Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Results
2.1. Effect of Mn Deficiency on the Growth of Maize Seedlings of Different Genotypes
2.1.1. Effect of Mn Deficiency on Leaf Dry Weight and Leaf Phenotype
2.1.2. Effect of Mn Deficiency on the Root System of Maize Seedlings
2.2. Effect of Mn Deficiency on Photosynthesis and Chlorophyll Fluorescence in Maize Seedlings of Different Genotypes
2.2.1. Effects of Manganese Deficiency on Chlorophyll Content and Photosynthesis in Maize Seedlings
2.2.2. Effect of Mn Deficiency on Chlorophyll Fluorescence in Maize Seedlings
2.3. Effect of Mn Deficiency on Carbon Metabolism in Maize Seedlings of Different Genotypes
2.4. Effect of Mn Deficiency on Nitrogen Metabolism in Maize Seedlings of Different Genotypes
2.4.1. Effect of Mn Deficiency on Nitrogen Metabolites in Maize Seedlings
2.4.2. Effect of Mn Deficiency on the Activities of Key Enzymes of Nitrogen Metabolism in Maize Seedlings
2.5. Correlation Analysis and C/N Ratio
3. Discussion
3.1. Effect of Mn Deficiency on Carbon Metabolism in Maize Seedlings of Different Genotypes
3.2. Effect of Mn Deficiency on Nitrogen Metabolism in Maize Seedlings of Different Genotypes
3.3. Effect of Mn Deficiency on C/N and R/S of Maize Seedlings of Different Genotypes
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Design
4.3. Determination of Indicators
4.3.1. Determination of Plant Growth
4.3.2. Determination of Chlorophyll Content and Carotenoid Content
4.3.3. Gas Exchange Parameters Determination
4.3.4. Determination of Chlorophyll Fluorescence Parameters
4.3.5. Determination of Nonstructural Carbohydrate Content and Enzyme Activities Related to Carbon Metabolism
4.3.6. Evaluation of Nitrogen Metabolism-Related Product Content and Key Enzyme Activities
4.3.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From acquisition to subcellular allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, Y.V.; Pashkovskiy, P.P.; Ivanova, A.I.; Kartashov, A.V.; Kuznetsov, V.V. Manganese deficiency suppresses growth and photosynthetic processes but causes an increase in the expression of photosynthetic genes in scots pine seedlings. Cells 2022, 11, 3814. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.B.; Husted, S. The biochemical properties of manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, N.; Avramov, A.P.; Nürnberg, D.J.; Dau, H.; Burnap, R.L. From manganese oxidation to water oxidation: Assembly and evolution of the water-splitting complex in photosystem II. Photosynth. Res. 2022, 152, 107–133. [Google Scholar] [CrossRef]
- Jhanji, S.; Sadana, U. Unraveling the effect of differentially applied manganese on root dynamics and efficiency of diverse rice genotypes. Commun. Soil Sci. Plant Anal. 2018, 49, 2357–2368. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2022. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, P.; Zhang, X.; Liu, Y.; Feng, S.; Guo, D.; Nadezhda, T.; Song, Z.; Dang, X. Multi-wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. J. Agric. Food Chem. 2021, 69, 4981–4991. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Pedas, P.; Laursen, K.H.; Schjoerring, J.K.; Husted, S. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil 2013, 372, 417–429. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef]
- Long, L.; Kristensen, R.K.; Guo, J.; Chen, F.; Pedas, P.R.; Zhang, G.; Schjoerring, J.K.; Yuan, L. Assessing the variation in traits for manganese deficiency tolerance among maize genotypes. Environ. Exp. Bot. 2021, 183, 104344. [Google Scholar] [CrossRef]
