Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.)
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Isolated
2.2. Physical Properties of Essential Oil
2.3. Chemical Composition of Essential Oil
2.4. Enantiomeric Analysis
2.5. Antimicrobial Activity
2.6. Antioxidant Activity
2.7. Anticholinesterase Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Essential Oil Isolation
4.4. Identification and Quantification of Essential Oil Compounds
4.5. Enantioselective Analysis
4.6. Antimicrobial Activity
4.7. Evaluation of Antioxidant Capacity
4.8. Anticholinesterase Activity
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simmonds, S.E.; Smith, J.F.; Davidson, C.; Buerki, S. Phylogenetics and comparative plastome genomics of two of the largest genera of angiosperms, Piper and Peperomia (Piperaceae). Mol. Phylogenet. Evol. 2021, 163, 107229. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.; Yao, Q.; Wang, B.; Duan, W.; Zhou, H.; Duan, K. Chemical constituents of Peperomia tetraphylla (Forst. F.) Hooker et Arnott. Biochem. Syst. Ecol. 2021, 99, 104342. [Google Scholar] [CrossRef]
- Jørgesen, P.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999. [Google Scholar]
- Torre, L.D.l.; Navarrete, H.; Muriel, M.P.; Macía Barco, M.J.; Balslev, H. Enciclopedia de las Plantas úTiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador and Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador; Aarhus, Denmark, 2008. [Google Scholar]
- De Moraes, M.M.; Kato, M.J. Biosynthesis of Pellucidin A in Peperomia pellucida (L.) HBK. Front. Plant. Sci. 2021, 12, 641717. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Mostacero, N.; Castelli, M.V.; Barolo, M.I.; Amigot, S.L.; Fulgueira, C.L.; López, S.N. Fungal endophytes in Peperomia obtusifolia and their potential as inhibitors of chickpea fungal pathogens. World J. Microbiol. Biotechnol. 2021, 37, 14. [Google Scholar] [CrossRef] [PubMed]
- Wilches, I.; Jiménez-Castillo, P.; Cuzco, N.; Clos, M.V.; Jiménez-Altayó, F.; Peñaherrera, E.; Jerves-Andrade, L.; Tobar, V.; Vander Heyden, Y.; Leon-Tamariz, F.; et al. Anti-inflammatory and sedative activities of Peperomia galioides: In vivo studies in mice. Nat. Prod. Res. 2021, 35, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.O.d.; Melo, P.H.A.d.; Amorim, E.T.d.; Marcusso, G.M.; Carvalho-Silva, M. Peperomia (Piperaceae) endemic to Brazil: Distribution, richness, and conservation status. Flora 2022, 297, 152170. [Google Scholar] [CrossRef]
- Armijos, C.; Matailo, A.; Bec, N.; Salinas, M.; Aguilar, G.; Solano, N.; Calva, J.; Ludeña, C.; Larroque, C.; Vidari, G. Chemical composition and selective BuChE inhibitory activity of the essential oils from aromatic plants used to prepare the traditional Ecuadorian beverage horchata lojana. J. Ethnopharmacol. 2020, 263, 113162. [Google Scholar] [CrossRef]
- Alam, M.A.; Nadirah, T.A.; Mohsin, G.M.; Saleh, M.; Moneruzzaman, K.M.; Aslani, F.; Juraimi, A.S.; Alam, M.Z. Antioxidant compounds, antioxidant activities, and mineral contents among underutilized vegetables. Int. J. Veg. Sci. 2021, 27, 157–166. [Google Scholar] [CrossRef]
- Ho, K.L.; Yong, P.H.; Wang, C.W.; Kuppusamy, U.R.; Ngo, C.T.; Massawe, F.; Ng, Z.X. Peperomia pellucida (L.) Kunth and eye diseases: A review on phytochemistry, pharmacology and toxicology. J. Integr. Med. 2022, 20, 292–304. [Google Scholar] [CrossRef]
- Hamed, A.; Yamaguchi, L.F.; Valencia Morante, E.Y.; Spira, B.; Stammler, H.G.; El Gaafary, M.; Ziegler, D.; Syrovets, T.; Simmet, T.; Kato, M.J. Cannabinoid-like meroterpenoids from Peperomia incana. Phytochemistry 2023, 207, 113551. [Google Scholar] [CrossRef]
- Pinheiro, B.G.; Silva, A.S.B.; Souza, G.E.P.; Figueiredo, J.G.; Cunha, F.Q.; Lahlou, S.; da Silva, J.K.R.; Maia, J.G.S.; Sousa, P.J.C. Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud. J. Ethnopharmacol. 2011, 138, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.L.; Tan, C.G.; Yong, P.H.; Wang, C.W.; Lim, S.H.; Kuppusamy, U.R.; Ngo, C.T.; Massawe, F.; Ng, Z.X. Extraction of phytochemicals with health benefit from Peperomia pellucida (L.) Kunth through liquid-liquid partitioning. J. Appl. Res. Med. Aromat. Plants 2022, 30, 100392. [Google Scholar] [CrossRef]
