Strategies for Engineering Virus Resistance in Potato
Abstract
:1. Introduction
2. Engineering Virus-Derived Viral Resistance in Potato
3. Engineering Virus-Resistant Plants Using Plant Endogenous Genes in Potato
4. RNAi-Mediated Viral Resistance in Potato
5. CRISPR/Cas9-Mediated Viral Resistance in Potato
6. Future Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hameed, A.; Zaidi, S.S.; Shakir, S.; Mansoor, S. Applications of New Breeding Technologies for Potato Improvement. Front. Plant Sci. 2018, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.F. Potato Viruses and Their Control; International Potato Center: Lima, Peru, 1996. [Google Scholar]
- Fletcher, J.D. A virus survey of New Zealand fresh process and seed potato crops during 2010-11. N. Z. Plant Protec. 2012, 65, 197–203. [Google Scholar]
- Hameed, A.; Iqbal, Z.; Asad, S.; Mansoor, S. Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathol. J. 2014, 30, 407. [Google Scholar] [CrossRef]
- Steinger, T.; Gilliand, H.; Hebeisen, T. Epidemiological analysis of risk factors for the spread of potato viruses in Switzerland. Ann. Appl. Biol. 2014, 164, 200–207. [Google Scholar] [CrossRef]
- Baulcombe, D. Novel strategies for engineering virus resistance in plants. Curr. Opin. Biotech. 1994, 5, 117–124. [Google Scholar] [CrossRef]
- Missiou, A.; Kalantidis, K.; Boutla, A.; Tzortzakaki, S.; Tabler, M.; Tsagris, M. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol. Breed. 2004, 14, 185–197. [Google Scholar] [CrossRef]
- Chung, B.N.; Yoon, J.Y.; Palukaitis, P. Engineered resistance in potato against potato leafroll virus, potato virus A and potato virus Y. Virus Genes 2013, 47, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Tahir, M.N.; Asad, S.; Bilal, R.; Van Eck, J.; Jander, G.; Mansoor, S. RNAi-mediated simultaneous resistance against three RNA viruses in potato. Mol. Biotech. 2017, 59, 73–83. [Google Scholar] [CrossRef]
- Mathur, V.; Javid, L.; Kulshrestha, S.; Mandal, A.; Reddy, A.A. World cultivation of genetically modified crops: Opportunities and risks. Sustain. Agric. Rev. 2017, 25, 45–87. [Google Scholar]
- Abel, P.P.; Nelson, R.S.; De, B.; Hoffmann, N.; Rogers, S.G.; Fraley, R.T.; Beachy, R.N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 1986, 232, 738–743. [Google Scholar] [CrossRef]
- Kaniewski, W.; Lawson, C.; Sammons, B.; Haley, L.; Hart, J.; Delannay, X.; Tumer, N.E. Field resistance of transgenic russeet burbank potato to effects of infection by potato virus X and potato virus Y. Bio/Technology 1990, 8, 750–754. [Google Scholar] [CrossRef]
- Jongedijk, E.; Huisman, M.J.; Cornelissen, B.J.C. Argonic performance and field resistance of genetically modified, virus-resistant potato plants. In Seminars in Virology; Academic Press: Cambridge, MA, USA, 1993; Volume 4, pp. 407–416. [Google Scholar]
- Thomas, P.E.; Kaniewski, W.K.; Lawson, E.C. Reduced field spread of potato leafroll virus in potatoes transformed with the potato leafroll virus coat protein gene. Plant Dis. 1997, 81, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Lecoq, H.; Ravelonandro, M.; Wipf-Scheibel, C.; Monsion, M.; Raccah, B.; Dunez, J. Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus. Mol. Plant Microbe Interact. 1993, 6, 403–406. [Google Scholar] [CrossRef]
- Farinelli, L.; Malnoë, P.; Collet, G.F. Heterologous encapsidation of potato virus Y strain O (PVYO) with the transgenic coat protein of PVY strain N (PVYN) in Solanum tuberosum cv. Bintje. Bio/Technology 1992, 10, 1020–1025. [Google Scholar] [CrossRef]
