolic composition (9.07 GAE mg/g). | [154] |
3.5. Anticancer Activity
Sources | Compounds | Assays | Main Findings | Reference |
---|---|---|---|---|
|
|
| In vitro: EGCG can inhibit the migration of B16-F3m cells as well as their invasion. Moreover, there is inhibition by the EGCG of the homotypic cell aggregation and also the activity of MMP-9 (matrix metalloproteinase-9) as well as the tyrosine phosphorylation of focal adhesion kinase (FAK). In vivo: EGCG can decrease lung metastases in mice bearing B16-F3m melanomas but it can increase the survival rate of melanoma-bearing mice. | [189] |
|
|
| In vitro: the use of AIF can contribute to the inhibition of the migration, invasion, and proliferation of tumors. In vivo: the AIF participates in the inhibition of mRNA expressions of MMP-2, MMP-9 as well as the inhibition of lung metastasis. | [190] |
|
|
| In vitro: the use of phenolic compounds, apigenin and/or quercetin, can inhibit the TNF-α-induced VCAM-1 expression and decrease the adhesion of melanoma cells to lung sections. In vivo: inhibition of lung metastasis and the melanoma cell adhesion to vascular lung endothelium. | [191] |
|
|
| In vitro: the treatment with curcumin can increase the tumor-suppressor genes tissue inhibitor metalloproteinase (TIMP-2) as well as the expression of E-cadherin and nonmetastatic gene 23 (Nm23). Moreover, this bioactive compound can contribute to the decrease of the binding of the treated cells to 4 extracellular matrix (ECM) proteins. Furthermore, there is a reduction of the binding to vitronectin, fibronectin, and collagen IV. Moreover, decrease in the expression of α5β1 and α (v) β3 integrin receptors. In vivo: the curcumin can contribute to the decrease of lung metastasis. | [192] |
|
|
|
| [193] |
4. Antiviral Activity of Polyphenols against COVID-19
5. Conclusions and Future Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.-K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent Developments of Natural Antimicrobials and Antioxidants on Fish and Fishery Food Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef]
- Inanli, A.G.; Tümerkan, E.T.A.; El Abed, N.; Regenstein, J.M.; Özogul, F. The Impact of Chitosan on Seafood Quality and Human Health: A Review. Trends Food Sci. Technol. 2020, 97, 404–416. [Google Scholar] [CrossRef]
- Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Patra, J.K.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; et al. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol. Res. 2020, 151, 104584. [Google Scholar] [CrossRef]
- Cutrim, C.S.; Cortez, M.A.S. A Review on Polyphenols: Classification, Beneficial Effects and Their Application in Dairy Products. Int. J. Dairy Technol. 2018, 71, 564–578. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Mesaik, A.M.; Muhammad, A.; Chukwuma, C.I.; Manhas, N.; Singh, P.; Aremu, O.S.; Islam, M.S. Flowers of Clerodendrum Volubile Exacerbate Immunomodulation by Suppressing Phagocytic Oxidative Burst and Modulation of COX-2 Activity. Biomed. Pharmacother. 2016, 83, 1478–1484. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of Polyphenols from the By-Products of Plant Food Processing and Application as Valuable Food Ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Liu, J.; Henkel, T. Traditional Chinese Medicine (TCM): Are Polyphenols and Saponins the Key Ingredients Triggering Biological Activities? Curr. Med. Chem. 2002, 9, 1483–1485. [Google Scholar] [CrossRef]
- Haslam, E.; Lilley, T.; Cai, Y.; Martin, R.; Mangnolato, D. Traditional Herbal Medicines-the Role of Polyphenols. Planta Med. 1989, 55, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Tyagi, A.K.; Deshmukh-Taskar, P.; Hinojosa, M.; Prasad, S.; Aggarwal, B.B. Downregulation of Tumor Necrosis Factor and Other Proinflammatory Biomarkers by Polyphenols. Arch. Biochem. Biophys. 2014, 559, 91–99. [Google Scholar] [CrossRef]
- Kim, Y.H.; Won, Y.-S.; Yang, X.; Kumazoe, M.; Yamashita, S.; Hara, A.; Takagaki, A.; Goto, K.; Nanjo, F.; Tachibana, H. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4+ T Cell and Natural Killer Cell Activities. J. Agric. Food Chem. 2016, 64, 3591–3597. [Google Scholar] [CrossRef]
- Hamadani, J.D.; Hasan, M.I.; Baldi, A.J.; Hossain, S.J.; Shiraji, S.; Bhuiyan, M.S.A.; Mehrin, S.F.; Fisher, J.; Tofail, F.; Tipu, S.M.U.; et al. Immediate Impact of Stay-at-Home Orders to Control COVID-19 Transmission on Socioeconomic Conditions, Food Insecurity, Mental Health, and Intimate Partner Violence in Bangladeshi Women and Their Families: An Interrupted Time Series. Lancet Glob. Health 2020, 8, e1380–e1389. [Google Scholar] [CrossRef]
- Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A.F.; Ali, M.; Abdalla, M.; Ibrahim, I.M.; Elfiky, A.A. Caffeic Acid Derivatives (CAFDs) as Inhibitors of SARS-CoV-2: CAFDs-Based Functional Foods as a Potential Alternative Approach to Combat COVID-19. Phytomedicine 2021, 85, 153310. [Google Scholar] [CrossRef]
- Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y. Potential Compound from Herbal Food of Rhizoma Polygonati for Treatment of COVID-19 Analyzed by Network Pharmacology: Viral and Cancer Signaling Mechanisms. J. Funct. Foods 2021, 77, 104149. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V. Polyphenols in Foods Are More Complex than Often Thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Dias, R.; Pereira, C.B.; Pérez-Gregorio, R.; Mateus, N.; Freitas, V. Recent Advances on Dietary Polyphenol’s Potential Roles in Celiac Disease. Trends Food Sci. Technol. 2021, 107, 213–225. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, V.; Ferreira, C.D.; Hoffmann, J.F.; Chaves, F.C.; Vanier, N.L.; de Oliveira, M.; Elias, M.C. Cooking Quality Properties and Free and Bound Phenolics Content of Brown, Black, and Red Rice Grains Stored at Different Temperatures for Six Months. Food Chem. 2018, 242, 427–434. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar]