- Noriega Rivera, P.; Mosquera, T.; Baldisserotto, A.; Abad, J.; Aillon, C.; Cabezas, D.; Piedra, J.; Coronel, I.; Stefano, M. Chemical Composition and in-vitro biological activities of the essential oil from leaves of Peperomia inaequalifolia Ruiz & Pav. Am. J. Essent. Oils Nat. Prod. 2015, 2, 29–31. [Google Scholar]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef] [PubMed]
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar] [CrossRef]
- Barbosa, Q.P.S.; Câmara, C.A.G.d.; Ramos, C.S.; Nascimento, D.C.O.; Lima-Filho, J.V.; Guimarães, E.F. Chemical composition, circadian rhythm and antibacterial activity of essential oils of Piper divaricatum: A new source of safrole. Quim. Nova 2012, 35, 1806–1808. [Google Scholar] [CrossRef] [Green Version]
- Ponce Cobos, J.J.; Castro, A. Composición química y actividad antimicrobiana del aceite esencial de Peperomia galioides Kunth, y efecto fotoprotector in vitro de una emulsión dermocosmética. Científica 2017, 14, 10–18. [Google Scholar] [CrossRef]
- Mesquita, K.D.; Feitosa, B.D.; Cruz, J.N.; Ferreira, O.O.; Franco, C.D.; Cascaes, M.M.; Oliveira, M.S.; Andrade, E.H. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link var. circinnata. (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Valarezo, E.; Rivera, J.X.; Coronel, E.; Barzallo, M.A.; Calva, J.; Cartuche, L.; Meneses, M.A. Study of Volatile Secondary Metabolites Present in Piper carpunya Leaves and in the Traditional Ecuadorian Beverage Guaviduca. Plants 2021, 10, 338. [Google Scholar] [CrossRef]
- Götz, M.E.; Sachse, B.; Schäfer, B.; Eisenreich, A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022, 11, 1988. [Google Scholar] [CrossRef]
- Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Tiritan, M.E.; Fernandes, C.; Maia, A.S.; Pinto, M.; Cass, Q.B. Enantiomeric ratios: Why so many notations? J. Chromatogr. A 2018, 1569, 1–7. [Google Scholar] [CrossRef]
- Sinuco León, D.C.; Rubio Ortíz, D.K.; Jaimes González, D.F. Sensory approach and chiral analysis for determination of odour active compounds from feijoa (Acca sellowiana). Food Chem. 2020, 317, 126383. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Okoh, S.O.; Iweriebor, B.C.; Okoh, O.O.; Okoh, A.I. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth. Pharmacogn. Mag. 2017, 13, S392–S400. [Google Scholar] [CrossRef] [PubMed]
- Surveswaran, S.; Cai, Y.-Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Al-Qahtani, W.H.; Dinakarkumar, Y.; Arokiyaraj, S.; Saravanakumar, V.; Rajabathar, J.R.; Arjun, K.; Gayathri, P.K.; Nelson Appaturi, J. Phyto-chemical and biological activity of Myristica fragrans, an ayurvedic medicinal plant in Southern India and its ingredient analysis. Saudi J. Biol. Sci. 2022, 29, 3815–3821. [Google Scholar] [CrossRef]
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci. 2022, 304, 120728. [Google Scholar] [CrossRef]
- Santos, T.C.d.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.d.A. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy. Front. Pharmacol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Valarezo, E.; Ludeña, J.; Echeverria-Coronel, E.; Cartuche, L.; Meneses, M.A.; Calva, J.; Morocho, V. Enantiomeric Composition, Antioxidant Capacity and Anticholinesterase Activity of Essential Oil from Leaves of Chirimoya (Annona cherimola Mill.). Plants 2022, 11, 367. [Google Scholar] [CrossRef]
- Benny, A.; Thomas, J. Essential Oils as Treatment Strategy for Alzheimer’s Disease: Current and Future Perspectives. Planta Med. 2019, 85, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69. In Base de Datos de Referencia Estándar del NIST Número 69. Available online: http://webbook.nist.gov (accessed on 19 May 2022).