- De Zoeten, G.A. Risk assessment: Do we let history repeat itself? Phytopathology 1991, 81, 585–586. [Google Scholar]
- Braun, C.J.; Hemenway, C.L. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 1992, 4, 735–744. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, L.Y.; Peng, X.X. High virus-resistance of transgenic tobacoo plants mediated by expression of modified NIb gene of potato virus Y. Chin. J. Biotech. 1996, 12, 258–265. [Google Scholar]
- Rifai, N.; Horvath, A.R.; Wittwer, C.T.; Park, J. Principles and Applications of Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lindbo, J.A.; Dougherty, W.G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 1992, 189, 725–733. [Google Scholar] [CrossRef]
- Valkonen, J.P.T.; Jones, R.A.C.; Slack, S.A.; Watanabe, K.N. Resistance specificities to viruses in potato: Standardization of nomenclature. Plant Breed. 1996, 115, 433–438. [Google Scholar] [CrossRef]
- Hämäläinen, J.H.; Sorri, V.A.; Watanabe, K.N.; Gebhardt, C.; Valkonen, J.P.T. Molecular examination of a chromosome region that controls resistance to potato Y and A potyviruses in potato. Theor. Appl. Genet. 1998, 96, 1036. [Google Scholar] [CrossRef]
- Szajko, K.; Chrzanowska, M.; Witek, K.; Strzelczyk-Żyta, D.; Zagórska, H.; Gebhardt, C.; Hennig, J.; Marczewski, W. The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theor. Appl. Genet. 2008, 116, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Cockerham, G. Genetical studies on resistance to potato viruses X and Y. Heredity 1970, 25, 309–348. [Google Scholar] [CrossRef]
- Nie, X.; Liang, Z.; Nie, B.; Murphy, A.; Singh, M. Studies on varietal response to different strains of potato virus Y (PVY) reveal hypersensitive resistance in Exploits to PVY O and extreme resistance in F87084 to all tested strains. Am. J. Potato Res. 2015, 92, 23–31. [Google Scholar] [CrossRef]
- Singh, R.P.; Valkonen, J.P.; Gray, S.M.; Boonham, N.; Jones, R.; Kerlan, C.; Schubert, J. Discussion paper: The naming of potato virus Y strains infecting potato. Arch. Virol. 2008, 153, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Flis, B.; Hennig, J.; Strzelczyk-Żyta, D.; Gebhardt, C.; Marczewski, W. The Ry-f sto gene from Solanum stoloniferum for extreme resistant to potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122 718 in PVY resistant potato cultivars. Mol. Breed. 2005, 15, 95–101. [Google Scholar] [CrossRef]
- Song, Y.S.; Hepting, L.; Schweizer, G.; Hartl, L.; Wenzel, G.; Schwarzfischer, A. Mapping of extreme resistance to PVY (Ry sto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor. Appl. Genet. 2005, 111, 879–887. [Google Scholar] [CrossRef]
- Hämäläinen, J.H.; Watanabe, K.N.; Valkonen, J.P.T.; Arihara, A.; Plaisted, R.L.; Pehu, E.; Miller, L.; Slack, S.A. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor. Appl. Genet. 1997, 94, 192–197. [Google Scholar] [CrossRef]
- Sato, M.; Nishikawa, K.; Komura, K.; Hosaka, K. Potato virus Y resistance gene, Ry chc, mapped to the distal end of potato chromosome 9. Euphytica 2006, 149, 367–372. [Google Scholar] [CrossRef]
- Li, G.; Shao, J.; Wang, Y.; Liu, T.; Tong, Y.; Jansky, S.; Xie, C.; Song, B.; Cai, X. Rychc confers extreme resistance to potato virus Y in potato. Cells 2022, 11, 2577. [Google Scholar] [CrossRef]
- Gebhardt, C.; Bellin, D.; Henselewski, H.; Lehmann, W.; Schwarzfischer, J.; Valkonen, J. Marker-assisted combination of major genes for pathogen resistance in potato. Theor. Appl. Genet. 2006, 112, 1458–1464. [Google Scholar] [CrossRef]
