Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes
Abstract
:1. Introduction
2. Results
2.1. Effect of Genotype, Induction Media and Their Interactions on Androgenesis Induction in AC
2.2. Plant Regeneration from AC-Derived Calli of Indica Genotypes
2.3. Spontaneous Chromosome Doubling of AC-Derived Green Plantlets as Demonstrated by the Ploidy Levels Using Flow Cytometric Analysis
3. Discussion
3.1. Induction of Androgenesis in Indica Rice
3.2. Effect of Induction Medium on Plant Regeneration
3.3. Effect of Exogenous Growth Regulators on the Regeneration of Green Plantlets
3.4. Identification of the Ploidy Level of AC-Derived Plantlets by Flow Cytometric Analyses
4. Materials and Methods
4.1. Plant Materials and Growing Conditions
4.2. Collection and Pre-Treatment of Donor Tillers
4.3. Sterile Technic and Isolation of Anthers
4.4. Condition of Anther Culture for Induction of Calli
4.5. Plant Regeneration
4.6. Acclimatization of Plantlets
4.7. Flow Cytometric Analyses
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-D | 2,4-Dichlorophenoxyacetic acid |
AC | Anther culture |
BAP | 6-Benzylaminopurin |
DH | Doubled haploid |
NAA | 1-Naphtylacetic acid |
MS | Murashige and Skoog |
References
- Thomas, W.T.B.; Forster, B.P.; Gertsson, B. Doubled Haploids in Breeding. In Doubled Haploid Production in Crop Plants, a Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; pp. 337–349. [Google Scholar] [CrossRef]
- Zapata-Arias, F.J. Laboratory Protocol for Anther Culture Technique in Rice. In Doubled Haploid Production in Crop Plants, a Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; pp. 109–116. [Google Scholar] [CrossRef]
- Pauk, J.; Jancsó, M.; Simon-Kiss, I. Rice Doubled Haploids and Breeding. In Advances in Haploid Production in Higher Plants; Touraev, A., Foster, B.P., Jain, S.M., Eds.; Springer Science: Berlin/Heidelberg, Germany, 2009; pp. 189–197. [Google Scholar] [CrossRef]
- Germanà, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef] [PubMed]
- Serrat, X.; Cardona, M.; Gil, J.; Brito, A.M.; Moysset, L.; Nogues, S.; Lalanne, E. A Mediterranean japonica rice (Oryza sativa) cultivar improvement through anther culture. Euphytica 2013, 195, 31–44. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Mikkilineni, V.; Verma, L.; Palan, B.; Mali, K.; Char, B. Evaluation of doubled haploid culture conditions and regeneration of anindicarice hybrid. Indian J. Genet. Plant Breed. 2014, 74, 384–386. [Google Scholar] [CrossRef]
- Datta, K.; Sahoo, G.; Krishnan, S.; Ganguly, M.; Datta, S.K. Genetic Stability Developed for β-Carotene Synthesis in BR29 Rice Line Using Dihaploid Homozygosity. PLoS ONE 2014, 9, e100212. [Google Scholar] [CrossRef]