- Tsimogiannis, D.; Oreopoulou, V. Classification of Phenolic Compounds in Plants. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–284. [Google Scholar]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, P.; Correa-Betanzo, J.; Paliyath, G. Berries and Related Fruits. In Encyclopedia of food and health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 364–371. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Kanwal, Q.; Hussain, I.; Siddiqui, L.H.; Javaid, A. Antimicrobial Activity Screening of Isolated Flavonoids from Azadirachta Indica Leaves. J. Serb. Chem. Soc. 2011, 76, 375–384. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q.; Bi, K. Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Archivio, M.D.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann.-Ist. Super. Sanita 2007, 43, 348. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Stobiecki, M.; Malosse, C.; Kerhoas, L.; Wojlaszek, P.; Einhorn, J. Detection of Isoflavonoids and Their Glycosides by Liquid Chromatography/Electrospray Ionization Mass Spectrometry in Root Extracts of Lupin (Lupinus albus). Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 1999, 10, 198–207. [Google Scholar] [CrossRef]
- He, X.-G. On-Line Identification of Phytochemical Constituents in Botanical Extracts by Combined High-Performance Liquid Chromatographic–Diode Array Detection–Mass Spectrometric Techniques. J. Chromatogr. A 2000, 880, 203–232. [Google Scholar] [CrossRef]
- Cuyckens, F.; Claeys, M. Mass Spectrometry in the Structural Analysis of Flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From Biosynthesis to Health Benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Hollman, P.C.H.; Arts, I.C.W. Flavonols, Flavones and Flavanols–Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1081–1093. [Google Scholar] [CrossRef]
- Robards, K.; Li, X.; Antolovich, M.; Boyd, S. Characterisation of Citrus by Chromatographic Analysis of Flavonoids. J. Sci. Food Agric. 1997, 75, 87–101. [Google Scholar] [CrossRef]
- Malla, A.; Ramalingam, S. Health Perspectives of an Isoflavonoid Genistein and Its Quantification in Economically Important Plants. In Role of Materials Science in Food Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 353–379. [Google Scholar]
- Bolca, S. Bioavailability of Soy-Derived Isoflavones and Human Breast Cancer. In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1241–1256. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Ho, C.-T.; Pan, M.-H. Bioavailability and Health Benefits of Major Isoflavone Aglycones and Their Metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 285–323. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.K.; Dangles, O. A Comprehensive Review on Flavanones, the Major Citrus Polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Lagana, A. Flavonoids: Chemical Properties and Analytical Methodologies of Identification and Quantitation in Foods and Plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef]
- de Gaulejac, N.S.-C.; Glories, Y.; Vivas, N. Free Radical Scavenging Effect of Anthocyanins in Red Wines. Food Res. Int. 1999, 32, 327–333. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Extraction of Purple Corn (Zea mays L.) Cob Pigments and Phenolic Compounds Using Food-Friendly Solvents. J. Cereal Sci. 2018, 80, 87–93. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Lamy, E.; Pinheiro, C.; Rodrigues, L.; Capela-Silva, F.; Lopes, O.; Tavares, S.; Gaspar, R. Determinants of Tannin-Rich Food and Beverage Consumption: Oral Perception vs. Psychosocial Aspects; Nova Publishers: New York, NY, USA, 2016. [Google Scholar]
- Jude, S.; Gopi, S. Multitarget Approach for Natural Products in Inflammation. In Inflammation and Natural Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 83–111. [Google Scholar]
- Li, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Abraham, R.E.; Su, P.; Zhang, W. Seaweed and Seaweed-Derived Metabolites as Prebiotics. Adv. Food Nutr. Res. 2020, 91, 97–156. [Google Scholar]
- Qin, Y. Applications of Bioactive Seaweed Substances in Functional Food Products. In Bioactive Seaweeds for Food Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 111–134. [Google Scholar]
- Reynoso-Camacho, R.; Sotelo-González, A.M.; Patiño-Ortiz, P.; Rocha-Guzmán, N.E.; Pérez-Ramírez, I.F. Berry By-Products Obtained from a Decoction Process Are a Rich Source of Low-and High-Molecular Weight Extractable and Non-Extractable Polyphenols. Food Bioprod. Process. 2021, 127, 371–387. [Google Scholar] [CrossRef]
- Kumarappan, C.; Thilagam, E.; Mandal, S.C. Antioxidant Activity of Polyphenolic Extracts of Ichnocarpus Frutescens. Saudi J. Biol. Sci. 2012, 19, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant Mechanism of Tea Polyphenols and Its Impact on Health Benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Lee, C.Y.; Nanah, C.N.; Held, R.A.; Clark, A.R.; Huynh, U.G.; Maraskine, M.C.; Uzarski, R.L.; McCracken, J.; Sharma, A. Effect of Electron Donating Groups on Polyphenol-Based Antioxidant Dendrimers. Biochimie 2015, 111, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kaur, M.; Sogi, D.S.; Purewal, S.S. A Comparative Study of Phytochemicals, Antioxidant Potential and in-Vitro DNA Damage Protection Activity of Different Oat (Avena sativa) Cultivars from India. J. Food Meas. Charact. 2019, 13, 347–356. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Punia, S. Enhancement of Bioactive Compounds in Barley Cultivars by Solid Substrate Fermentation. J. Food Meas. Charact. 2017, 11, 1355–1361. [Google Scholar] [CrossRef]