- Oliveira, K.S.; de Mello Prado, R.; Checchio, M.V.; Gratão, P.L. Silicon via nutrient solution modulates deficient and sufficient manganese sugar and energy cane antioxidant systems. Sci. Rep. 2021, 11, 16900. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.B.; Powikrowska, M.; Krogholm, K.S.; Naumann-Busch, B.; Schjoerring, J.K.; Husted, S.; Jensen, P.E.; Pedas, P.R. Photosystem II functionality in barley responds dynamically to changes in leaf manganese status. Front. Plant Sci. 2016, 7, 1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejandro, S.; Cailliatte, R.; Alcon, C.; Dirick, L.; Domergue, F.; Correia, D.; Castaings, L.; Briat, J.F.; Mari, S.; Curie, C. Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell 2017, 29, 3068–3084. [Google Scholar] [CrossRef] [Green Version]
- Tahura, S.; Kabir, A.H. Physiological responses and genome-wide characterization of TaNRAMP1 gene in Mn-deficient wheat. Plant Physiol. Biochem. 2021, 162, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Husted, S.; Laursen, K.H.; Hebbern, C.A.; Schmidt, S.B.; Pedas, P.; Haldrup, A.; Jensen, P.E. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol. 2009, 150, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Jhanji, S.; Sekhon, N.K.; Sadana, U.S.; Gill, T.P.S. Characterization of Morphophysiological Traits of Rice Genotypes with Diverse Manganese Efficiency. Indian J. Plant Physiol. 2011, 16, 245. [Google Scholar]
- Roosta, H.R.; Estaji, A.; Niknam, F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 2018, 56, 606–615. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Sharma, P.N. Oxidative stress and antioxidant responses of mulberry (Morus alba) plants subjected to deficiency and excess of manganese. Acta Physiol. Plant. 2013, 35, 3345–3356. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Wang, L.; Hong, J.; Zhao, X.Y.; Yu, X.H.; Sheng, L.; Hang, C.Z.; Zhao, Y.; Lin, A.A.; Si, W.H.; et al. Oxidative stress of maize roots caused by a combination of both salt stress and manganese deprivation. Cereal Res. Commun. 2014, 42, 568–577. [Google Scholar] [CrossRef]
- Bhakuni, G.; Dube, B.K.; Chatterjee, C. Manganese Deficiency Affects the Growth, Metabolism and Yield of Chickpea. Indian J. Plant Physiol. 2008, 13, 198–202. [Google Scholar]
- Lan, G.; Jiao, C.; Wang, G.; Sun, Y.; Sun, Y. Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Sci. Hortic. 2020, 260, 108790. [Google Scholar] [CrossRef]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.; Ghazanfar, M.U.; Rathinasabapathi, B.; Mattson, N.S.; Martínez-Nicolas, J.J.; Garcia-Sanchez, F. Ploidy level of citrus rootstocks affects the Carbon and nitrogen metabolism in the leaves of chromium-stressed Kinnow mandarin Plants. Environ. Exp. Bot. 2018, 149, 70–80. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Li, F.; Xiao, F.; Yu, H. Effect of divalent manganese (Mn2+) concentration on the growth and nitrate nitrogen content of lettuce during aeroponic intercropping with cherry radish. Hortic. Environ. Biotechnol. 2021, 62, 243–251. [Google Scholar] [CrossRef]
- Bloom, A.J.; Kameritsch, P. Relative association of RuBisCO with manganese and magnesium as a regulatory mechanism in Plants. Physiol. Plant. 2017, 161, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Qu, C.; Liu, C.; Hong, M.; Wang, L.; Hong, F. Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol. Trace Elem. Res. 2011, 144, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Evangelou, B.P.; Ashraf, M.M. Changes in root cell wall chemistry induced by manganese exposure with two tobacco genotypes. J. Plant Nutr. 2003, 26, 1527–1540. [Google Scholar] [CrossRef]
