Chemical Constituents from Leaves of Baccharis sphenophylla (Asteraceae) and Their Antioxidant Effects
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of Compounds
2.2. Antiradical Properties of the Extract, Fractions, and Compounds
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation of Compounds
4.4. Antioxidant Assays
4.4.1. DPPH Radical Scavenging Assay
4.4.2. ABTS Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heiden, G.; Antonelli, A.; Pirani, J.R. A novel phylogenetic infrageneric classification of Baccharis (Asteraceae: Astereae), a highly diversified American genus. Taxon 2019, 68, 1048–1081. [Google Scholar] [CrossRef]
- Müller, J. Systematics of Baccharis (Compositae–Astereae) in Bolivia, including an overview of the genus. Syst. Bot. Monogr. 2006, 76, 1–341. [Google Scholar]
- Heiden, G. Baccharis in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. 2022. Available online: http://floradobrasil.jbrj.gov.br/FB5151 (accessed on 22 December 2022).
- Campos, F.R.; Bressan, J.; Jasinski, V.C.G.; Zuccolotto, T.; Silva, L.E.; Cerqueira, L.B. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 2016, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Bermejo, P. Baccharis (Compositae): A review update. Arkivoc 2007, 7, 76–96. [Google Scholar] [CrossRef] [Green Version]
- Karam, T.K.; Dalposso, L.M.; Casa, D.M.; Freitas, G.B.L. Carqueja (Baccharis trimera): Utilização terapêutica e biossíntese. Rev. Bras. Pl. Med. 2013, 15, 280–286. [Google Scholar] [CrossRef]
- Souza, F.R.M.; Silva, G.M.M.; Cadavid, C.O.M.; Lisboa, L.S.; Silva, M.M.C.L.; Paiva, W.S.; Ferreira, M.J.P.; Oliveira, R.P.; Rocha, H.A.O. Antioxidant Baccharis trimera leaf extract suppresses lipid accumulation in C. elegans dependent on transcription factor NHR-49. Antioxidants 2022, 11, 1913. [Google Scholar] [CrossRef] [PubMed]
- Antunes, C.; Arbo, M.D.; Konrath, E.L. Hepatoprotective native plants documented in Brazilian traditional medicine literature: Current knowledge and prospects. Chem. Biodivers. 2022, 19, e202100933. [Google Scholar] [CrossRef]
- Toyama, D.O.; Ferreira, M.J.P.; Romoff, P.; Fávero, O.A.; Gaeta, H.H.; Toyama, M.H. Effect of chlorogenic acid (5-caffeoylquinic acid) isolated from Baccharis oxyodonta on the structure and pharmacological activities of secretory phospholipase A2 from Crotalus durissus terrificus. BioMed Res. Int. 2014, 2014, 726585. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.; Simirgiotis, M.J.; Lima, B.; Paredes, J.D.; Gabutti, C.M.V.; Gamarra-Luques, C.; Borquez, J.; Luna, L.; Wendel, G.H.; Maria, A.O.; et al. Antioxidant, gastroprotective, cytotoxic activities and UHPLC PDA-Q orbitrap mass spectrometry identification of metabolites in Baccharis grisebachii decoction. Molecules 2019, 24, 1085. [Google Scholar] [CrossRef] [Green Version]
- Carrizo, S.L.; Zampini, I.C.; Sayago, J.E.; Simirgiotis, M.J.; Borquez, J.; Cuello, A.S.; Isla, M.I. Antifungal activity of phytotherapeutic preparation of Baccharis species from Argentine Puna against clinically relevant fungi. J. Ethnopharmacol. 2020, 251, 112553. [Google Scholar] [CrossRef]