- Morocho, V.; Hidalgo-Tapia, M.; Delgado-Loyola, I.; Cartuche, L.; Cumbicus, N.; Valarezo, E. Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiotics 2023, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Benítez, L.; Palacio, C.; Aguilar, S.; Armijos, C.; Calva, J.; Ramírez, J. Volatile and non-volatile metabolite study of endemic ecuadorian specie Piper lanceifolium Kunth. J. Essent. Oil Res. 2021, 33, 182–188. [Google Scholar] [CrossRef]
- Salinas, M.; Calva, J.; Cartuche, L.; Valarezo, E.; Armijos, C. Chemical Composition, Enantiomeric Distribution and Anticholinesterase and Antioxidant Activity of the Essential Oil of Diplosthephium juniperinum. Plants 2022, 11, 1188. [Google Scholar] [CrossRef] [PubMed]
Peperomia inaequalifolia EO | ||
---|---|---|
Mean | SD | |
Density, (g/cm3) | 1.0232 | 0.0006 |
Refractive index, n20 | 1.6714 | 0.0034 |
Specific rotation, [α] (°) | +16.21 | 0.25 |
Subjective color | Yellow | |
RGB color values | R:250, G:250, B:40 | |
CMYK color values | C:0, M:0, Y:84, K:2 |
CN | RT | Compound | RIC | RIR | % | SD | Type | CF | MM (Da) |
---|---|---|---|---|---|---|---|---|---|
1 | 9.16 | Sabinene | 969 | 969 | tr | - | MH | C10H16 | 136.13 |
2 | 9.69 | Pinene <β-> | 974 | 974 | 0.05 | 0.01 | MH | C10H16 | 136.13 |
3 | 10.35 | Ethyl hexanoate | 997 | 997 | 0.13 | 0.01 | OC | C8H16O2 | 144.12 |
4 | 11.9 | Sylvestrene | 1025 | 1025 | 0.16 | 0.01 | MH | C10H16 | 136.13 |
5 | 12.15 | Cineole <1,8-> | 1028 | 1026 | 0.17 | 0.01 | OM | C10H18O | 154.14 |
6 | 28.82 | Safrole | 1283 | 1285 | 6.68 | 0.23 | OM | C10H10O2 | 162.07 |
7 | 31.36 | Cubebene <α-> | 1347 | 1348 | 0.47 | 0.04 | SH | C15H24 | 204.19 |
8 | 32.85 | Copaene <α-> | 1372 | 1374 | 0.16 | 0.02 | SH | C15H24 | 204.19 |
9 | 34.22 | Chamipinene <α-> | 1401 | 1396 | 0.47 | 0.04 | SH | C15H24 | 204.19 |
10 | 34.39 | Sibirene | 1403 | 1400 | 0.29 | 0.03 | SH | C15H24 | 204.19 |
11 | 34.76 | Methyl eugenol | 1406 | 1403 | 6.22 | 0.24 | OC | C11H14O2 | 178.10 |
12 | 34.88 | Cedrene <α-> | 1413 | 1410 | 0.32 | 0.02 | SH | C15H24 | 204.19 |
13 | 35.03 | Caryophyllene <(E)-> | 1418 | 1417 | 0.25 | 0.07 | SH | C15H24 | 204.19 |
14 | 35.55 | Copaene<β-> | 1430 | 1430 | 0.21 | 0.05 | SH | C15H24 | 204.19 |
15 | 35.93 | Aromadendrene | 1438 | 1439 | 0.62 | 0.08 | SH | C15H24 | 204.19 |
16 | 36.46 | Himachalene <α-> | 1450 | 1449 | 0.31 | 0.04 | SH | C15H24 | 204.19 |