- Iqbal, A.; Qiang, D.; Zhun, W.; Xiangru, W.; Huiping, G.; Hengheng, Z.; Nianchang, P.; Xiling, Z.; Meizhen, S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol. Biochem. 2020, 149, 61–74. [Google Scholar] [CrossRef]
- de Oliveira, R.L.L.; de Mello Prado, R.; Felisberto, G.; Checchio, M.V.; Gratão, P.L. Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. J. Soil Sci. Plant Nutr. 2019, 19, 524–534. [Google Scholar] [CrossRef]
- Gong, X.; Hong, M.; Wang, Y.; Zhou, M.; Cai, J.; Liu, C.; Gong, S.; Hong, F. Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol. Trace Elem. Res. 2011, 141, 305–316. [Google Scholar] [CrossRef]
- Schneider, A.; Steinberger, I.; Herdean, A.; Gandini, C.; Eisenhut, M.; Kurz, S.; Morper, A.; Hoecker, N.; Rühle, T.; Labs, M.; et al. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. Plant Cell 2016, 28, 892–910. [Google Scholar] [CrossRef] [Green Version]
- Messant, M.; Hennebelle, T.; Guérard, F.; Gakière, B.; Gall, A.; Thomine, S.; Krieger-Liszkay, A. Manganese excess and deficiency affects photosynthesis and metabolism in Marchantia polymorpha. Plant Biol. 2022. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Giannakoula, A.; Antonopoulou, C.P.; Moustakas, M.; Avramaki, E.; Therios, I.N. Photosystem 2 activity of Citrus volkameriana (L.) leaves as affected by Mn nutrition and irradiance. Photosynthetica 2007, 45, 208–213. [Google Scholar] [CrossRef]
- Qu, C.; Gong, X.; Liu, C.; Hong, M.; Wang, L.; Hong, F. Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol. Trace Elem. Res. 2012, 146, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Pedas, P.R.; Kristensen, R.K.; Schulze, W.X.; Husted, S.; Zhang, G.; Schjoerring, J.K.; Yuan, L. High light intensity aggravates latent manganese deficiency in maize. J. Exp. Bot. 2020, 71, 6116–6127. [Google Scholar] [CrossRef]
- Wang, H.; Jin, M.; Xu, L.; Xi, H.; Wang, B.; Du, S.; Liu, H.; Wen, Y. Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. Environ. Pollut. 2020, 263, 114533. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Chen, H.; Jin, J.; Zhang, P.; Shen, L.; Hu, S.; Liu, H. Metabolomic analysis reveals the impact of ketoprofen on Carbon and nitrogen metabolism in rice (Oryza sativa L.) seedling leaves. Environ. Sci. Pollut. Res. Int. 2023, 30, 21825–21837. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, E.; Zhang, X.; Wang, Q. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating Carbon and nitrogen metabolism. Sci. Rep. 2021, 11, 1115. [Google Scholar] [CrossRef]
- Ren, J.; Yang, X.; Ma, C.; Wang, Y.; Zhao, J. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. Plant Physiol. Biochem. 2021, 167, 958–969. [Google Scholar] [CrossRef]
- Tavanti, R.F.R.; David Queiroz, G.; Caroline Da Rocha Silva, A.; Moya Peres, W.; Pereira Paixão, A.; Galindo, F.S.; Martins Silva, V.; Bossolani, J.W.; Moreira Melero, M.; De Souza Oliveira, G.; et al. Changes in photosynthesis and antioxidant metabolism of cotton (Gossypium hirsutum L.) Plants in response to manganese stress. Arch. Agron. Soil Sci. 2020, 66, 743–762. [Google Scholar] [CrossRef]
- Yoon, J.; Cho, L.H.; Tun, W.; Jeon, J.S.; An, G. Sucrose signaling in higher Plants. Plant Sci. 2021, 302, 110703. [Google Scholar] [CrossRef] [PubMed]