- Usenbekov, B.N.; Kaykeev, D.T.; Yhanbirbaev, E.A.; Berkimbaj, H.; Tynybekov, B.M.; Satybaldiyeva, G.K.; Baimurzayev, N.B.; Issabayeva, G.S. Doubled haploid production through culture of anthers in rice. Indian J. Genet. Plant Breed. 2014, 74, 90–92. [Google Scholar] [CrossRef]
- Tian, Q.Q.; Lu, C.M.; Li, X.; Fang, X.W. Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Plant Cell Tissue Organ Cult. (PCTOC) 2014, 120, 89–98. [Google Scholar] [CrossRef]
- Yi, G.; Lee, H.-S.; Kim, K.-M. Improved marker-assisted selection efficiency of multi-resistance in doubled haploid rice plants. Euphytica 2014, 203, 421–428. [Google Scholar] [CrossRef]
- Rout, P.; Naik, N.; Ngangkham, U.; Verma, R.L.; Katara, J.L.; Singh, O.N.; Samantaray, S. Doubled Haploids generated through anther culture from an elite long duration rice hybrid, CRHR32: Method optimisation and molecular characterization. Plant Biotechnol. 2016, 33, 177–186. [Google Scholar] [CrossRef]
- Naik, N.; Rout, P.; Umakanta, N.; Verma, R.L.; Katara, J.L.; Sahoo, K.K.; Singh, O.N.; Samantaray, S. Development of doubled haploids from an elite indica rice hybrid (BS6444G) using anther culture. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 128, 679–689. [Google Scholar] [CrossRef]
- Mayakaduwa, D.M.R.G.; Silva, T.D. In vitro response of Indica rice microspores subjected to cold stress: A cytological and histological perspective. In Vitro Cell. Dev. Biol.-Plant 2021, 57, 843–855. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Ramos-Fuentes, E.; López-Cristofannini, C.; Ortega, M.; Vidal, R.; Serrat, X.; Nogués, S. Antimitotic and hormone effects on green double haploid plant production through anther culture of Mediterranean japonica rice. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 205–215. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Ribas, P.; Nogués, S. Chromosome doubling of androgenic haploid plantlets of rice (Oryza sativa) using antimitotic compounds. Plant Breed. 2020, 139, 754–761. [Google Scholar] [CrossRef]
- Niizeki, H.; Oono, K. Induction of Haploid Rice Plant from Anther Culture. Proc. Jpn. Acad. 1968, 44, 554–557. [Google Scholar] [CrossRef]
- Woo, S.C.; Tung, I.J. Induction of rice plants from hybrid anthers of indica and japonica cross. Bot. Bull. Acad. Sin. 1972, 16, 19–24. [Google Scholar]
- Heszky, L.; Pauk, J. Induction of haploid rice plants of different origin in anther culture. Riso 1975, 24, 197–204. [Google Scholar]
- Guiderdoni, E.; Galinato, E.; Luistro, J.; Vergara, G. Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica 1992, 62, 219–224. [Google Scholar] [CrossRef]
- Lentini, Z.; Reyes, P.; Martínez, C.P.; Roca, W.M. Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci. 1995, 110, 127–138. [Google Scholar] [CrossRef]