- Grecco, S.S.; Reimão, J.Q.; Tempone, A.G.; Sartorelli, P.; Cunha, R.L.O.R.; Ferreira, M.J.P.; Romoff, P.; Fávero, O.A.; Lago, J.H.G. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp. Parasitol. 2012, 130, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosero, S.; Del Pozo, F.; Simbana, W.; Alvarez, M.; Quinteros, M.F.; Carrillo, W.; Morales, D. Polyphenols and flavonoids composition, anti-inflammatory and antioxidant properties of Andean Baccharis macrantha extracts. Plants 2022, 11, 1555. [Google Scholar] [CrossRef]
- Sotillo, W.S.; Tarqui, S.; Huang, X.; Almanza, G.; Oredsson, S. Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement. Med. Ther. 2021, 21, 188. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Mocan, A.; Sepúlveda, B. High resolution metabolite fingerprinting of the resin of Baccharis tola Phil. from the Atacama Desert and its antioxidant capacities. Ind. Crops Prod. 2016, 94, 368–375. [Google Scholar] [CrossRef]
- Gutierrez-Roman, A.S.; Trejo-Tapia, G.; Gonzalez-Cortazar, M.; Jimenez-Ferrer, E.; Trejo-Espino, J.L.; Zamilpa, A.; Ble-Gonzalez, E.A.; Camacho-Diaz, B.H.; Herrera-Ruiz, M. Anti-arthritic and anti-inflammatory effects of Baccharis conferta Kunth in a kaolin/carrageenan-induced monoarthritis model. J. Ethnopharmacol. 2022, 288, 114996. [Google Scholar] [CrossRef] [PubMed]
- Sayuri, V.A.; Romoff, P.; Fávero, O.A.; Ferreira, M.J.P.; Lago, J.H.G.; Buturi, F.O.S. Chemical composition, seasonal variation and biosynthetic considerations of essential oils from Baccharis microdonta and B. elaeagnoides (Asteraceae). Chem. Biodivers. 2010, 7, 2771–2782. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, A.C.N.; Souza, E.B.; Rocha, M.F.G.; Albuquerque, M.R.J.R.; Bandeira, P.N.; Santos, H.S.; Cavalcante, C.S.P.; Oliveira, S.S.; Aragão, P.R.; Morais, S.M.; et al. Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind. Crops Prod. 2016, 84, 108–115. [Google Scholar] [CrossRef]
- Budel, J.M.; Wang, M.; Raman, V.; Zhao, J.; Khan, S.I.; Rehman, J.U.; Techen, N.; Tekwani, B.; Monteiro, L.M.; Heiden, G.; et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 2018, 23, 2620. [Google Scholar] [CrossRef] [Green Version]
- Luchesi, L.A.; Paulus, D.; Busso, C.; Frata, M.T.; Oliveira, J.B. Chemical composition, antifungal and antioxidant activity of essential oils from Baccharis dracunculifolia and Pogostemon cablin against Fusarium graminearum. Nat. Prod. Res. 2022, 36, 849–852. [Google Scholar] [CrossRef]
- Castillejos-Ramirez, E.; Perez-Vasquez, A.; Torres-Colin, R.; Navarrete, A.; Andrade-Cetto, A.; Mata, R. Antinociceptive effect of an aqueous extract and essential oil from Baccharis heterophylla. Plants 2021, 10, 116. [Google Scholar] [CrossRef]
- Minteguiaga, M.; Farina, L.; Cassel, E.; Fiedler, S.; Catalan, C.A.N.; Dellacassa, E. Chemical compositions of essential oil from the aerial parts of male and female plants of Baccharis tridentata Vahl. (Asteraceae). J. Essent. Oil Res. 2021, 33, 299–307. [Google Scholar] [CrossRef]