- Mori, K.; Mukojima, N.; Nakao, T.; Tamiya, S.; Sakamoto, Y.; Sohbaru, N.; Hayashi, K.; Watanuki, H.; Nara, K.; Yamazaki, K.; et al. Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and potato virus Y resistance (Ry chc) genes. Am. J. Potato Res. 2012, 89, 63–72. [Google Scholar] [CrossRef]
- Munoz, F.J.; Plaisted, R.L.; Thurston, H.D. Resistance to potato virus Y in Solanum tuberosum spp. andigena. Am. Potato J. 1975, 52, 107–115. [Google Scholar] [CrossRef]
- Ross, H. Potato Breeding-Problems and Perspectives, J Plant Breed Suppl 13; Paul Parey: Hamburg, Germany, 1986. [Google Scholar]
- Grech-Baran, M.; Witek, K.; Poznański, J.T.; Grupa-Urbańska, A.; Malinowski, T.; Lichocka, M.; Jones, J.D.G.; Hennig, J. The Rysto immune receptor recognises a broadly conserved feature of potyviral coat proteins. New Phytol. 2022, 235, 1179–1195. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.; Cabrera, H.; Andersson, R.A.; Fredriksson, A.; Valkonen, J.P.T. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y. Mol. Plant. Microbe Interact. 2002, 15, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, J.H.; Kekarainen, T.; Gebhardt, C.; Watanabe, K.N.; Valkonen, J.P.T. Recessive and dominant genes interfere with the vascular transport of potato virus A in diploid potatoes. Mol. Plant. Microbe Interact. 2000, 13, 402–412. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.; Hwang, I.; Park, Y.; Cheong, H. Expression of G-Ry derived from the potato (Solanum tuberosum L.) increases PVYO resistance. J. Agric. Food Chem. 2010, 58, 7245–7251. [Google Scholar] [CrossRef]
- Rowley, J.S.; Gray, S.M.; Karasev, A.V. Screening potato cultivars for new sources of resistance to potato virus Y. Am. J. Potato Res. 2015, 92, 38–48. [Google Scholar] [CrossRef]
- Valkonen, J.P. Novel resistances to four potyviruses in tuber-bearing potato species, and temperature-sensitive expression of hypersensitive resistance to potato virus Y. Ann. Appl. Biol. 1997, 130, 91–104. [Google Scholar] [CrossRef]
- Valkonen, J.P. Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. Breed. Sci. 2015, 65, 69–76. [Google Scholar] [CrossRef]
- Valkonen, J.P.; Gebhardt, C.; Zimnoch-Guzowska, E.; Watanabe, K.N. Resistance to Potato virus Y in potato. In Potato Virus Y: Biodiversity, Pathogenicity, Epidemiology and Management; Springer: Cham, Switzerland, 2017; pp. 207–241. [Google Scholar]
- Celebi-Toprak, F.; Slack, S.A.; Jahn, M.M. A new gene, Ny tbr, for hypersensitivity to potato virus Y from Solanum tuberosum maps to chromosome IV. Theor. Appl. Genet. 2002, 104, 669–674. [Google Scholar] [CrossRef]
- Moury, B.; Caromel, B.; Johansen, E.; Simon, V.; Chauvin, L.; Jacquot, E.; Kerlan, C.; Lefebvre, V. The helper component proteinase cistron of potato virus Y induces hypersensitivity and resistance in potato genotypes carrying dominant resistance genes on chromosome IV. Mol. Plant Microbe Interact. 2011, 24, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.P.; Valkonen, J.P. Recombination of strain O segments to HCpro-encoding sequence of strain N of potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc. Mol. Plant Pathol. 2015, 16, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.P.; Valkonen, J.P. Genetic determinants of potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. Mol. Plant Microbe Interact. 2013, 26, 297–305. [Google Scholar] [CrossRef]