- Bishnoi, U.; Jain, R.; Rohilla, J.; Chowdhury, V.; Gupta, K.; Chowdhury, J. Anther culture of recalcitrant indica × Basmati rice hybrids. Euphytica 2000, 114, 93–101. [Google Scholar] [CrossRef]
- Grewal, D.; Gill, R.; Gosal, S.S. Role of cysteine in enhancing androgenesis and regeneration of indica rice (Oryza sativa L.). Plant Growth Regul. 2006, 49, 43–47. [Google Scholar] [CrossRef]
- Silva, T.D. Indica rice anther culture: Can the impasse be surpassed? Plant Cell Tissue Organ Cult. (PCTOC) 2010, 100, 1–11. [Google Scholar] [CrossRef]
- Grewal, D.; Manito, C.; Bartolome, V. Doubled Haploids Generated through Anther Culture from Crosses of Elite Indica and Japonica Cultivars and/or Lines of Rice: Large-Scale Production, Agronomic Performance, and Molecular Characterization. Crop Sci. 2011, 51, 2544–2553. [Google Scholar] [CrossRef]
- Khatun, R.; Islam, S.M.S.; Ara, I.; Tuteja, N.; Bari, M.A. Effect of cold pretreatment and different media in improving anther culture response in rice (Oryza sativa L.) in Bangladesh. Indian J. Biotechnol. 2012, 11, 458–463. [Google Scholar]
- Raina, S.K.; Zapata, F.J. Enhanced anther culture efficiency of indica rice (Oryza sativa L.) through modification of the culture media. Plant Breed. 1997, 116, 305–315. [Google Scholar] [CrossRef]
- Cha-Um, S.; Srianan, B.; Pichakum, A.; Kirdmanee, C. An efficient procedure for embryogenic callus induction and double haploid plant regeneration through anther culture of Thai aromatic rice (Oryza sativa L. subsp. indica). In Vitro Cell. Dev. Biol.-Plant 2009, 45, 171–179. [Google Scholar] [CrossRef]
- Ali, J.; Nicolas, K.; Akther, S.; Torabi, A.; Ebadi, A.; Marfori-Nazarea, C.; Mahender, A. Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice (Oryza sativa L.). Plants 2021, 10, 839. [Google Scholar] [CrossRef]
- Tripathy, S.K. High throughput anther culture response in an upland rice cross ‘Khandari × Dular’. J. Environ. Biol. 2022, 43, 420–429. [Google Scholar] [CrossRef]
- Dash, B.; Bhuyan, S.S.; Singh, S.K.; Chandravani, M.; Swain, N.; Rout, P.; Katara, J.L.; Parameswaran, C.; Devanna, B.N.; Samantaray, S. Androgenesis in indica rice: A comparative competency in development of doubled haploids. PLoS ONE 2022, 17, e0267442. [Google Scholar] [CrossRef] [PubMed]
- Mayakaduwa, D.M.R.G.; Silva, T.D. Flow cytometric detection of haploids, diploids and mixoploids among the anther-derived plants in indica rice (Oryza sativa L.). J. Anim. Plant Sci. 2019, 29, 1344–1351. [Google Scholar]
- Mishra, R.; Rao, G.J.N.; Rao, R.N.; Kaushal, P. Development and Characterization of elite doubled haploid lines from two indica rice hybrids. Rice Sci. 2015, 22, 290–299. [Google Scholar] [CrossRef]