- Punia, S.; Sandhu, K.S.; Siroha, A.K. Difference in Protein Content of Wheat (Triticum aestivum L.): Effect on Functional, Pasting, Color and Antioxidant Properties. J. Saudi Soc. Agric. Sci. 2019, 18, 378–384. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Zhang, J.; Wang, C.; Qin, H.; Ding, H.; Xie, Y.; Guo, T. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat. Front. Plant Sci. 2016, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Abd Latiff, N.; Alam, S.A.Z.; Hanapi, S.Z.; Sarmidi, M.R. Quantification of Polyphenol Content, Antioxidant Properties and LC-MS/MS Analysis in Malaysian Indigenous Rice Cultivars (Oryza sativa L.). Agric. Nat. Resour. 2019, 53, 402–409. [Google Scholar]
- Kulichová, K.; Sokol, J.; Nemeček, P.; Maliarová, M.; Maliar, T.; Havrlentová, M.; Kraic, J. Phenolic Compounds and Biological Activities of Rye (Secale cereale L.) Grains. Open Chem. 2019, 17, 988–999. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Brenes, C.H.; Saldivar, S.O.S.; Talcott, S.T. Polyphenolic and Antioxidant Content of White and Blue Corn (Zea mays L.) Products. Food Res. Int. 2006, 39, 696–703. [Google Scholar] [CrossRef]
- Siroha, A.K.; Sandhu, K.S.; Kaur, M. Physicochemical, Functional and Antioxidant Properties of Flour from Pearl Millet Varieties Grown in India. J. Food Meas. Charact. 2016, 10, 311–318. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Leja, M.; Kamińska, I.; Kramer, M.; Maksylewicz-Kaul, A.; Kammerer, D.; Carle, R.; Baranski, R. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color. Plant Foods Hum. Nutr. 2013, 68, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Kim, S.; Ko, E.Y.; Park, S.W. Polyphenolic Contents and Antioxidant Properties of Different Grape (V. Vinifera, V. Labrusca, and V. Hybrid) Cultivars. BioMed Res. Int. 2013, 2013, 718065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Zhang, J.-R.; Li, H.-B.; Wu, D.-T.; Geng, F.; Corke, H.; Wei, X.-L.; Gan, R.-Y. Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of Polyphenols in Fruit and Vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Gong, K.; Chen, L.; Li, X.; Sun, L.; Liu, K. Effects of Germination Combined with Extrusion on the Nutritional Composition, Functional Properties and Polyphenol Profile and Related in Vitro Hypoglycemic Effect of Whole Grain Corn. J. Cereal Sci. 2018, 83, 1–8. [Google Scholar] [CrossRef]
- Yang, X.-J.; Dang, B.; Fan, M.-T. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau. Molecules 2018, 23, 879. [Google Scholar] [CrossRef] [Green Version]
- Hithamani, G.; Srinivasan, K. Effect of Domestic Processing on the Polyphenol Content and Bioaccessibility in Finger Millet (Eleusine coracana) and Pearl Millet (Pennisetum glaucum). Food Chem. 2014, 164, 55–62. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; García-Casas, M.J.; Martínez-Villaluenga, C.; Frías, J.; Peñas, E.; Rico, D. Wheat and Oat Brans as Sources of Polyphenol Compounds for Development of Antioxidant Nutraceutical Ingredients. Foods 2021, 10, 115. [Google Scholar] [CrossRef]
- Salar, R.K.; Purewal, S.S.; Sandhu, K.S. Fermented Pearl Millet (Pennisetum glaucum) with in Vitro DNA Damage Protection Activity, Bioactive Compounds and Antioxidant Potential. Food Res. Int. 2017, 100, 204–210. [Google Scholar] [CrossRef]
- Bagchi, D.; Moriyama, H.; Swaroop, A. Green Coffee Bean Extract in Human Health; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [Green Version]
- Siriamornpun, S.; Kaewseejan, N. Quality, Bioactive Compounds and Antioxidant Capacity of Selected Climacteric Fruits with Relation to Their Maturity. Sci. Hortic. 2017, 221, 33–42. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic Acids, Flavonoids, Anthocyanins, Proanthocyanidins, Tocopherols, Tocotrienols, γ-Oryzanol, and Phytic Acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Liu, Y.-J.; Kang, J.; Zhang, C.-M.; Kang, S.-G. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef] [Green Version]
- Limtrakul, P.; Semmarath, W.; Mapoung, S. Anthocyanins and Proanthocyanidins in Natural Pigmented Rice and Their Bioactivities. Phytochem. Hum. Health 2019, 1, 1–24. [Google Scholar]
- Bangar, S.P.; Sandhu, K.S.; Purewal, S.S.; Kaur, M.; Kaur, P.; Siroha, A.K.; Kumari, K.; Singh, M.; Kumar, M. Fermented Barley Bran: An Improvement in Phenolic Compounds and Antioxidant Properties. J. Food Process. Preserv. 2022, 46, e15543. [Google Scholar] [CrossRef]
- Queiroz, E.D.R.; Abreu, C.M.P.D.; Oliveira, K.D.S.; Ramos, V.D.O.; Fráguas, R.M. Bioactive Phytochemicals and Antioxidant Activity in Fresh and Dried Lychee Fractions. Rev. Cienc. Agronómica 2015, 46, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Kerienė, I.; Mankevičienė, A.; Bliznikas, S.; Jablonskytė-Raščė, D.; Maikštėnienė, S.; Česnulevičienė, R. Biologically Active Phenolic Compounds in Buckwheat, Oats and Winter Spelt Wheat. Zemdirb.-Agric. 2015, 102, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Witrowa-Rajchert, D.; Bawoł, A.; Czapski, J.; Kidoń, M. Studies on Drying of Purple Carrot Roots. Dry. Technol. 2009, 27, 1325–1331. [Google Scholar] [CrossRef]
- Paulsmeyer, M.; Chatham, L.; Becker, T.; West, M.; West, L.; Juvik, J. Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms. J. Agric. Food Chem. 2017, 65, 4341–4350. [Google Scholar] [CrossRef]
- Mihanfar, A.; Nouri, M.; Roshangar, L.; Khadem-Ansari, M.H. Polyphenols: Natural Compounds with Promising Potential in Treating Polycystic Ovary Syndrome. Reprod. Biol. 2021, 21, 100500. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- El Abed, N.; Guesmi, F.; Mejri, M.; Marzouki, M.; Ben Hadj Ahmed, S. Phytochemical Screening and Assessment of Antioxidant, Antibacterial and Cytotoxicity Activities of Five Tunisian Medicinal Plants. Int. J. Pharm. Res. Biosci. 2014, 3, 770–789. [Google Scholar]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Duan, M.; Liu, L.; Fu, Y.; McClements, D.J.; Zhao, T.; Lin, H.; Shi, J.; Chen, X. Impact of Food Additive Titanium Dioxide on the Polyphenol Content and Antioxidant Activity of the Apple Juice. LWT 2022, 154, 112574. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Hou, H.; Zhuang, Y.; Sun, L. Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan (Nephelium lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018, 23, 2263. [Google Scholar] [CrossRef] [Green Version]
