Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Lime Flowers
2.2. Characteristics of Pollen Seasons
2.3. Comparison of the Dynamics of Pollen Seasons in Lublin and Szczecin
2.4. Impact of Weather Factors on Lime Pollen Concentrations
2.5. Cumulative Temperature
3. Discussion
4. Materials and Methods
4.1. Vegetation of Trees in the Surroundings of the Pollen Samplers
4.2. Plant Material
4.3. Microscopy Observations
4.4. Aerobiological Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Somme, L.; Moquet, L.; Quinet, M.; Vanderplanck, M.; Michez, D.; Lognay, G.; Jacquemart, A.-L. Food in a row: Urban trees offer valuable floral resources to pollinating insects. Urban Ecosyst. 2016, 19, 1149–1161. [Google Scholar] [CrossRef]
- Sulborska, A. Rośliny Pożytkowe; Wyd. Bee & Honey Sp. z o.o.: Klecza Dolna, Poland, 2019. [Google Scholar]
- Maurizio, A.; Grafl, I. Das Trachtpflanzenbuch: Nektar und Pollen, die wichtigsten Nahrungsquellen der Honigbiene; Ehrenwirth Verlag: München, Germany, 1969. [Google Scholar]
- Kohlmünzer, S. Farmakognozja, Podręcznik dla Studentów Farmacji; Wydanie V Unowocześnione; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 2000. [Google Scholar]
- Czerpak, R.; Jabłońska-Trypuć, A. Roślinne Surowce Kosmetyczne; MedPharm Polska: Wrocław, Poland, 2008; pp. 97–98. [Google Scholar]
- Mikołajczyk, K.; Wierzbicki, A. Zioła Źródłem Zdrowia; Oficyna Wydawniczo-Poligraficzna “Adam”: Warszawa, Poland, 2006; pp. 165–167. [Google Scholar]
- Mitic, M.; Jankovic, S.; Mitic, S.; Kocic, G.; Maskovic, P.; Dukic, D. Optimization and kinetic modelling of total phenols and flavonoids extraction from Tilia cordata M. flowers. S. Afr. J. Chem. 2021, 75, 64–72. [Google Scholar] [CrossRef]
- Poljšak, N.; Kočevar Glavač, N. Tilia sp. seed oil—Composition, antioxidant activity and potential use. Appl. Sci. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Seneta, W.; Dolatowski, J. Dendrologia, 3rd ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008. [Google Scholar]
- Podbielkowski, Z.; Sudnik-Wójcikowska, B. Słownik Roślin Użytkowych; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2003. [Google Scholar]
- Weryszko-Chmielewska, E.; Piotrowska-Weryszko, K.; Dąbrowska, A. Response of Tilia sp. L to climate warming in urban conditions—Phenological and aerobiological studies. Urban For. Urban Green. 2019, 43, 126369. [Google Scholar] [CrossRef]
- Beug, H.J. Leitfaden der Pollenbestimmung für Mitteleuropa and Angrenzende Gebiete; Verlag Dr. Friedrich Pfeil: München, Germany, 2004. [Google Scholar]
- Kasprzyk, I.; Ćwik, A.; Kluska, K.; Wójcik, T.; Cariñanos, P. Allergenic pollen concentrations in the air of urban parks in relation to their vegetation. Urban For. Urban Green. 2019, 46, 126486. [Google Scholar] [CrossRef]
- Weber, R.W. Allergen of the Month—Little-leaf linden. Ann. Allergy Asthma Immunol. 2014, 113, A15. [Google Scholar] [CrossRef]
- Mur, P.; Feo Brito, F.; Lombardero, M.; Barber, D.; Galindo, P.A.; Gómez, E.; Borja, J. Allergy to linden pollen (Tilia cordata). Allergy 2001, 56, 457–458. [Google Scholar] [CrossRef]
- Igić, R.; Boža, P.; Anačkov, G.; Vukov, D. Allergenic plants in city of Novi Sad. Efflorescence calendar of allergenic plants. In Atlas of Allergenic Plants in City of Novi Sad; Vesković, M., Ed.; University of Novi Sad, Faculty of Sciences: Novi Sad, Serbia, 2005; pp. 17–183, 185–187. [Google Scholar]
- Cariñanos, P.; Casares-Porcel, M.; Quesada-Rubio, J.M. Estimating the allergenic potential of urban green spaces, a case-study in Granada Spain. Landsc. Urban Plan. 2014, 123, 134–144. [Google Scholar] [CrossRef]
- Mrđan, S.; Ljubojević, M.; Orlović, S.; Čukanović, J.; Dulić, J. Poisonous and allergenic plant species in preschool’s and primary school’s yards in the city of Novi Sad. Urban For. Urban Green. 2017, 25, 112–119. [Google Scholar] [CrossRef]
- Derbes, V.J. The linden (Tilia) as a factor in seasonal pollinosis. J. Allergy Clin. Immunol. 1941, 12, 502–506. [Google Scholar] [CrossRef]