- Tripathy, S.K. High-Throughput Doubled haploid production for indica rice breeding. In Doubled Haploid Technology, Methods in Molecular Biology; Segui-Simarro, J.M., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 343–360. [Google Scholar] [CrossRef]
- Trejo-Tapia, G.; Amaya, U.M.; Morales, G.S.; Sánchez, A.D.J.; Bonfil, B.M.; Rodriguez-Monroy, M.; Jiménez-Aparicio, A. The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell Tissue Organ Cult. (PCTOC) 2002, 71, 41–46. [Google Scholar] [CrossRef]
- Tajedini, S.; Fakheri, B.; Niazian, M.; Mahdinezhad, N.; Ghanim, A.M.A.; Pour, A.K.; Ingelbrecht, I.; Shariatpanahi, M. Efficient microspore embryogenesis and haploid induction in mutant indica rice (Oryza sativa L.) cultivars. J. Plant Growth Regul. 2023, 42, 2345–2359. [Google Scholar] [CrossRef]
- Ferreres, I.; Ortega, M.; Lopez-Cristoffanini, C.; Nogues, S.; Serrat, X. Colchicine and osmotic stress for improving anther culture efficiency on long grain temperate and tropical japonica rice genotypes. Plant Biotechnol. 2019, 36, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Lantos, C.; Jancsó, M.; Pauk, J. Microspore culture of small grain cereals. Acta Physiol. Plant. 2005, 27, 631–639. [Google Scholar] [CrossRef]
- Lantos, C.; Jenes, B.; Bóna, L.; Cserháti, M.; Pauk, J. High frequency of doubled haploid plant production in spelt wheat. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 107–112. [Google Scholar] [CrossRef]
- Weyen, J. Applications of Doubled Haploids in Plant Breeding and Applied Research. In Doubled Haploid Technology, Methods in Molecular Biology; Segui-Simarro, J.M., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 23–40. [Google Scholar] [CrossRef]
- Lantos, C.; Jancsó, M.; Székely, Á.; Nagy, É.; Szalóki, T.; Pauk, J. Improvement of anther culture to integrate doubled haploid technology in temperate rice (Oryza sativa L.) breeding. Plants 2022, 11, 3446. [Google Scholar] [CrossRef]
- Mayakaduwa, D.; Silva, T.D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in Indica rice (Oryza sativa L.). In Vitro Cell. Dev. Biol.-Plant 2017, 53, 591–597. [Google Scholar] [CrossRef]
- Chen, R.R.; Feng, Z.Y.; Zhang, X.H.; Song, Z.J.; Cai, D.T. A new way of rice breeding: Polyploid rice breeding. Plants 2021, 10, 422. [Google Scholar] [CrossRef]
- Hale, B.; Ferrie, A.M.R.; Chellamma, S.; Samuel, J.P.; Phillips, G.C. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. Front. Plant Sci. 2022, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Niazian, M.; Shariatpanahi, M.E. In vitro-based doubled haploid production: Recent improvements. Euphytica 2020, 216, 69. [Google Scholar] [CrossRef]
- Lantos, C.; Purgel, S.; Ács, K.; Langó, B.; Bóna, L.; Boda, K.; Békés, F.; Pauk, J. Utilization of in vitro anther culture in spelt wheat breeding. Plants 2019, 8, 436. [Google Scholar] [CrossRef]