- Bendahmane, A.; Kanyuka, K.; Baulcombe, D.C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999, 11, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.D.; Dixon, C.H.; Slootweg, E.J.; Sukarta, O.C.A.; Yang, A.W.H.; Hughes, T.R.; Sharples, G.J.; Pålsson, L.-O.; Takken, F.L.W.; Goverse, A.; et al. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. J. Biol. Chem. 2018, 293, 3218–3233. [Google Scholar] [CrossRef] [PubMed]
- Syller, J. Potato leafroll virus (PLRV): Its transmission and control. Integr. Pest Manag. Rev. 1996, 1, 217–227. [Google Scholar] [CrossRef]
- Marczewski, W.; Flis, B.; Syller, J.; Schäfer-Pregl, R.; Gebhardt, C. A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol. Plant Microbe Interact. 2001, 14, 1420–1425. [Google Scholar] [CrossRef]
- Brigneti, G.; Garcia-Mas, J.; Baulcombe, D.C. Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theor. Appl. Genet. 1997, 94, 198–203. [Google Scholar] [CrossRef]
- Szajko, K.; Strzelczyk-Żyta, D.; Marczewski, W. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: Mapping and marker-assisted selection validation for PVY resistance in potato breeding. Mol Breed. 2014, 34, 267–271. [Google Scholar] [CrossRef]
- Tommiska, T.J.; Hämäläinen, J.H.; Watanabe, K.N.; Valkonen JP, T. Mapping of the gene Nxphu that controls hypersensitive resistance to potato virus X in Solanum phureja IvP35. Theor. Appl. Genet. 1998, 96, 840. [Google Scholar] [CrossRef]
- Bendahmane, A.; Kanyuka, K.; Baulcombe, D.C. High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor. Appl. Genet. 1997, 95, 153–162. [Google Scholar] [CrossRef]
- Ritter, E.; Debener, T.; Barone, A.; Salamini, F.; Gebhardt, C. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol. Gen. Genet. 1991, 227, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Malone, C.D.; Hannon, G.J. Small RNAs as guardians of the genome. Cell 2009, 136, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D. RNA silencing. Trends Biochem. Sci. 2005, 30, 290–293. [Google Scholar]
- Axtell, M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant. Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef]
- Fang, X.; Qi, Y. RNAi in plants: An argonaute-centered view. Plant Cell 2016, 28, 272–285. [Google Scholar] [CrossRef]
- Pooggin, M.M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. 2018, 9, 2779. [Google Scholar] [CrossRef]
- Mann, K.S.; Johnson, K.N.; Dietzgen, R.G. Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology 2015, 476, 413–418. [Google Scholar] [CrossRef]
- Pantaleo, V.; Saldarelli, P.; Miozzi, L.; Giampetruzzi, A.; Gisel, A.; Moxon, S.; Dalmay, T.; Bisztray, G.; Burgyan, J. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology 2010, 408, 49–56. [Google Scholar] [CrossRef]
- Itaya, A.; Zhong, X.; Bundschuh, R.; Qi, Y.; Wang, Y.; Takeda, R.; Harris, A.R.; Molina, C.; Nelson, R.S.; Ding, B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol. 2007, 81, 2980–2994. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Next-Generation Sequencing Sheds New Light on Small RNAs in Plant Reproductive Development. Curr Issues Mol Biol. 2018, 27, 143–170. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.S.; Hutvágner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P.D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Vaucheret, H.; Vazquez, F.; Crété, P.; Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 2004, 18, 1187–1197. [Google Scholar] [CrossRef]
- 70. Warthmann, N.; Chen, H.; Ossowski, S.; Weigel, D.; Hervé, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 2008, 3, e1829. [Google Scholar] [CrossRef]