- Minteguiaga, M.; Umpierrez, N.; Gonzalez, A.; Dellacassa, E.; Catalan, C.A.N. New C9-polyacetylenes from the essential oil of the highly endangered species Baccharis palustris Heering (Asteraceae). Phytochem. Lett. 2022, 48, 106–113. [Google Scholar] [CrossRef]
- Ueno, A.K.; Barcellos, A.F.; Grecco, S.S.; Sartorelli, P.; Guadagnin, R.C.; Romoff, P.; Ferreira, M.J.P.; Tcacenco, C.M.; Lago, J.H.G. Sesquiterpenes, diterpenes, alkenyl p-coumarates and flavonoid from the aerial parts of Baccharis retusa (Asteraceae). Biochem. Syst. Ecol. 2018, 78, 39–42. [Google Scholar] [CrossRef]
- Zampieri, P.R.F.; Tamayose, C.I.; Fávero, O.A.; Romoff, P.; Ferreira, M.J.P. Two new flavonoids from the leaves of Baccharis oblongifolia (Ruiz & Pav.) Pers. (Asteraceae). Molecules 2019, 24, 3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.L.; Costa-Silva, T.A.; Antar, G.M.; Tempone, A.G.; Lago, J.H.G. Chemical constituents from aerial parts of Baccharis sphenophylla and effects against intracellular forms of Trypanosoma cruzi. Chem. Biodivers. 2021, 18, e2100466. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R. Techniques of Flavonoid Identification, 1st ed.; Academic Press: London, UK, 1982; p. 31. [Google Scholar]
- Xia, H.; Qiu, F.; Zhu, S.; Zhang, T.; Qu, G.; Yao, X. Isolation and identification of ten metabolites of breviscapine in rat urine. Biol. Pharm. Bull. 2007, 30, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure–activity relationships. Biol. Pharm. Bull. 2002, 25, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Cho, J.-Y.; Ma, Y.-K.; Park, K.Y.; Lee, S.-H.; Ham, K.-S.; Lee, H.J.; Park, K.-H.; Moon, J.-H. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 2011, 125, 55–62. [Google Scholar] [CrossRef]
- Tamayose, C.I.; Santos, E.A.; Roque, N.; Costa-Lotufo, L.V.; Ferreira, M.J.P. Caffeoylquinic acids: Separation method, antiradical properties and cytotoxicity. Chem. Biodivers. 2019, 16, e1900093. [Google Scholar] [CrossRef]
- Jaramillo, K.; Dawid, C.; Hofmann, T.; Fujimoto, Y.; Osorio, C. Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. J. Agric. Food Chem. 2011, 59, 975–983. [Google Scholar] [CrossRef]
- Sang, S.; Lapsley, K.; Jeong, W.-S.; Lachance, P.A.; Ho, C.-T.; Rosen, R.T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batch). J. Agric. Food Chem. 2002, 50, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Velozo, L.S.M.; Ferreira, M.J.P.; Santos, M.I.S.; Moreira, D.L.; Guimarães, E.F.; Emerenciano, V.P.; Kaplan, M.A.C. C-glycosyl flavones from Peperomia blanda. Fitoterapia 2009, 80, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Souza, G.A.; Eckert, C.R.; Silva, T.A.; Sobral, E.S.; Fávero, O.A.; Ferreira, M.J.P.; Romoff, P.; Baader, W.J. Evaluation of antiradical assays used in determining the antioxidant capacity of pure compounds and plant extracts. Quim. Nova 2014, 37, 497–503. [Google Scholar] [CrossRef]