- Chu, C.C.; Wang, C.C.; Sun, C.S.; Hsu, C.; Yin, K.C.; Chu, C.Y.; Bi, F.Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 1975, 18, 659–668. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
df | MS of Calli/100 Anthers | |
---|---|---|
Genotype | 4 | 88,354.33 *** |
Induction Media | 2 | 135,393.00 *** |
Interaction | 8 | 23,128.62 *** |
Error | 135 | 6070.848 |
Induction Media | |||
---|---|---|---|
Genotype | N6NDK | N6NDZ | Ali-1 |
‘Co 39’ | 163.30 b A | 214.40 a A | 34.80 c A |
‘PSB RC 94’ | 166.40 a A | 83.80 b C | 0.00 c A |
‘IR 64’ | 0.00 a C | 26.80 a D | 0.00 a A |
‘IRRI 147’ | 13.6 a C | 30.00 a D | 0.00 a A |
‘Mangala’ | 98.00 b B | 164.40 a B | 0.00 c A |
Mean | 88.26 | 103.88 | 6.96 |
Induction Media | N6NDK | N6NDZ | |||||
---|---|---|---|---|---|---|---|
df | MS of Green Plantlets | MS of Albinos | MS of Reg. Plantlets | MS of Green Plantlets | MS of Albinos | MS of Reg. Plantlets | |
Genotype | 4 | 89.20 ns | 829.97 *** | 513.47 ** | 223.68 *** | 1245.80 *** | 2096.08 *** |
Growth reg. | 3 | 166.80 * | 374.39 *** | 1012.49 *** | 57.04 ns | 1397.20 *** | 1834.77 *** |
Interaction | 12 | 36.93 ns | 81.95 ns | 78.40 ns | 52.37 ** | 159.67 ns | 287.44 ns |
Error | 180 | 46.33 | 46.51 | 113.73 | 22.73 | 153.57 | 202.65 |
Induction Media | N6NDK | ||||
---|---|---|---|---|---|
Number of Regenerated Plantlets/100 Anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 18.4 a A | 14.4 a A | 5.2 b A | 6.0 b A | 11.000 |
‘PSB RC 94’ | 14.4 a AB | 13.6 a A | 0.8 b AB | 1.2 b B | 7.500 |
‘IRRI 147’ | 10.0 a B | 4.8 b B | 0.0 c B | 0.0 c B | 3.700 |
‘Mangala’ | 4.1 a C | 5.9 a B | 1.6 a AB | 2.1 a AB | 3.425 |
Mean of genotypes | 11.725 | 9.675 | 1.900 | 2.325 | 6.406 |
Number of Albinos/100 anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 18.0 a A | 14.4 b A | 4.8 c A | 6.0 c A | 10.800 |
‘PSB RC 94’ | 6.0 a B | 8.4 a B | 0.4 b B | 0.4 b B | 3.800 |
‘IRRI 147’ | 3.6 a BC | 3.6 a C | 0.0 b B | 0.0 b B | 1.800 |
‘Mangala’ | 0.5 a C | 0.7 a C | 0.4 a B | 0.9 a B | 0.625 |
Mean of Genotypes | 7.025 | 6.775 | 1.400 | 1.825 | 4.256 |
Number of Green Plantlets/100 Anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 0.4 a C | 0.0 a B | 0.4 a A | 0.0 a A | 0.200 |
‘PSB RC 94’ | 8.4 a A | 5.2 b A | 0.4 c A | 0.8 c A | 3.700 |
‘IRRI 147’ | 6.4 a AB | 1.2 b B | 0.0 b A | 0.0 b A | 1.900 |
‘Mangala’ | 3.6 ab B | 5.2 a A | 1.2 b A | 1.2 b A | 2.800 |
Mean of Genotypes | 4.700 | 2.900 | 0.500 | 0.500 | 2.150 |
Genotype | Reg. Media | Number of Transferred Calli | Number of Regenerated Green Plantlets | Number of Regenerated Albino Plantlets | Percentage of Green Plantlet Regeneration (%) | Percentage of Regeneration of Albino Plantlets (%) |
---|---|---|---|---|---|---|
‘Co 39’ | mMSNBK1 | 475 | 1 | 45 | 0.21 | 9.47 |