- Leopoldini, M.; Russo, N.; Toscano, M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Serafini, M.; Testa, M.F.; Villaño, D.; Pecorari, M.; van Wieren, K.; Azzini, E.; Brambilla, A.; Maiani, G. Antioxidant Activity of Blueberry Fruit Is Impaired by Association with Milk. Free Radic. Biol. Med. 2009, 46, 769–774. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Coelho, N.; Romano, A. Thymus Lotocephalus Wild Plants and in Vitro Cultures Produce Different Profiles of Phenolic Compounds with Antioxidant Activity. Food Chem. 2012, 135, 1253–1260. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Cebulak, T.; Kapusta, I.; Oszmiański, J.; Kaszuba, J.; Żurek, N. The Content of Phenolic Acids and Flavonols in the Leaves of Nine Varieties of Sweet Potatoes (Ipomoea batatas L.) Depending on Their Development, Grown in Central Europe. Molecules 2020, 25, 3473. [Google Scholar] [CrossRef]
- Avello, M.A.; Pastene, E.R.; Bustos, E.D.; Bittner, M.L.; Becerra, J.A. Variation in Phenolic Compounds of Ugni Molinae Populations and Their Potential Use as Antioxidant Supplement. Rev. Bras. Farmacogn. 2013, 23, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Barros, L.; Ferreira, I.C. In Vivo Antioxidant Activity of Phenolic Compounds: Facts and Gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and Antimicrobial Preservatives: Properties, Mechanism of Action and Applications in Food–a Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Hügel, H.M.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol Protection and Treatment of Hypertension. Phytomedicine 2016, 23, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Micucci, M.; Bolchi, C.; Budriesi, R.; Cevenini, M.; Maroni, L.; Capozza, S.; Chiarini, A.; Pallavicini, M.; Angeletti, A. Antihypertensive Phytocomplexes of Proven Efficacy and Well-Established Use: Mode of Action and Individual Characterization of the Active Constituents. Phytochemistry 2020, 170, 112222. [Google Scholar] [CrossRef] [PubMed]
- Paredes, M.D.; Romecín, P.; Atucha, N.M.; O’Valle, F.; Castillo, J.; Ortiz, M.C.; García-Estañ, J. Beneficial Effects of Different Flavonoids on Vascular and Renal Function in L-NAME Hypertensive Rats. Nutrients 2018, 10, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, M.M.; França-Silva, M.S.; Alves, N.F.; Porpino, S.K.; Braga, V.A. Quercetin Improves Baroreflex Sensitivity in Spontaneously Hypertensive Rats. Molecules 2012, 17, 12997–13008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, E.; Ruiz, E.; Redondo, S.; Gordillo-Moscoso, A.; Slowing, K.; Tejerina, T. Relationship between Vasodilation Capacity and Phenolic Content of Spanish Wines. Eur. J. Pharmacol. 2005, 517, 84–91. [Google Scholar] [CrossRef]
- Kaur, S.; Muthuraman, A. Therapeutic Evaluation of Rutin in Two-Kidney One-Clip Model of Renovascular Hypertension in Rat. Life Sci. 2016, 150, 89–94. [Google Scholar] [CrossRef]
- Jain, P.K.; Jain, S.; Sharma, S.; Paliwal, S.; Singh, G. Evaluation of Anti-Diabetic and Antihypertensive Activity of Phoenix Sylvestris (L.) Roxb Leaves Extract and Quantification of Biomarker Quercetin by HPTLC. Phytomedicine Plus 2021, 1, 100136. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The Antihypertensive Potential of Flavonoids from Chinese Herbal Medicine: A Review. Pharmacol. Res. 2021, 174, 105919. [Google Scholar] [CrossRef]
- Lamb, S.A.; Al Hamarneh, Y.N.; Houle, S.K.; Leung, A.A.; Tsuyuki, R.T. Hypertension Canada’s 2017 Guidelines for Diagnosis, Risk Assessment, Prevention and Treatment of Hypertension in Adults for Pharmacists: An Update. Can. Pharm. J./Rev. Pharm. Can. 2018, 151, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Tagami, M.; Yamori, Y. Dietary Polyphenols Regulate Endothelial Function and Prevent Cardiovascular Disease. Nutrition 2015, 31, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Oak, M.-H.; Auger, C.; Belcastro, E.; Park, S.-H.; Lee, H.-H.; Schini-Kerth, V.B. Potential Mechanisms Underlying Cardiovascular Protection by Polyphenols: Role of the Endothelium. Free Radic. Biol. Med. 2018, 122, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Sanches-Silva, A.; Testai, L.; Nabavi, S.F.; Battino, M.; Devi, K.P.; Tejada, S.; Sureda, A.; Xu, S.; Yousefi, B.; Majidinia, M.; et al. Therapeutic Potential of Polyphenols in Cardiovascular Diseases: Regulation of MTOR Signaling Pathway. Pharmacol. Res. 2020, 152, 104626. [Google Scholar] [CrossRef]
- Valero, M.S.; Nuñez, S.; Les, F.; Castro, M.; Gómez-Rincón, C.; Arruebo, M.P.; Plaza, M.Á.; Köhler, R.; López, V. The Potential Role of Everlasting Flower (Helichrysum Stoechas Moench) as an Antihypertensive Agent: Vasorelaxant Effects in the Rat Aorta. Antioxidants 2022, 11, 1092. [Google Scholar] [CrossRef]
- Rashid, S.; Idris-Khodja, N.; Auger, C.; Kevers, C.; Pincemail, J.; Alhosin, M.; Boehm, N.; Oswald-Mammosser, M.; Schini-Kerth, V.B. Polyphenol-Rich Blackcurrant Juice Prevents Endothelial Dysfunction in the Mesenteric Artery of Cirrhotic Rats with Portal Hypertension: Role of Oxidative Stress and the Angiotensin System. J. Med. Food 2018, 21, 390–399. [Google Scholar] [CrossRef]
- Tropea, T.; Renshall, L.J.; Nihlen, C.; Weitzberg, E.; Lundberg, J.O.; David, A.L.; Tsatsaris, V.; Stuckey, D.J.; Wareing, M.; Greenwood, S.L.; et al. Beetroot Juice Lowers Blood Pressure and Improves Endothelial Function in Pregnant ENOS −/− Mice: Importance of Nitrate-independent Effects. J. Physiol. 2020, 598, 4079–4092. [Google Scholar] [CrossRef]