- Simón-Mateo, C.; García, J.A. Antiviral strategies in plants based on RNA silencing. Biochim. Biophys. Acta 2011, 1809, 722–731. [Google Scholar] [CrossRef]
- Mesel, F.; Zhao, M.; García, B.; Simón-Mateo, C.; García, J.A. Targeting of genomic and negative-sense strands of viral RNA contributes to antiviral resistance mediated by artificial miRNAs and promotes the emergence of complex viral populations. Mol. Plant Pathol. 2022, 23, 1640–1657. [Google Scholar] [CrossRef]
- Niu, Q.W.; Lin, S.S.; Reyes, J.L.; Chen, K.C.; Wu, H.W.; Yeh, S.D.; Chua, N.H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 2006, 24, 1420–1428. [Google Scholar] [CrossRef]
- Schwab, R.; Ossowski, S.; Riester, M.; Warthmann, N.; Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18, 1121–1133. [Google Scholar] [CrossRef] [PubMed]
- Parizotto, E.A.; Dunoyer, P.; Rahm, N.; Himber, C.; Voinnet, O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 2004, 18, 2237–2242. [Google Scholar] [CrossRef]
- Qu, J.; Ye, J.; Fang, R. Artificial microRNA-mediated virus resistance in plants. J. Virol. 2007, 81, 6690–6699. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, A.; Carrington, J.C.; Daròs, J.A. Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants. RNA Dis. 2016, 3, e1130. [Google Scholar] [PubMed]
- Cisneros, A.E.; Carbonell, A. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants. Plants 2020, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Alexandrova, A.; Karpova, O.; Kryldakov, R.; Golyaev, V.; Nargilova, R.; Iskakov, B.; Pooggin, M.M. Virus Elimination from Naturally Infected Field Cultivars of Potato (Solanum tuberosum) by Transgenic RNA Interference. Int. J. Mol. Sci. 2022, 23, 8020. [Google Scholar] [CrossRef]
- Rajeswaran, R.; Aregger, M.; Zvereva, A.S.; Borah, B.K.; Gubaeva, E.G.; Pooggin, M.M. Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids Res. 2012, 40, 6241–6254. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Xia, R.; Meyers, B.C. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 2013, 25, 2400–2415. [Google Scholar] [CrossRef]
- Chitwood, D.H.; Guo, M.; Nogueira, F.T.; Timmermans, M.C. Establishing leaf polarity: The role of small RNAs and positional signals in the shoot apex. Development 2007, 134, 813–823. [Google Scholar] [CrossRef]
- Fahlgren, N.; Montgomery, T.A.; Howell, M.D.; Allen, E.; Dvorak, S.K.; Alexander, A.L.; Carrington, J.C. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 2006, 16, 939–944. [Google Scholar] [CrossRef]
- Howell, M.D.; Fahlgren, N.; Chapman, E.J.; Cumbie, J.S.; Sullivan, C.M.; Givan, S.A.; Kasschau, K.D.; Carrington, J.C. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 2007, 19, 926–942. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, Y.H.; Wu, S.H. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 3318–3323. [Google Scholar] [CrossRef]
- Li, F.; Pignatta, D.; Bendix, C.; Brunkard, J.O.; Cohn, M.M.; Tung, J.; Sun, H.; Kumar, P.; Baker, B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, P.V.; Chen, H.M.; Patel, K.; Bond, D.M.; Santos, B.A.; Baulcombe, D.C. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 2012, 24, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Jeong, D.H.; De Paoli, E.; Park, S.; Rosen, B.D.; Li, Y.; González, A.J.; Yan, Z.; Kitto, S.L.; Grusak, M.A.; et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2011, 25, 2540–2553. [Google Scholar] [CrossRef]