MSNBK3 | 475 | 0 | 36 | 0.00 | 7.58 | |
MSNBKZ1 | 475 | 1 | 11 | 0.21 | 2.32 | |
MSNBKZ2 | 475 | 0 | 15 | 0.00 | 3.16 | |
‘PSB RC 94’ | mMSNBK1 | 413 | 21 | 15 | 5.08 | 3.63 |
MSNBK3 | 413 | 13 | 17 | 3.15 | 4.12 | |
MSNBKZ1 | 413 | 1 | 1 | 0.24 | 0.24 | |
MSNBKZ2 | 413 | 2 | 1 | 0.48 | 0.24 | |
‘IRRI 147’ | mMSNBK1 | 34 | 16 | 9 | 47.06 | 26.47 |
MSNBK3 | 34 | 3 | 9 | 8.82 | 26.47 | |
MSNBKZ1 | 34 | 0 | 0 | 0.00 | 0.00 | |
MSNBKZ2 | 34 | 0 | 0 | 0.00 | 0.00 | |
‘Mangala’ | mMSNBK1 | 245 | 9 | 5 | 3.67 | 2.04 |
MSNBK3 | 245 | 13 | 7 | 5.31 | 2.86 | |
MSNBKZ1 | 245 | 3 | 4 | 1.22 | 1.63 | |
MSNBKZ2 | 245 | 3 | 9 | 1.22 | 3.67 | |
Summa | mMSNBK1 | 1167 | 47 | 74 | 4.03 | 6.34 |
MSNBK3 | 1167 | 29 | 69 | 2.49 | 5.91 | |
MSNBKZ1 | 1167 | 5 | 16 | 0.43 | 1.37 | |
MSNBKZ2 | 1167 | 5 | 25 | 0.43 | 2.14 | |
Total | 4668 | 86 | 184 | 1.84 | 3.94 |
Induction Media | N6NDZ | ||||
---|---|---|---|---|---|
Number of Regenerated Plantlets/100 Anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 13.6 a B | 6.4 b C | 1.6 bc AB | 0.4 c B | 5.50 |
‘PSB RC 94’ | 25.2 a A | 21.6 a B | 6.4 b AB | 6.4 b AB | 14.90 |
‘IR 64’ | 3.2 a C | 4.0 a C | 2.0 a AB | 4.0 a AB | 3.30 |
‘IRRI 147’ | 5.6 ab C | 6.4 a C | 0.0 b B | 0.0 b B | 3.00 |
‘Mangala’ | 23.2 b A | 34.0 a A | 7.6 c A | 10.0 c A | 18.70 |
Mean of Genotypes | 14.16 | 14.48 | 3.52 | 4.16 | 9.08 |
Number of Albinos/100 Anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 13.6 a B | 6.4 ab B | 1.6 b A | 0.4 b B | 5.50 |
‘PSB RC 94’ | 24.8 a A | 20.8 a A | 6.0 b A | 6.4 b AB | 14.50 |
‘IR 64’ | 3.2 a C | 4.0 a B | 2.0 a A | 3.6 a AB | 3.20 |
‘IRRI 147’ | 5.6 a C | 6.4 a B | 0.0 a A | 0.0 a B | 3.00 |
‘Mangala’ | 18.4 a AB | 21.2 a A | 4.8 b A | 8.8 b A | 13.30 |
Mean of Genotypes | 13.12 | 11.76 | 2.88 | 3.84 | 7.90 |
Number of Green Plantlets/100 Anthers | |||||
Plant Regeneration Media | |||||
Genotype | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 | Mean of Media |
‘Co 39’ | 0.0 a B | 0.0 a B | 0.0 a B | 0.0 a A | 0.00 |
‘PSB RC 94’ | 0.4 a B | 0.8 a B | 0.4 a B | 0.0 a A | 0.40 |
‘IR 64’ | 0.0 a B | 0.0 a B | 0.0 a B | 0.4 a A | 0.10 |
‘IRRI 147’ | 0.0 a B | 0.0 a B | 0.0 a B | 0.0 a A | 0.00 |
‘Mangala’ | 4.8 b A | 12.8 a A | 2.8 c A | 1.2 c A | 5.40 |
Mean of Genotypes | 1.04 | 2.72 | 0.64 | 0.32 | 1.18 |
Genotype | Reg. Media | Number of Transferred Calli | Number of Regenerated Green Plantlets | Number of Regenerated Albino Plantlets | Percentage of Green Plantlet Regeneration (%) | Percentage of Regeneration of Albino Plantlets (%) |
---|---|---|---|---|---|---|
‘Co 39’ | mMSNBK1 | 546 | 0 | 33 | 0.00 | 6.04 |
MSNBK3 | 546 | 0 | 15 | 0.00 | 2.75 | |
MSNBKZ1 | 546 | 0 | 3 | 0.00 | 0.55 | |
MSNBKZ2 | 546 | 0 | 1 | 0.00 | 0.18 | |