- Loureiro, G.; Rabaca, M.; Blanco, B.; Andrade, S.; Chieira, C.; Pereira, C. Aeroallergens sensitization in an allergic paediatric population of Cova da Beira, Portugal. Allergol. Immunopathol. 2005, 33, 192–198. [Google Scholar] [CrossRef]
- Yazicioglu, M.; Oner, N.; Çeltik, C.; Okutan, O.; Pala, O. Sensitization to common allergens, especially pollens, among children with respiratory allergy in the Trakya region of Turkey. Asian Pac. J. Allergy Immunol. 2004, 22, 183–190. [Google Scholar]
- Berna Dursun, A.; Çelik, G.E.; Alan, S.; Münevver Pinar, N.; Mungan, D.; Misirligil, Z. Regional pollen load: Effect on sensitization and clinical presentation of seasonal allergic rhinitis in patients living in Ankara, Turkey. Allergol. Immunopathol. 2008, 36, 371–378. [Google Scholar] [CrossRef]
- Available online: https://www.thermofisher.com/diagnostic-education/hcp/wo/en/resource-center/allergen-encyclopedia/whole-allergens.html?key=t208#references (accessed on 13 March 2023).
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A.; et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; Lintner, B.R.; Findell, K.; Seneviratne, S.I.; van den Hurk, B.; Ducharne, A.; Chéruy, F.; Hagemann, S.; Lawrence, D.M.; Malyshev, S.; et al. Interannual coupling between summertime surface temperature and precipitation over land: Processes and implications for climate change. J. Clim. 2015, 28, 1308–1328. [Google Scholar] [CrossRef]
- Lemordant, L.; Gentine, P.; Stefanon, M.; Drobinski, P.; Fatichi, S. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude. Geophys. Res. Lett. 2016, 43, 10,240–10,248. [Google Scholar] [CrossRef]
- Ziska, L.H.; Makra, L.; Harry, S.K.; Bruffaerts, N.; Hendrickx, M.; Coates, F.; Saarto, A.; Thibaudon, M.; Oliver, G.; Damialis, A.; et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet Health 2019, 3, e124–e131. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska-Weryszko, K.; Weryszko-Chmielewska, E.; Sulborska, A.; Konarska, A.; Dmitruk, M.; Kaszewski, B.M. Amaranthaceae pollen grains as indicator of climate change in Lublin (Poland). Environ. Res. 2021, 193, 110542. [Google Scholar] [CrossRef]
- De Weger, L.A.; Bruffaerts, N.; Koenders, M.M.J.F.; Verstraeten, W.W.; Delcloo, A.W.; Hentges, P.; Hentges, F. Long-term pollen monitoring in the Benelux: Evaluation of allergenic pollen levels and temporal variations of pollen seasons. Front. Allergy 2021, 2, 676176. [Google Scholar] [CrossRef]
- Sulborska, A.; Weryszko-Chmielewska, E.; Piotrowska-Weryszko, K.; Puc, M.; Ziemianin, M.; Chłopek, K.; Siergiejko, G.; Jurkiewicz, D.; Rapiejko, P. Characterisation of Tilia pollen seasons in 2018–2019. Alergoprofil 2019, 15, 16–22. [Google Scholar] [CrossRef]
- Pudelska, K.; Przegalińska-Matyko, M. Abramowicki park dworski w krajobrazie Lublina (sytuacja dendrologiczna). Zesz. Probl. Post. Nauk Roln. 2006, 510, 531–540. [Google Scholar]
- Kremenska, L.; Rodinkova, V.; Bobrowska, O.; Kriklyva, S.; Toziuk, O.; Yermishev, O.; Kremenskij, O.; Yascholt, A. Correspondence between tree pollen emissions sources and pollen content of the ambient air. Aerobiologia 2019, 35, 511–521. [Google Scholar] [CrossRef]
- Melnychenko, G.; Mylenka, M.; Riznychuk, N.; Prokopiv, N. Pollen monitoring in the city of Ivano-Frankivsk, Western Ukraine. Acta Agrobot. 2020, 73, 7341. [Google Scholar] [CrossRef]
- Rodríguez de la Cruz, D.; Sánchez Reyes, E.; Sánchez Sánchez, J. Análisis aerobiológico del polen de algunos taxa entomófilos en la ciudad de Salamanca. Aerobiological analysis of some entomophilous taxa in the city of Salamanca. Stud. Bot. 2007, 26, 67–76. [Google Scholar]
- Mazei, N.G.; Kusilman, M.V.; Novenko, E.Y. The occurrence of Carpinus, Fagus, Tilia, and Quercus pollen in subrecent spore–pollen spectra from the East European Plain: On the possibility of long-distance pollen transfer. Russ. J. Ecol. 2018, 49, 484–491. [Google Scholar] [CrossRef]