- Kaunaite, V.; Vilkickyte, G.; Raudone, L. Phytochemical diversity and antioxidant potential of wild heather (Calluna vulgaris L.) aboveground parts. Plants 2022, 11, 2207. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.M.; Na, M.; Thuong, P.T.; Su, N.D.; Sok, D.; Song, K.S.; Seong, Y.H.; Bae, K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006, 108, 188–192. [Google Scholar] [CrossRef]
- Novaes, P.; Torres, P.B.; Cornu, T.A.; Lopes, J.C.; Ferreira, M.J.P.; Santos, D.Y.A.C. Comparing antioxidant activities of flavonols from Annona coriacea by four approaches. S. Afr. J. Bot. 2019, 123, 253–258. [Google Scholar] [CrossRef]
% Trolox 1 | ||
---|---|---|
Samples 2 | DPPH | ABTS |
EtOH extract | 33.8 ± 0.1 b | 36.1 ± 0.3 b |
DCM fraction | 20.3 ± 0.2 a | 22.1 ± 0.4 a |
EtOAc fraction | 88.9 ± 0.2 c | 90.4 ± 0.1 c |
BuOH fraction | 34.7 ± 0.1 b | 40.8 ± 0.2 b |
IC50 (µmol.L−1) | |||
---|---|---|---|
Compounds 1 | Source 2 | DPPH | ABTS |
(2) Hispidulin | DCM | 119.7 ± 10.2 f | 103.1 ± 8.7 f |
(3) Eupafolin | DCM | 89.8 ± 2.1 e | 85.1 ± 0.9 e |
(4) Chlorogenic acid | EtOAc | 29.1 ± 1.3 b | 20.4 ± 0.4 b |
(5) Chlorogenic acid methyl ester | EtOAc | 27.1 ± 2.4 b | 18.3 ± 0.2 a,b |
(6) 3,4-di-O-Caffeoylquinic acid | EtOAc | 14.7 ± 1.3 a | 10.9 ± 1.1 a |
(7) 3,5-di-O-Caffeoylquinic acid | EtOAc | 17.2 ± 1.1 a,b | 15.4 ± 1.5 a,b |
(8) 4,5-di-O-Caffeoylquinic acid | EtOAc | 14.1 ± 0.5 a | 10.1 ± 0.5 a |
(9) 3,5-di-O-Caffeoylquinic acid methyl ester | EtOAc | 15.7 ± 0.8 a | 10.7 ± 0.4 a |
(10) Caffeic acid | EtOAc | 25.3 ± 1.2 b | 22.1 ± 1.2 b |
(11) Isoquercitrin | EtOAc | 34.3 ± 1.9 b,c | 31.3 ± 0.9 b,c |
(12) Quercitrin | EtOAc | 34.9 ± 1.3 b,c | 31.1 ± 1.2 b,c |
(13) Rutin | EtOAc | 35.5 ± 1.5 b,c | 33.5 ± 0.8 b,c |
(14) Biorobin | EtOAc | 69.9 ± 0.8 d | 62.7 ± 0.7 d |
(15) Vicenin-2 | n-BuOH | 90.3 ± 1.1 e | 85.8 ± 2.1 e |
Trolox | standard | 45.5 ± 1.5 | 40.1 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retamozo, M.H.; Silva, C.C.; Tamayose, C.I.; Carvalho, J.C.S.; Romoff, P.; Fávero, O.A.; Ferreira, M.J.P. Chemical Constituents from Leaves of Baccharis sphenophylla (Asteraceae) and Their Antioxidant Effects. Plants 2023, 12, 1262. https://doi.org/10.3390/plants12061262
Retamozo MH, Silva CC, Tamayose CI, Carvalho JCS, Romoff P, Fávero OA, Ferreira MJP. Chemical Constituents from Leaves of Baccharis sphenophylla (Asteraceae) and Their Antioxidant Effects. Plants. 2023; 12(6):1262. https://doi.org/10.3390/plants12061262
Chicago/Turabian StyleRetamozo, Marcela H., Christian C. Silva, Cinthia I. Tamayose, Juliana C. S. Carvalho, Paulete Romoff, Oriana A. Fávero, and Marcelo J. P. Ferreira. 2023. "Chemical Constituents from Leaves of Baccharis sphenophylla (Asteraceae) and Their Antioxidant Effects" Plants 12, no. 6: 1262. https://doi.org/10.3390/plants12061262
APA StyleRetamozo, M. H., Silva, C. C., Tamayose, C. I., Carvalho, J. C. S., Romoff, P., Fávero, O. A., & Ferreira, M. J. P. (2023). Chemical Constituents from Leaves of Baccharis sphenophylla (Asteraceae) and Their Antioxidant Effects. Plants, 12(6), 1262. https://doi.org/10.3390/plants12061262