- Boccara, M.; Sarazin, A.; Thiébeauld, O.; Jay, F.; Voinnet, O.; Navarro, L.; Colot, V. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog. 2014, 10, e1003883. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J.; Jan, C.; Rajagopalan, R.; Bartel, D.P. A two-hit trigger for siRNA biogenesis in plants. Cell 2006, 127, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Cuperus, J.T.; Fahlgren, N.; Carrington, J.C. Evolution and functional diversification of MIRNA genes. Plant Cell 2011, 23, 431–442. [Google Scholar] [CrossRef]
- de la Luz Gutiérrez-Nava, M.; Aukerman, M.J.; Sakai, H.; Tingey, S.V.; Williams, R.W. Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol. 2008, 147, 543–551. [Google Scholar] [CrossRef]
- Montgomery, T.A.; Yoo, S.J.; Fahlgren, N.; Gilbert, S.D.; Howell, M.D.; Sullivan, C.M.; Alexander, A.; Nguyen, G.; Allen, E.; Ahn, J.H.; et al. AGO1-miR173 complex initiates phased siRNA formation in plants. Proc. Natl. Acad. Sci. USA 2008, 105, 20055–20062. [Google Scholar] [CrossRef]
- Felippes, F.F.; Weigel, D. Triggering the formation of tasiRNAs in Arabidopsis thaliana: The role of microRNA miR173. EMBO Rep. 2009, 10, 264–270. [Google Scholar] [CrossRef]
- Carbonell, A.; Takeda, A.; Fahlgren, N.; Johnson, S.C.; Cuperus, J.T.; Carrington, J.C. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 2014, 165, 15–29. [Google Scholar] [CrossRef]
- Zhao, M.; San León, D.; Mesel, F.; García, J.A.; Simón-Mateo, C. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance. PLoS ONE 2015, 10, e0132281. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.H.; Chen, I.H.; Baulcombe, D.C.; Tsai, C.H. The silencing suppressor P25 of potato virus X interacts with argonaute1 and mediates its degradation through the proteasome pathway. Mol. Plant Pathol. 2010, 11, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.H.; Ongusaha, P.P.; Myllyharju, J.; Cheng, D.; Pakkanen, O.; Shi, Y.; Lee, S.W.; Peng, J.; Shi, Y. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 2008, 455, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Rybak, A.; Fuchs, H.; Hadian, K.; Smirnova, L.; Wulczyn, E.A.; Michel, G.; Nitsch, R.; Krappmann, D.; Wulczyn, F.G. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 2009, 11, 1411–1420. [Google Scholar] [CrossRef]
- Zeng, Y.; Sankala, H.; Zhang, X.; Graves, P.R. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 2008, 413, 429–436. [Google Scholar] [CrossRef]
- Dadami, E.; Boutla, A.; Vrettos, N.; Tzortzakaki, S.; Karakasilioti, I.; Kalantidis, K. DICER-LIKE 4 but not DICER-LIKE 2 may have a positive effect on potato spindle tuber viroid accumulation in Nicotiana benthamiana. Mol. Plant 2013, 6, 232–234. [Google Scholar] [CrossRef]
- Pooggin, M.M. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int. J. Mol. Sci. 2013, 14, 15233–15259. [Google Scholar] [CrossRef]
- Hryhorowicz, M.; Lipiński, D.; Zeyland, J.; Słomski, R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch. Immunol. Ther. Exp. 2017, 65, 233–240. [Google Scholar] [CrossRef]
- Pixley, K.V.; Falck-Zpeda, J.B.; Giller, K.E.; Glenna, L.L.; Gould, F.; Mallory-Smith, C.A.; Stelly, D.M.; Stewart, C.N. Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit? Annu. Rev. Phytopathol. 2019, 57, 165–188. [Google Scholar] [CrossRef]
- Zaidi, S.S.; Maha, A.; Vanderscheuren, H.; Mahfouz, M.M. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 2020, 21, 289. [Google Scholar] [CrossRef]
- Ji, X.; Wang, D.; Gao, C. CRISPR editing-mediated antiviral immunity: A versatile source of resistance to combat plant virus infections. Sci. China Life Sci. 2019, 62, 1246–1249. [Google Scholar] [CrossRef] [PubMed]