17 | 36.67 | Farnesene <(E)-β-> | 1454 | 1454 | 3.06 | 0.07 | SH | C15H24 | 204.19 |
18 | 36.75 | Prenyl limonene <trans-> | 1456 | 1457 | 0.29 | 0.05 | SH | C15H24 | 204.19 |
19 | 36.94 | Aromadendrene <allo-> | 1460 | 1458 | 0.26 | 0.02 | SH | C15H24 | 204.19 |
20 | 37.15 | Acoradiene <α-> | 1465 | 1464 | 0.16 | 0.01 | SH | C15H24 | 204.19 |
21 | 37.52 | Cadina-1(6),4-diene <trans-> | 1474 | 1475 | 1.14 | 0.03 | SH | C15H24 | 204.19 |
22 | 37.68 | Muurolene <γ-> | 1478 | 1478 | 1.18 | 0.02 | SH | C15H24 | 204.19 |
23 | 37.81 | Amorphane <cis-4,10-epoxy-> | 1481 | 1481 | 1.02 | 0.04 | OS | C15H26O | 222.20 |
24 | 37.94 | Amorphene <α-> | 1484 | 1483 | 0.16 | 0.01 | SH | C15H24 | 204.19 |
25 | 38.38 | Viridiflorene | 1493 | 1496 | 6.81 | 0.10 | SH | C15H24 | 204.19 |
26 | 38.60 | Bicyclogermacrene | 1498 | 1500 | 2.23 | 0.12 | SH | C15H24 | 204.19 |
27 | 38.76 | Muurolene <α-> | 1502 | 1500 | 1.16 | 0.02 | SH | C15H24 | 204.19 |
28 | 38.99 | Farnesene <(E,E)-α-> | 1507 | 1505 | 0.23 | 0.01 | SH | C15H24 | 204.19 |
29 | 39.13 | Bisabolene <(Z)-α-> | 1508 | 1506 | 0.22 | 0.01 | SH | C15H24 | 204.19 |
30 | 39.39 | Amorphene <δ-> | 1513 | 1511 | 0.33 | 0.03 | SH | C15H24 | 204.19 |
31 | 39.60 | Cadinene <γ-> | 1515 | 1513 | 1.25 | 0.02 | SH | C15H24 | 204.19 |
32 | 40.21 | Myristicin | 1519 | 1517 | 15.45 | 0.86 | OC | C11H12O3 | 192.08 |
33 | 40.41 | Cadinene <α-> | 1537 | 1537 | 0.05 | 0.00 | SH | C15H24 | 204.19 |
34 | 41.33 | Elemicin | 1556 | 1555 | 27.44 | 1.35 | OC | C12H16O3 | 208.11 |
35 | 41.48 | Nerolidol <(E)-> | 1559 | 1561 | 0.67 | 0.02 | OS | C15H26O | 222.20 |
36 | 42.21 | Spathulenol | 1575 | 1577 | 0.32 | 0.06 | OS | C15H24O | 220.18 |
37 | 42.54 | Globulol | 1587 | 1590 | 0.12 | 0.01 | OS | C15H26O | 222.20 |
38 | 42.87 | Viridiflorol | 1589 | 1592 | 0.06 | 0.01 | OS | C15H26O | 222.20 |
39 | 43.46 | Cedrol | 1602 | 1600 | 0.13 | 0.01 | OS | C15H26O | 222.20 |
40 | 44.06 | Cubenol <1,10-di-epi-> | 1615 | 1618 | 0.19 | 0.01 | OS | C15H26O | 222.20 |
41 | 44.75 | Muurolol <α-> (=Torreyol) | 1640 | 1644 | 0.17 | 0.02 | OS | C15H26O | 222.20 |
42 | 45.43 | Caryophyllene <14-hydroxy-(Z)-> | 1660 | 1666 | 0.11 | 0.01 | OS | C15H24O | 220.18 |
43 | 46.04 | Bisabolol <α-> | 1688 | 1685 | 17.76 | 1.38 | OS | C15H26O | 222.20 |
Monoterpene hydrocarbons | 0.21 | ||||||||
Oxygenated monoterpenes | 6.85 | ||||||||