- Kuchcik, M.; Dudek, W.; Błażejczyk, K.; Milewski, P.; Błażejczyk, A. Two faces to the greenery on housing estates–mitigating climate but aggravating allergy. A Warsaw case study. Urban For. Urban Green. 2016, 16, 170–181. [Google Scholar] [CrossRef]
- Cariñanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 2011, 101, 205–214. [Google Scholar] [CrossRef]
- Cerceau-Larrival, M.T.; Nilsson, S.; Cauneau-Pigot, A.; Berggren, B.; Derouet, L.; Verhille, A.-M.; Carbonnier-Jarreau, M.-C. The influence of the environment (natural and experimental) on the composition of the exine of allergenic pollen with respect to the deposition of pollutant mineral particles. Grana 1991, 30, 532–546. [Google Scholar] [CrossRef]
- Nilsson, S.; Berggen, B. Various methods to determine air pollutants on pollen grains. Grana 1991, 30, 553–556. [Google Scholar] [CrossRef]
- Tivsiz, D.; Karagoz, I.D.; Kilic, I.H. Allergenic proteins of Tilia cordata. Eurasia Proc. Sci. Technol. Eng. Math. 2021, 12, 62–66. [Google Scholar] [CrossRef]
- Nosova, M.B.; Lisitsyna, O.V.; Volkova, O.A.; Severova, E.E. Variations in pollen deposition of the main taxa forming the land cover along a NW–SE transect in European Russia: Results of a ten year Tauber trap monitoring period. Veg. Hist. Archaeobot. 2020, 29, 699–716. [Google Scholar] [CrossRef]
- Ziello, C.; Sparks, T.H.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to airborne pollen counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Badeck, F.-W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. Available online: https://www.jstor.org/stable/1514502 (accessed on 13 March 2023). [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Damialis, A.; Charalampopoulos, A.; Lazarina, M.; Diamanti, E.; Almpanidou, V.; Maraidoni, A.M.; Symeonidou, A.; Staikidou, E.; Syropoulou, E.; Leontidou, K.; et al. Plant flowering mirrored in airborne pollen seasons? Evidence from phenological observations in 14 woody taxa. Atmos. Environ. 2020, 240, 117708. [Google Scholar] [CrossRef]
- Gonzales Minero, F.J.; Morales, J.; Tomas, C.; Candau, P. Relationship between air temperature and the start of pollen emission in some arboreal taxa in Southwestern Spain. Grana 1999, 38, 306–310. [Google Scholar] [CrossRef]
- Clot, B. Airborne birch pollen in Neuchâtel (Switzerland), onset, peak and daily patterns. Aerobiologia 2001, 17, 25–29. [Google Scholar] [CrossRef]
- Linkosalo, T.; Le Tortorec, E.; Prank, M.; Pessi, A.M.; Saarto, A. Alder pollen in Finland ripens after a short exposure to warm days in early spring, showing biennial variation in the onset of pollen ripening. Agric. For. Meteorol. 2017, 247, 408–413. [Google Scholar] [CrossRef]
- Min, B.M.; Yi, D.H.; Jeong, S.J. Relationship between phenological stages and cumulative air temperature in spring time at Namsan. J. Ecol. Field Biol. 2007, 30, 143–149. [Google Scholar] [CrossRef]
- Faliński, J.B.; Pawlaczyk, P. Zarys ekologii. In Lipy. Tilia cordata Mill., T. platyphyllos Scop; Białobok, S., Ed.; Wydawnictwo Arkadia: Poznań, Poland, 1991. [Google Scholar]
- Jumayev, J.M.; Kholmurodov, M.Z.; Khalilova, K.A. Phenology and growth indicators of honey trees and bushes in Uzbekistan. E3S Web Conf. 2021, 244, 02050. [Google Scholar] [CrossRef]
- Juknys, R.; Sujetovienė, G.; Žeimavičius, K.; Gustainyte, J. Effects of climate warming on timing of lime (Tilia cordata L.) phenology. In Proceedings of the 8th International Conference ‘Environmental Engineering’, Vilnius, Lithuania, 19–20 May 2011; pp. 139–143. [Google Scholar]
- Juknys, R.; Sujetovienė, G.; Žeimavičius, K.; Šveikauskaitė, I. Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Balt. For. 2012, 18, 25–32. [Google Scholar]
- Dulberger, R. The apertural wall in pollen of Linum grandiflorum. Ann. Bot. 1989, 63, 421–431. Available online: https://www.jstor.org/stable/42758175 (accessed on 31 January 2023). [CrossRef]
- Available online: https://danepubliczne.imgw.pl (accessed on 27 January 2023).