- Gou, T.; Yang, L.; Hu, W.; Chen, X.; Zhu, Y.; Guo, J.; Gong, H. Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiol. Biochem. 2020, 152, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Sikder, R.K.; Wang, X.; Zhang, H.; Gui, H.; Dong, Q.; Jin, D.; Song, M. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jiang, J.-G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 2010, 18, 309–319. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Bai, M.; Liu, L.; Gao, S.; Chen, K.; Zhuang, H. The Impact of Traffic-Induced Compaction on Soil Bulk Density, Soil Stress Distribution and Key Growth Indicators of Maize in North China Plain. Agriculture 2022, 12, 1220. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xue, J.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; Li, S. Leaf removal affects maize morphology and grain yield. Agronomy 2020, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Meng, Y.; Wang, Y.; Zhao, M.; Wei, S.; Gu, W. Exogenous hemin optimized maize leaf photosynthesis, root development, grain filling, and resource utilization on alleviating cadmium stress under field condition. J. Soil Sci. Plant Nutr. 2022, 22, 631–646. [Google Scholar] [CrossRef]
- Xiong, Z.T.; Zhao, F.; Li, M.J. Lead toxicity in Brassica pekinensis Rupr.: Effect on nitrate assimilation and growth. Environ. Toxicol. 2006, 21, 147–153. [Google Scholar] [CrossRef]
- Polishchuk, A.I.; Antonyak, H.L. Dynamics of foliar concentrations of photosynthetic pigments in woody and herbaceous plant species in the territory of an industrial city. Biol. Stud. 2022, 16, 29–40. [Google Scholar] [CrossRef]
- Ahmad, S.; Muhammad, I.; Wang, G.Y.; Zeeshan, M.; Yang, L.; Ali, I.; Zhou, X.B. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol. 2021, 21, 368. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.R.; Ai, Y.; Du, J.B.; Yu, L.; Wang, X.C.; Yang, W.Y.; Sun, X. Photosynthetic compensation of maize in heterogeneous light is impaired by restricted photosynthate export. Plant Physiol. Biochem. 2022, 192, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Liu, Z.; Han, Y.; Sun, Y. Exogenous dopamine promotes photosynthesis and carbohydrate metabolism of downy mildew-infected cucumber. Sci. Hortic. 2022, 295, 110842. [Google Scholar] [CrossRef]
- Quentin, A.G.; Pinkard, E.A.; Ryan, M.G.; Tissue, D.T.; Baggett, L.S.; Adams, H.D.; Maillard, P.; Marchand, J.; Landhäusser, S.M.; Lacointe, A.; et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 2015, 35, 1146–1165. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Cossani, C.M.; Sadras, V.O.; Yang, Q.; Wang, Z. The interaction between nitrogen supply and light quality modulates plant growth and resource allocation. Front. Plant Sci. 2022, 13, 864090. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- He, Z.; Xu, C.; Liu, B.; Yao, B.; Wang, H.; Chen, Z.Y.; Li, D.Y.; Bai, Z.Y.; Zhang, Z.A. Relationship between photosynthesis, bleeding-sap mass, and bleeding components in maize hybrids and corresponding parents in Northern China. Photosynthetica 2019, 57, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Dai, T.; Jing, Q.; Jiang, D.; Cao, W. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul. 2007, 51, 149–158. [Google Scholar] [CrossRef]
Source of Variation | Degree of Freedom | Shoot Dry Weight | Root Dry Weight | Plant Height | |||
---|---|---|---|---|---|---|---|
Mean Square | p | Mean Square | p | Mean Square | p | ||
A | 2 | 0.0569 | 0.0001 | 0.0036 | 0.0001 | 720.0411 | 0.0001 |
B | 3 | 0.0511 | 0.0001 | 0.0010 | 0.0001 | 212.2933 | 0.0001 |
A × B | 6 | 0.0061 | 0.0001 | 0.0000 | 0.3776 | 28.3233 | 0.0017 |
Genotypes | MnSO4 Concentrations | Shoot Dry Weight g/Plant | Root Dry Weight g/Plant | Root to Shoot Ratio | Plant Height cm/Plant | Leaf Area cm2/Plant |
---|---|---|---|---|---|---|
Mo17 | 0% | 0.249 ± 0.019 Cc | 0.067 ± 0.002 Bb | 0.271 ± 0.012 Aa | 44.8 ± 1.2 Bc | 124.8 ± 5.1 Bc |
10% | 0.293 ± 0.022 Cc | 0.069 ± 0.002 Bb | 0.236 ± 0.012 Ab | 48.6 ± 2.4 Bc | 136.6 ± 15.0 Bbc | |