Sesquiterpene hydrocarbons | 21.63 | ||||||||
Oxygenated sesquiterpene | 19.53 | ||||||||
Other compounds | 49.24 | ||||||||
Total identified | 97.46 |
RT | Enantiomers | RI | ED (%) | e.e (%) |
---|---|---|---|---|
8.53 | (+)-β-Pinene | 992 | 100 | 100 |
35.44 | (+/−)-α-Muurolene | 1521 | 73.87 | 47.75 |
35.71 | 1526 | 26.13 | ||
36.41 | (+/−)-β-Bisabolene | 1538 | 38.79 | 22.42 |
36.68 | 1543 | 61.21 |
Microorganism | Essential Oil | Positive Control | Negative Control |
---|---|---|---|
MIC (µg/mL) | |||
Gram-positive cocci | |||
Enterococcus faecalis (ATCC 19433) | 4000 | 0.78 | + |
Enterococcus faecium (ATCC 27270) | 4000 | 0.39 | + |
Staphylococcus aureus (ATCC 25923) | 4000 | 0.39 | + |
Gram-positive bacilli | |||
Listeria monocytogenes (ATCC 19115) | 4000 | 1.56 | + |
Gram-negative bacilli | |||
Escherichia coli O157:H7 (ATCC 43888) | 4000 | 1.56 | + |
Pseudomonas aeruginosa (ATCC 10145) | >4000 | 0.39 | + |
Salmonella enterica subs enterica serovar Thypimurium WDCM 00031, derived (ATCC 14028) | >4000 | 0.39 | + |
Sample | DPPH | ABTS |
---|---|---|
SC50 (µg/mL) ± SD | ||
Peperomia inaequalifolia oil | 293.76 ± 3.12 | 226.86 ± 0.05 |
Trolox | 29.99 ± 1.1 | 23.27 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valarezo, E.; Herrera-García, M.; Astudillo-Dávila, P.; Rosales-Demera, I.; Jaramillo-Fierro, X.; Cartuche, L.; Meneses, M.A.; Morocho, V. Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.). Plants 2023, 12, 1504. https://doi.org/10.3390/plants12071504
Valarezo E, Herrera-García M, Astudillo-Dávila P, Rosales-Demera I, Jaramillo-Fierro X, Cartuche L, Meneses MA, Morocho V. Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.). Plants. 2023; 12(7):1504. https://doi.org/10.3390/plants12071504
Chicago/Turabian StyleValarezo, Eduardo, Mercedes Herrera-García, Paola Astudillo-Dávila, Isabel Rosales-Demera, Ximena Jaramillo-Fierro, Luis Cartuche, Miguel Angel Meneses, and Vladimir Morocho. 2023. "Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.)" Plants 12, no. 7: 1504. https://doi.org/10.3390/plants12071504
APA StyleValarezo, E., Herrera-García, M., Astudillo-Dávila, P., Rosales-Demera, I., Jaramillo-Fierro, X., Cartuche, L., Meneses, M. A., & Morocho, V. (2023). Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.). Plants, 12(7), 1504. https://doi.org/10.3390/plants12071504