- Mandrioli, P.; Comtois, P.; Dominguez, V.E.; Galan, C.; Syzdek, L.; Isard, S. Sampling: Principles and techniques. In Methods in aerobiology; Mandrioli, P., Comtois, P., Levizzani, V., Eds.; PitagoraEditrice: Bologna, Italy, 1998; pp. 47–112. [Google Scholar]
- Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int. J. Biometeorol. 2002, 46, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Latałowa, M.; Miętus, M.; Uruska, A. Seasonal variation in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in the relation to meteorological parameters. Aerobiologia 2002, 18, 33–43. [Google Scholar] [CrossRef]
- Frenguelli, G.; Bricchi, E.; Romano, B.; Mincigrucci, G.; Ferranti, F.; Antognozzi, E. The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 1992, 8, 415–418. [Google Scholar] [CrossRef]
- Garcia-Mozo, H.; Galán, C.; Gomez-Casero, M.T.; Dominguez, E. A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Córdoba (South West Spain). Grana 2000, 39, 194–199. [Google Scholar] [CrossRef]
Pollen Season Parameters | Lublin | Szczecin | ||||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
Pollen season period by the 98% method | 18.06–19.08 | 21.06–21.08 | 17.06–14.08 | 21.06–6.08 | 20.06–30.07 | 23.06–17.08 |
Season duration | 63 | 62 | 59 | 47 | 41 | 56 |
Peak value (P/m3) | 215 | 54 | 30 | 58 | 18 | 12 |
Peak date | 25.06 | 2.07 | 2.07 | 30.06 | 24.06 | 3.07 |
Annual pollen sum | 740 | 261 | 239 | 310 | 115 | 82 |
Number of days with concentration ≥ 5 P/m3 | 25 | 12 | 14 | 14 | 8 | 6 |
Lublin | Szczecin | |||||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
Average air temperature in April | 8.4 | 6.0 | 6.1 | 8.9 | 6.4 | 7.2 |
Year | Temperature from 1 January to the Beginning of the Pollen Season (°C) | Temperature from 1 March to the Beginning of the Pollen Season (°C) | ||
---|---|---|---|---|
Lublin | Szczecin | Lublin | Szczecin | |
2020 | 1129.6 | 1454.5 | 1013.2 | 1145 |
2021 | 1057.3 | 1188.8 | 1000.8 | 1074.3 |
2022 | 1060.3 | 1412.2 | 958 | 1175.5 |
Average | 1082.4 | 1351.8 | 990.7 | 1131.6 |
SD | 40.9 | 142.8 | 29.0 | 51.9 |
V% | 3.8 | 10.6 | 2.9 | 4.6 |
Range | 72.3 | 265.7 | 55.2 | 101.2 |
Year | Temperature from 1 January to the Beginning of the Pollen Season (°C) | Temperature from 1 March to the Beginning of the Pollen Season (°C) | ||
---|---|---|---|---|
Lublin | Szczecin | Lublin | Szczecin | |
2020 | 970 | 1244.6 | 942.4 | 1072.7 |
2021 | 927.3 | 1029.5 | 908.5 | 957.9 |
2022 | 907.6 | 1224.6 | 887.6 | 1103.7 |
Average | 935.0 | 1166.2 | 912.8 | 1044.8 |
SD | 31.9 | 118.8 | 27.7 | 76.8 |
V% | 3.4 | 10.2 | 3.0 | 7.4 |
Range | 62.4 | 215.1 | 54.8 | 145.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weryszko-Chmielewska, E.; Piotrowska-Weryszko, K.; Wolski, T.; Sulborska-Różycka, A.; Konarska, A. Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland. Plants 2023, 12, 1415. https://doi.org/10.3390/plants12061415
Weryszko-Chmielewska E, Piotrowska-Weryszko K, Wolski T, Sulborska-Różycka A, Konarska A. Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland. Plants. 2023; 12(6):1415. https://doi.org/10.3390/plants12061415
Chicago/Turabian StyleWeryszko-Chmielewska, Elżbieta, Krystyna Piotrowska-Weryszko, Tomasz Wolski, Aneta Sulborska-Różycka, and Agata Konarska. 2023. "Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland" Plants 12, no. 6: 1415. https://doi.org/10.3390/plants12061415
APA StyleWeryszko-Chmielewska, E., Piotrowska-Weryszko, K., Wolski, T., Sulborska-Różycka, A., & Konarska, A. (2023). Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland. Plants, 12(6), 1415. https://doi.org/10.3390/plants12061415