50% | 0.445 ± 0.022 Bb | 0.086 ± 0.005 Ba | 0.193 ± 0.004 Ac | 54.4 ± 2.3 Bb | 160.2 ± 9.7 Bb | |
100% | 0.511 ± 0.018 Ba | 0.093 ± 0.005 Ba | 0.182 ± 0.004 Ac | 62.7 ± 1.5 Ba | 200.2 ± 13.5 Ba | |
B73 | 0% | 0.363 ± 0.016 Bb | 0.055 ± 0.004 Cb | 0.151 ± 0.005 Cab | 48.5 ± 1.2 Bb | 125.5 ± 14.5 Bb |
10% | 0.415 ± 0.024 Ba | 0.060 ± 0.005 Bab | 0.145 ± 0.005 Cb | 50.8 ± 1.7 Bab | 151.8 ± 7.2 Ba | |
50% | 0.438 ± 0.016 Ba | 0.070 ± 0.003 Ca | 0.159 ± 0.002 Ba | 52.3 ± 1.8 Bab | 158.4 ± 15.8 Ba | |
100% | 0.458 ± 0.022 Ca | 0.068 ± 0.003 Ca | 0.149 ± 0.003 Bab | 55.7 ± 2.3 Ca | 170.3 ± 6.7 Ca | |
B73 × Mo17 | 0% | 0.440 ± 0.024 Ab | 0.086 ± 0.005 Ab | 0.195 ± 0.004 Ba | 61.7 ± 1.0 Ab | 200.4 ± 10.9 Ac |
10% | 0.469 ± 0.024 Ab | 0.090 ± 0.008 Ab | 0.191 ± 0.008 Ba | 62.1 ± 2.8 Ab | 213.9 ± 11.9 Abc | |
50% | 0.557 ± 0.020 Aa | 0.109 ± 0.007 Aa | 0.195 ± 0.005 Aa | 70.1 ± 1.7 Aa | 243.9 ± 21.8 Aa | |
100% | 0.594 ± 0.024 Aa | 0.107 ± 0.005 Aa | 0.187 ± 0.009 Aa | 69.2 ± 2.5 Aa | 235.5 ± 15.1 Aab |
Source of Variation | Sum of Squares | Degree of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
A | 486,005.9245 | 2 | 243,002.9622 | 123.9268 | 0.0001 |
B | 1,493,706.237 | 3 | 497,902.0789 | 253.9203 | 0.0001 |
A × B | 684,510.4861 | 6 | 114,085.081 | 58.1812 | 0.0001 |
Genotypes | MnSO4 Concentrations | Total Root Length cm/Plant | Root Surface Area cm2/Plant | Root Volume cm3/Plant | Root Average Diameter/mm | Root Activity /TTF μg·g−1·h−1 |
---|---|---|---|---|---|---|
Mo17 | 0% | 340.14 ± 26.63 Bc | 61.64 ± 14.73 Ac | 1.84 ± 0.38 Bd | 0.65 ± 0.01 Aa | 81.25 ± 3.16 Ac |
10% | 398.50 ± 25.93 Bbc | 76.65 ± 8.82 Abc | 3.04 ± 0.46 Ac | 0.65 ± 0.08 Aa | 99.68 ± 4.01 Ab | |
50% | 529.61 ± 27.65 Cb | 105.67 ± 10.38 Bb | 5.23 ± 0.71 Bb | 0.68 ± 0.05 Aa | 110.11 ± 10.00 Ab | |
100% | 1190.95 ± 25.42 Aa | 218.45 ± 12.78 Aa | 8.11 ± 0.84 Aa | 0.62 ± 0.01 Ba | 163.49 ± 12.01 Aa | |
B73 | 0% | 506.73 ± 22.28 Ab | 77.95 ± 4.24 Ab | 2.40 ± 0.02 ABb | 0.49 ± 0.02 Bb | 51.67 ± 3.79 Bb |
10% | 528.76 ± 22.06 ABb | 77.99 ± 3.08 Ab | 2.46 ± 0.10 Ab | 0.49 ± 0.01 Bb | 52.88 ± 1.37 Bb | |
50% | 714.81 ± 69.28 Ba | 124.24 ± 14.28 Ba | 4.39 ± 0.01 Ba | 0.58 ± 0.01 Ba | 77.44 ± 9.11 Ba | |
100% | 726.29 ± 28.13 Ba | 118.71 ± 12.95 Ba | 4.17 ± 0.04 Ba | 0.57 ± 0.02 Ba | 89.25 ± 2.27 Ba | |
B73 × Mo17 | 0% | 647.28 ± 30.24 Ab | 95.50 ± 7.86 Ab | 3.08 ± 0.46 Ab | 0.52 ± 0.01 Bc | 38.45 ± 0.91 Cb |
10% | 615.53 ± 39.45 Ab | 81.10 ± 5.23 Ab | 2.38 ± 0.38 Ab | 0.49 ± 0.02 Bc | 43.11 ± 6.54 Bb | |
50% | 1156.15 ± 40.92 Aa | 251.64 ± 9.57 Aa | 9.49 ± 0.58 Aa | 0.63 ± 0.01 ABb | 49.47 ± 2.94 Cb | |
100% | 1034.73 ± 47.35 Aa | 223.71 ± 2.04 Aa | 8.76 ± 0.67 Aa | 0.76 ± 0.02 Aa | 69.71 ± 9.07 Ca |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Liu, C.; Piao, L.; Yang, F.; Liu, J.; Jan, M.F.; Li, M. Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize (Zea mays L.). Plants 2023, 12, 1407. https://doi.org/10.3390/plants12061407
Tao Y, Liu C, Piao L, Yang F, Liu J, Jan MF, Li M. Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize (Zea mays L.). Plants. 2023; 12(6):1407. https://doi.org/10.3390/plants12061407
Chicago/Turabian StyleTao, Yuzhao, Changzhuang Liu, Lin Piao, Fuqiang Yang, Jiaqi Liu, Muhammad Faheem Jan, and Ming Li. 2023. "Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize (Zea mays L.)" Plants 12, no. 6: 1407. https://doi.org/10.3390/plants12061407
APA StyleTao, Y., Liu, C., Piao, L., Yang, F., Liu, J., Jan, M. F., & Li, M. (2023). Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize (Zea mays L.). Plants, 12(6), 1407. https://doi.org/10.3390/plants12061407