- Varanda, C.M.; Félix, M.D.R.; Campos, M.D.; Patanita, M.; Materatski, P. Plant Viruses: From Targets to Tools for CRISPR. Viruses 2021, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zheng, Q.; Yi, X.; An, H.; Zhao, Y.; Ma, S.; Zhou, G. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J. 2018, 16, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Y.; Ye, J.; Cao, X.; Xu, C.; Chen, B.; An, H.; Jiao, Y.; Zhang, F.; Yang, X.; et al. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol. J. 2019, 17, 1185–1187. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 2015, 28, 15144. [Google Scholar] [CrossRef]
- Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J. 2018, 16, 1918–1927. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, F.; Zhong, Z.; Chen, R.; Wang, Y.; Chang, L.; Bock, R.; Nie, B.; Zhang, J. Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol. J. 2019, 17, 1814–1822. [Google Scholar] [CrossRef]
- Ruiyi, R.; Qiang, Z.; Futai, N.; Qiu, J.; Xiuqing, W.; Jicheng, W. Breeding for PVY resistance in tobacco LJ911 using CRISPR/Cas9 technology. Crop Breed. Appl. Biotechnol. 2021, 21, 1–6. [Google Scholar] [CrossRef]
- Julio, E.; Cotucheau, J.; Decorps, C.; Volpatti, R.; Sentenac, C.; Candresse, T.; Dorlhac de Borne, F. A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the “va” tobacco recessive resistance to potyviruses. Plant Mol. Bio. Rep. 2015, 3, 609–623. [Google Scholar] [CrossRef]
Name of Resistance Gene | Virus | Source | Chromosome | Reference |
---|---|---|---|---|
Rysto | PVY | I-1039 S. stoloniferum | XI | Brigneti (1997) [53] Song (2005) [29]; Flis (2005) [28] |
Ryadg | PVY | S. andigena, line 2X(v-2)7 | XI | Hämäläinen (1998) [23] |
Rychc | PVY | Japanese leading cultivar ‘Konafubuki’ | IX | Masatoshi Sato (2006) [31] |
Nytbr | PVY | USW2230 | IV | Celebi-Toprak (2002) [45]; Benoît Moury (2011) [46] |
Nctbr | PVY | S. tuberosum | IV | Benoît Moury (2011) [46] |
Ncspl | PVY | T. tuberosum | IV | Benoît Moury (2011) [46] |
Ny-1 | PVY | Rywal and Accent | IX | Szajko (2008) [24]; Szajko (2014) [54] |
Ny-2 | PVY | Romula | IX | Szajko K (2014) [54] |
Y-1 | PVY | S. tuberosum ssp. andigena | XI | Vidal (2002) [38] |
G-Ry | PVY | Lee (2010) [40]; Vidal (2002) [38] | ||
Nxphu | PVX | phu Iv35 | IX | Tommiska (1998) [55] |
Rx(Rxadg) | PVX | tbr cv.Cara | XII | Bendahmane (1997) [56] |
Rx1 | PVX | S. andigena | XII | Ritter (1991) [57] |
Rx2(Rxacl) | PVX | S. acaule | V | Ritter (1991) [57] |
PLRV.1 | PLRV | DG83-68 | XI | Marczewski (2001) [52] |
PLRV.2 | PLRV | DG83-2025 | VI | Marczewski (2001) [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yue, J.; Wang, H.; Xie, L.; Zhao, Y.; Zhao, M.; Zhou, H. Strategies for Engineering Virus Resistance in Potato. Plants 2023, 12, 1736. https://doi.org/10.3390/plants12091736
Liu J, Yue J, Wang H, Xie L, Zhao Y, Zhao M, Zhou H. Strategies for Engineering Virus Resistance in Potato. Plants. 2023; 12(9):1736. https://doi.org/10.3390/plants12091736
Chicago/Turabian StyleLiu, Jiecai, Jianying Yue, Haijuan Wang, Lingtai Xie, Yuanzheng Zhao, Mingmin Zhao, and Hongyou Zhou. 2023. "Strategies for Engineering Virus Resistance in Potato" Plants 12, no. 9: 1736. https://doi.org/10.3390/plants12091736
APA StyleLiu, J., Yue, J., Wang, H., Xie, L., Zhao, Y., Zhao, M., & Zhou, H. (2023). Strategies for Engineering Virus Resistance in Potato. Plants, 12(9), 1736. https://doi.org/10.3390/plants12091736