- Delgado, N.T.B.; Rouver, W.N.; dos Santos, R.L. Protective Effects of Pomegranate in Endothelial Dysfunction. Curr. Pharm. Des. 2020, 26, 3684–3699. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Wan, S.; Luo, Y.; Luo, J.; Zhang, X.; Zhou, S.; Xu, T.; He, J.; Mechanick, J.I.; Wu, W.-C.; et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022, 80, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Kolodziej, H. Beneficial Vascular Responses to Proanthocyanidins: Critical Assessment of Plant-Based Test Materials and Insight into the Signaling Pathways. In Recent Advances in Polyphenol Research; John Wiley & Sons Ltd.: London, UK, 2017; pp. 226–258. [Google Scholar]
- López-Sepúlveda, R.; Jiménez, R.; Romero, M.; Zarzuelo, M.J.; Sánchez, M.; Gómez-Guzmán, M.; Vargas, F.; O’Valle, F.; Zarzuelo, A.; Pérez-Vizcaíno, F.; et al. Wine Polyphenols Improve Endothelial Function in Large Vessels of Female Spontaneously Hypertensive Rats. Hypertension 2008, 51, 1088–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.-L.; Capdeville-Atkinson, C.; Atkinson, J. Red Wine Polyphenols Improve Endothelium-Dependent Dilation in Rat Cerebral Arterioles. J. Cardiovasc. Pharmacol. 2008, 51, 553–558. [Google Scholar] [CrossRef]
- Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in Hypertension: A Brief Review of the Underlying Mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Botden, I.P.; Langendonk, J.G.; Meima, M.E.; Boomsma, F.; Seynhaeve, A.L.; Hagen, T.L.; Danser, A.J.; Sijbrands, E.J. Daily Red Wine Consumption Improves Vascular Function by a Soluble Guanylyl Cyclase-Dependent Pathway. Am. J. Hypertens. 2011, 24, 162–168. [Google Scholar] [PubMed]
- Jayaraman, S.; Variyar, J. Plant Metabolites as Immunomodulators. In Plant Metabolites: Methods, Applications and Prospects; Springer: Singapore, 2020; pp. 441–464. [Google Scholar]
- Marefati, N.; Ghorani, V.; Shakeri, F.; Boskabady, M.; Kianian, F.; Rezaee, R.; Boskabady, M.H. A Review of Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects of Allium Cepa and Its Main Constituents. Pharm. Biol. 2021, 59, 285–300. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.T.G.; Baldivia, D.D.S.; de Castro, D.T.H.; Dos Santos, H.F.; Dos Santos, C.M.; Oliveira, A.S.; Alfredo, T.M.; Vilharva, K.N.; de Picoli Souza, K.; Dos Santos, E.L. The Immunoregulatory Function of Polyphenols: Implications in Cancer Immunity. J. Nutr. Biochem. 2020, 85, 108428. [Google Scholar] [CrossRef]
- Mohammadian Haftcheshmeh, S.; Khosrojerdi, A.; Aliabadi, A.; Lotfi, S.; Mohammadi, A.; Momtazi-Borojeni, A.A. Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Cham, Switzerland, 2021; pp. 1–29. [Google Scholar]
- Malaguarnera, L. Influence of Resveratrol on the Immune Response. Nutrients 2019, 11, 946. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Grigore, A. Plant Phenolic Compounds as Immunomodulatory Agents. In Phenolic Compounds-Biological Activity; InTech Open: Norderstedt, Germany, 2017. [Google Scholar]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar]
- Singh, A.; Yau, Y.F.; Leung, K.S.; El-Nezami, H.; Lee, J.C.-Y. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain–Liver–Gut Axis. Antioxidants 2020, 9, 669. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants 2019, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A.S.; Ali, H.I.; Ismail, L.C.; Bosevski, M.; Stojanovska, L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Nantz, M.P.; Rowe, C.A.; Muller, C.; Creasy, R.; Colee, J.; Khoo, C.; Percival, S.S. Consumption of Cranberry Polyphenols Enhances Human Γδ-T Cell Proliferation and Reduces the Number of Symptoms Associated with Colds and Influenza: A Randomized, Placebo-Controlled Intervention Study. Nutr. J. 2013, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, S.; Yang, Q.; Shi, Y.; Zheng, M.; Liu, Y.; Chen, F.; Song, G.; Xu, H.; Wan, T.; et al. Resveratrol Reduces the Proinflammatory Effects and Lipopolysaccharide-Induced Expression of HMGB1 and TLR4 in RAW264. 7 Cells. Cell. Physiol. Biochem. 2014, 33, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries Reduce Low-Grade Inflammation in Individuals with Features of Metabolic Syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Immunomodulatory Activity of Resveratrol: Suppression of Lymphocyte Proliferation, Development of Cell-Mediated Cytotoxicity, and Cytokine Production. Biochem. Pharmacol. 2001, 62, 1299–1308. [Google Scholar] [CrossRef]
- Capiralla, H.; Vingtdeux, V.; Venkatesh, J.; Dreses-Werringloer, U.; Zhao, H.; Davies, P.; Marambaud, P. Identification of Potent Small-Molecule Inhibitors of STAT 3 with Anti-Inflammatory Properties in RAW 264.7 Macrophages. FEBS J. 2012, 279, 3791–3799. [Google Scholar] [CrossRef] [Green Version]
- Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; et al. Inhibition of the NF-ΚB Signaling Pathway by the Curcumin Analog, 3,5-Bis(2-Pyridinylmethylidene)-4-Piperidone (EF31): Anti-Inflammatory and Anti-Cancer Properties. Int. Immunopharmacol. 2012, 12, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Crouvezier, S.; Powell, B.; Keir, D.; Yaqoob, P. The Effects of Phenolic Components of Tea on the Production of Pro-and Anti-Inflammatory Cytokines by Human Leukocytes in Vitro. Cytokine 2001, 13, 280–286. [Google Scholar] [CrossRef]
- Dugo, L.; Belluomo, M.G.; Fanali, C.; Russo, M.; Cacciola, F.; Maccarrone, M.; Sardanelli, A.M. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State. Oxid. Med. Cell. Longev. 2017, 2017, 6293740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W. Pomegranate Peel Polyphenols Inhibits Inflammation in LPS-Induced RAW264. 7 Macrophages via the Suppression of MAPKs Activation. J. Funct. Foods 2018, 43, 62–69. [Google Scholar] [CrossRef]
- Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage Plasticity, Polarization and Function in Response to Curcumin, a Diet-Derived Polyphenol, as an Immunomodulatory Agent. J. Nutr. Biochem. 2019, 66, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zamuz, S.; Munekata, P.E.; Dzuvor, C.K.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The Role of Phenolic Compounds against Listeria Monocytogenes in Food. A Review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M. Mechanisms of Action, Resistance, and Stress Adaptation. In Antimicrobials in Food; CRC Press: Boca Raton, FL, USA, 2020; pp. 735–784. [Google Scholar]
- López-Malo, A.; Alzamora, S.M.; Paris, M.J.; Lastra-Vargas, L.; Coronel, M.B.; Gómez, P.L.; Palou, E. Naturally Occurring Compounds–Plant Sources. In Antimicrobials in Food; CRC Press: Boca Raton, FL, USA, 2020; pp. 527–594. [Google Scholar]
- Freitas, I.R.; Cattelan, M.G. Antimicrobial and Antioxidant Properties of Essential Oils in Food Systems—An Overview. In Microbial Contamination and Food Degradation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 443–470. [Google Scholar]
- Ferrentino, G.; Haman, N.; Morozova, K.; Tonon, G.; Scampicchio, M. Phenolic Compounds Extracted from Spruce (Picea abies) by Supercritical Carbon Dioxide as Antimicrobial Agents against Gram-Positive Bacteria Assessed by Isothermal Calorimetry. J. Therm. Anal. Calorim. 2021, 145, 3093–3103. [Google Scholar] [CrossRef]
- Saini, A.; Panwar, D.; Panesar, P.S.; Bera, M.B. Encapsulation of Functional Ingredients in Lipidic Nanocarriers and Antimicrobial Applications: A Review. Environ. Chem. Lett. 2021, 19, 1107–1134. [Google Scholar] [CrossRef]
- Mitani, T.; Ota, K.; Inaba, N.; Kishida, K.; Koyama, H.A. Antimicrobial Activity of the Phenolic Compounds of Prunus Mume against Enterobacteria. Biol. Pharm. Bull. 2018, 41, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Baghaenezhad, M.; Mollania, N.; Kazemi-Noreini, S. Antioxidant Capacities, Antimicrobial Activity, Phenolic Contents and α-Amylase Inhibitory of Salvia leriifolia Extracts from Sabzevar. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1–9. [Google Scholar] [CrossRef]
- Hasheminya, S.-M.; Dehghannya, J. Composition, Phenolic Content, Antioxidant and Antimicrobial Activity of Pistacia atlantica Subsp. Kurdica Hulls’ Essential Oil. Food Biosci. 2020, 34, 100510. [Google Scholar] [CrossRef]
- Alnashi, B.; Abdel Fattah, A. Antimicrobial Activity of Raw and Nano Turmeric Powder Extracts. Middle East J. Appl. Sci. 2016, 6, 787–796. [Google Scholar]
- Rizwana, H.; Alwhibi, M.S.; Soliman, D.A. Research Article Antimicrobial Activity and Chemical Composition of Flowers of Matricaria Aurea a Native Herb of Saudi Arabia. Int. J. Pharmacol. 2016, 12, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Grün, I.U.; Mustapha, A. Effects of Plant Extracts on Microbial Growth, Color Change, and Lipid Oxidation in Cooked Beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Lee, Y.-R.; Ha, Y.-M.; Seo, H.J.; Kim, Y.H.; Park, S.-M.; Sohn, J.H. Antibacterial Effect of Grapefruit Seed Extract (Gse) on Makgeolli-Brewing Microorganisms and Its Application in the Preservation of Fresh Makgeolli. J. Food Sci. 2014, 79, M1159–M1167. [Google Scholar] [CrossRef]
- Mhalla, D.; Bouaziz, A.; Ennouri, K.; Chawech, R.; Smaoui, S.; Jarraya, R.; Tounsi, S.; Trigui, M. Antimicrobial Activity and Bioguided Fractionation of Rumex Tingitanus Extracts for Meat Preservation. Meat Sci. 2017, 125, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Hassan, Y.I.; Block, G.S.; Drover, J.C.; Delaquis, P.; Oomah, B.D. Antibacterial Activities of a Polyphenolic-Rich Extract Prepared from American Cranberry (Vaccinium macrocarpon) Fruit Pomace against Listeria Spp. LWT 2020, 123, 109056. [Google Scholar] [CrossRef]
- Malik, S.N. Antibacterial Activity of Olive (Olea europaea) Leaves and Arugula (Eruca sativa) Seeds Extract. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 307–310. [Google Scholar]
- Liu, Y.; McKeever, L.C.; Malik, N.S. Assessment of the Antimicrobial Activity of Olive Leaf Extract against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical Composition, Antioxidant and Antimicrobial Activity of Phenolic Compounds Extracted from Wine Industry by-Products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, M.; Kim, S.-H.; Sasireka, A.; Chandrasekaran, M.; Chung, I.-M. Polyphenol Composition and Antimicrobial Activity of Various Solvent Extracts from Different Plant Parts of Moringa Oleifera. Food Biosci. 2018, 26, 23–29. [Google Scholar] [CrossRef]
- Wong, J.X.; Ramli, S. Antimicrobial Activity of Different Types of Centella Asiatica Extracts against Foodborne Pathogens and Food Spoilage Microorganisms. LWT 2021, 142, 111026. [Google Scholar] [CrossRef]
- Ez zoubi, Y.; Farah, A.; Zaroual, H.; El Ouali Lalami, A. Antimicrobial Activity of Lavandula Stoechas Phenolic Extracts against Pathogenic Bacteria Isolated from a Hospital in Morocco. Vegetos 2020, 33, 703–711. [Google Scholar] [CrossRef]
- De Angelis, M.; Della-Morte, D.; Buttinelli, G.; Di Martino, A.; Pacifici, F.; Checconi, P.; Ambrosio, L.; Stefanelli, P.; Palamara, A.T.; Garaci, E.; et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines 2021, 9, 1721. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, X.; Hao, J.; Zhang, Y.; Huang, R. Tea Polyphenols: Application in the Control of Oral Microorganism Infectious Diseases. Arch. Oral Biol. 2019, 102, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Margină, D.; Ungurianu, A.; Purdel, C.; Nițulescu, G.M.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Burykina, T.I.; Tekos, F.; Buha, A.; et al. Analysis of the Intricate Effects of Polyunsaturated Fatty Acids and Polyphenols on Inflammatory Pathways in Health and Disease. Food Chem. Toxicol. 2020, 143, 111558. [Google Scholar] [CrossRef]
- Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary Polyphenols and Non-Alcoholic Fatty Liver Disease. Nutrients 2021, 13, 494. [Google Scholar] [CrossRef]
- Koch, W. Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, U.; Fichna, J.; Gorlach, S. Enhancement of Anticancer Potential of Polyphenols by Covalent Modifications. Biochem. Pharmacol. 2016, 109, 1–13. [Google Scholar] [CrossRef]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Das, S.; Patra, S.K.; Efferth, T.; Jena, M.; Bhutia, S.K. Dietary Polyphenols in Chemoprevention and Synergistic Effect in Cancer: Clinical Evidences and Molecular Mechanisms of Action. Phytomedicine 2021, 90, 153554. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Li, S.; Wang, C.; Cao, N.; Qu, H.; Cheng, C.; Wang, Z.; Wang, L.; Zhou, L. Potential Applications of Polyphenols on Main NcRNAs Regulations as Novel Therapeutic Strategy for Cancer. Biomed. Pharmacother. 2019, 113, 108703. [Google Scholar] [CrossRef] [PubMed]
- Symonds, E.L.; Konczak, I.; Fenech, M. The Australian Fruit Illawarra Plum (Podocarpus Elatus Endl., Podocarpaceae) Inhibits Telomerase, Increases Histone Deacetylase Activity and Decreases Proliferation of Colon Cancer Cells. Br. J. Nutr. 2013, 109, 2117–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuntz, S.; Rudloff, S.; Asseburg, H.; Borsch, C.; Fröhling, B.; Unger, F.; Dold, S.; Spengler, B.; Römpp, A.; Kunz, C. Uptake and Bioavailability of Anthocyanins and Phenolic Acids from Grape/Blueberry Juice and Smoothie in Vitro and in Vivo. Br. J. Nutr. 2015, 113, 1044–1055. [Google Scholar] [CrossRef] [Green Version]
- Pandareesh, M.; Mythri, R.; Bharath, M.S. Bioavailability of Dietary Polyphenols: Factors Contributing to Their Clinical Application in CNS Diseases. Neurochem. Int. 2015, 89, 198–208. [Google Scholar] [CrossRef]
- Law, B.Y.K.; Mok, S.W.F.; Wu, A.G.; Lam, C.W.K.; Yu, M.X.Y.; Wong, V.K.W. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016, 21, 359. [Google Scholar] [CrossRef] [Green Version]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Curti, V.; Di Lorenzo, A.; Dacrema, M.; Xiao, J.; Nabavi, S.M.; Daglia, M. In Vitro Polyphenol Effects on Apoptosis: An Update of Literature Data. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 46, pp. 119–131. [Google Scholar]
- Khan, S.; Siddique, R.; Shereen, M.A. The Emergence of a Novel Coronavirus (SARS-CoV-2), Their Biology and Therapeutic Options. [Published Online Ahead of Print, 2020 Mar 11]. J. Clin. Microbiol. 2020, 58, e00187-20. [Google Scholar]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the Genus Vitis: Phenolic Compounds, Anticancer Properties and Clinical Relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Schlachterman, A.; Valle, F.; Wall, K.M.; Azios, N.G.; Castillo, L.; Morell, L.; Washington, A.V.; Cubano, L.A.; Dharmawardhane, S.F. Combined Resveratrol, Quercetin, and Catechin Treatment Reduces Breast Tumor Growth in a Nude Mouse Model. Transl. Oncol. 2008, 1, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-D.; Chen, S.-H.; Lin, C.-L.; Tsai, S.-H.; Liang, Y.-C. Inhibition of Melanoma Growth and Metastasis by Combination with (-)-Epigallocatechin-3-Gallate and Dacarbazine in Mice. J. Cell. Biochem. 2001, 83, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Chang, Y.; Wang, X.; Ban, C.; Zhang, F. Reduction of COX-2 through Modulating MiR-124/SPHK1 Axis Contributes to the Antimetastatic Effect of Alpinumisoflavone in Melanoma. Am. J. Transl. Res. 2017, 9, 986. [Google Scholar] [PubMed]
- Piantelli, M.; Rossi, C.; Iezzi, M.; La Sorda, R.; Iacobelli, S.; Alberti, S.; Natali, P.G. Flavonoids Inhibit Melanoma Lung Metastasis by Impairing Tumor Cells Endothelium Interactions. J. Cell. Physiol. 2006, 207, 23–29. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mitra, A.; Ray, S.; Chattopadhyay, N.; Siddiqi, M. Curcumin Exhibits Antimetastatic Properties by Modulating Integrin Receptors, Collagenase Activity, and Expression of Nm23 and E-Cadherin. J. Environ. Pathol. Toxicol. Oncol. 2003, 22, 49–58. [Google Scholar] [CrossRef]
- Di Leo, N.; Battaglini, M.; Berger, L.; Giannaccini, M.; Dente, L.; Hampel, S.; Vittorio, O.; Cirillo, G.; Raffa, V. A Catechin Nanoformulation Inhibits WM266 Melanoma Cell Proliferation, Migration and Associated Neo-Angiogenesis. Eur. J. Pharm. Biopharm. 2017, 114, 1–10. [Google Scholar] [CrossRef]
- Amawi, H.; Ashby, C.R., Jr.; Samuel, T.; Peraman, R.; Tiwari, A.K. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Singh, S.; Chauhan, D.; Srivastava, R.; Singh, V.K. Exploring the Anticancer Potentials of Polyphenols: A ComprehensiveReview of Patents in the Last Five Years. Recent Pat. Anticancer. Drug Discov. 2023, 18, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in Breast Cancer Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, 2100163. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Mancini, M.; Cerny, M.E.V.; Cardoso, N.S.; Verissimo, G.; Maluf, S.W. Grape Seed Components as Protectors of Inflammation, DNA Damage, and Cancer. Curr. Nutr. Rep. 2023, 12, 141–150. [Google Scholar] [CrossRef]
- Li, F.; Qasim, S.; Li, D.; Dou, Q.P. Updated Review on Green Tea Polyphenol Epigallocatechin-3-Gallate as a Cancer Epigenetic Regulator. Semin. Cancer Biol. 2022, 83, 335–352. [Google Scholar] [CrossRef]
- Majidinia, M.; Bishayee, A.; Yousefi, B. Polyphenols: Major Regulators of Key Components of DNA Damage Response in Cancer. DNA Repair 2019, 82, 102679. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization (WHO) Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 28 February 2022).
- Brief, T.A. Implications of the Emergence and Spread of the SARS-CoV-2 B. 1.1. 529 Variant of Concern (Omicron) for the EU/EEA. Eur. Cent. Dis. Prev. Control. 2021, 1, 529. [Google Scholar]
- Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential Use of Polyphenols in the Battle against COVID-19. Curr. Opin. Food Sci. 2020, 32, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mehany, T.; Khalifa, I.; Barakat, H.; Althwab, S.A.; Alharbi, Y.M.; El-Sohaimy, S. Polyphenols as Promising Biologically Active Substances for Preventing SARS-CoV-2: A Review with Research Evidence and Underlying Mechanisms. Food Biosci. 2021, 40, 100891. [Google Scholar] [CrossRef] [PubMed]
- Dejani, N.N.; Elshabrawy, H.A.; Bezerra Filho, C.D.S.M.; de Sousa, D.P. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021, 11, 1254. [Google Scholar] [CrossRef]
- Bahun, M.; Jukić, M.; Oblak, D.; Kranjc, L.; Bajc, G.; Butala, M.; Bozovičar, K.; Bratkovič, T.; Podlipnik, Č.; Ulrih, N.P. Inhibition of the SARS-CoV-2 3CLpro Main Protease by Plant Polyphenols. Food Chem. 2022, 373, 131594. [Google Scholar] [CrossRef]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Fedyanina, L.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Shchelkanov, M.Y. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021, 9, 200. [Google Scholar] [CrossRef]
- Horne, J.R.; Vohl, M.-C. Biological Plausibility for Interactions between Dietary Fat, Resveratrol, ACE2, and SARS-CoV Illness Severity. Am. J. Physiol.-Endocrinol. Metab. 2020, 318, E830–E833. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, I.; Nawaz, A.; Sobhy, R.; Althwab, S.A.; Barakat, H. Polyacylated Anthocyanins Constructively Network with Catalytic Dyad Residues of 3CLpro of 2019-NCoV than Monomeric Anthocyanins: A Structural-Relationship Activity Study with 10 Anthocyanins Using in-Silico Approaches. J. Mol. Graph. Model. 2020, 100, 107690. [Google Scholar] [CrossRef]
- Utomo, R.Y.; Ikawati, M.; Meiyanto, E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. Med. Pharmacol. 2020, Preprints. [Google Scholar]
- Xiao, T.; Cui, M.; Zheng, C.; Wang, M.; Sun, R.; Gao, D.; Bao, J.; Ren, S.; Yang, B.; Lin, J.; et al. Myricetin Inhibits SARS-CoV-2 Viral Replication by Targeting Mpro and Ameliorates Pulmonary Inflammation. Front. Pharmacol. 2021, 12, 669642. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wei, J.; Huang, T.; Lei, L.; Shen, C.; Lai, J.; Yang, M.; Liu, L.; Yang, Y.; Liu, G.; et al. Resveratrol Inhibits the Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Cultured Vero Cells. Phytother. Res. 2021, 35, 1127. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 Spike Protein of COVID-19 with Naturally Occurring Phytochemicals: An in Silico Study for Drug Development. J. Biomol. Struct. Dyn. 2021, 39, 6306–6316. [Google Scholar] [CrossRef] [PubMed]
Source | Compound | Assays Used for the Evaluation of Hypertensive | Main Findings | Reference |
---|---|---|---|---|
Purified compounds. Bitter orange, lemon, cocoa, and grapefruit. |
|
| The results of this research work demonstrated that the flavonoids used in this study have excellent antihypertensive effects and can be used as functional food agents due to their therapeutic role for arterial hypertension. | [104] |
Purified flavonoid compound |
|
| The treatment of spontaneously hypertensive rats (SHR) with quercetin can decrease their hypertension and then enhance the BHR through the inhibition of oxidative stress. | [105] |
Spanish red wines |
|
| The findings of this research study demonstrated that there is an excellent correlation between the level of polyphenol compounds (especially the kaempferol) and the vasodilatory impact, which contribute to the prevention of hypertension and cardiovascular disease. | [106] |
Purified flavonoid compound |
|
| The antihypertensive impact of rutin as a bioactive compound can contribute to the regulation of hypertension due to its ability to scavenge free radicals, inhibit lipid peroxidation, and inhibit the plasma renin inhibitory effect. | [107] |
Phoenix sylvestris (L.) |
|
| The phenolic compounds exhibited an excellent antihypertensive activity via ACE inhibition. | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. https://doi.org/10.3390/plants12061217
Rathod NB, Elabed N, Punia S, Ozogul F, Kim S-K, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants. 2023; 12(6):1217. https://doi.org/10.3390/plants12061217
Chicago/Turabian StyleRathod, Nikheel Bhojraj, Nariman Elabed, Sneh Punia, Fatih Ozogul, Se-Kwon Kim, and João Miguel Rocha. 2023. "Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge" Plants 12, no. 6: 1217. https://doi.org/10.3390/plants12061217
APA StyleRathod, N. B., Elabed, N., Punia, S., Ozogul, F., Kim, S.-K., & Rocha, J. M. (2023). Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants, 12(6), 1217. https://doi.org/10.3390/plants12061217