‘PSB RC 94’ | mMSNBK1 | 222 | 1 | 62 | 0.45 | 27.93 |
MSNBK3 | 222 | 2 | 50 | 0.90 | 22.52 | |
MSNBKZ1 | 222 | 1 | 8 | 0.45 | 3.60 | |
MSNBKZ2 | 222 | 0 | 16 | 0.00 | 7.21 | |
‘IR 64’ | mMSNBK1 | 65 | 0 | 8 | 0.00 | 12.31 |
MSNBK3 | 65 | 0 | 10 | 0.00 | 15.38 | |
MSNBKZ1 | 65 | 0 | 5 | 0.00 | 7.69 | |
MSNBKZ2 | 65 | 1 | 9 | 1.54 | 13.85 | |
‘IRRI 147’ | mMSNBK1 | 75 | 0 | 14 | 0.00 | 18.67 |
MSNBK3 | 75 | 0 | 16 | 0.00 | 21.33 | |
MSNBKZ1 | 75 | 0 | 0 | 0.00 | 0.00 | |
MSNBKZ2 | 75 | 0 | 0 | 0.00 | 0.00 | |
‘Mangala’ | mMSNBK1 | 411 | 11 | 45 | 2.68 | 10.95 |
MSNBK3 | 411 | 32 | 56 | 7.79 | 13.63 | |
MSNBKZ1 | 411 | 7 | 12 | 1.70 | 2.92 | |
MSNBKZ2 | 411 | 3 | 22 | 0.73 | 5.35 | |
Summa | mMSNBK1 | 1319 | 12 | 162 | 0.91 | 12.28 |
MSNBK3 | 1319 | 34 | 147 | 2.58 | 11.14 | |
MSNBKZ1 | 1319 | 8 | 28 | 0.61 | 2.12 | |
MSNBKZ2 | 1319 | 4 | 48 | 0.30 | 3.64 | |
Total | 5276 | 58 | 385 | 1.10 | 7.30 |
Genotype | Haploid (n) | Diploid (2n) | Tetraploid (4n) | Mixoploid (n-2n) | Number of Tested Acclimatized Plantlets |
---|---|---|---|---|---|
‘Co 39’ | 1 | 0 | 0 | 0 | 1 |
‘PSB RC 94’ | 13 | 13 | 0 | 0 | 26 |
‘IR 64’ | 1 | 0 | 0 | 0 | 1 |
‘IRRI 147’ | 0 | 15 | 0 | 0 | 15 |
‘Mangala’ | 33 | 27 | 2 | 1 | 63 |
Total Number (Percentage) of Plantlets with Different Ploidy Levels | 48 (45.28%) | 55 (51.89%) | 2 (1.89%) | 1 (0.94%) | 106 (100%) |
Components of Medium (mg L−1) | N6NDK | N6NDZ | Ali-1 |
---|---|---|---|
Macronutrients | N6 | N6 | N6 |
H3BO3 | 1.6 | 1.6 | 1.6 |
MnSO4 × 4H2O | 4.4 | 4.4 | 4.4 |
ZnSO4 × 7H2O | 1.85 | 1.85 | 1.5 |
KI | 0.8 | 0.8 | 0.8 |
FeSO4 × 7H2O | 27.85 | 27.85 | 27.85 |
Na2EDTA × 2H2O | 37.25 | 37.25 | 37.25 |
Nicotinic acid | 0.5 | 0.5 | 0.5 |
Thiamine HCl | 1 | 1 | 1 |
Pyridoxine HCl | 0.5 | 0.5 | 0.5 |
Myo-inositol | - | - | 100 |
Sucrose | - | - | 30,000 |
Maltose | 40,000 | 40,000 | 30,000 |
Glycine | - | - | 10 |
L-Proline | 500 | 500 | - |
L-Glutamine | 500 | 500 | - |
2,4-D | 1 | 1 | 1 |
NAA | 2.5 | 1 | 1 |
Kinetin | 0.5 | - | - |
Zeatin | - | 0.1 | 0.1 |
pH | 5.8 | 5.8 | 5.8 |
Phytagel | 2800 | 2800 | 2000 |
Regeneration Medium | mMSNBK1 | MSNBK3 | MSNBKZ1 | MSNBKZ2 |
---|---|---|---|---|
NAA (mg/L) | 1 | 0.5 | 0.5 | 1 |
BAP (mg/L) | 1 | 0.5 | 0.5 | 1 |
Kinetin (mg/L) | 1 | 1.5 | 1.5 | 1 |
Zeatin (mg/L) | - | - | 0.25 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lantos, C.; Jancsó, M.; Székely, Á.; Szalóki, T.; Venkatanagappa, S.; Pauk, J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants 2023, 12, 1774. https://doi.org/10.3390/plants12091774
Lantos C, Jancsó M, Székely Á, Szalóki T, Venkatanagappa S, Pauk J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants. 2023; 12(9):1774. https://doi.org/10.3390/plants12091774
Chicago/Turabian StyleLantos, Csaba, Mihály Jancsó, Árpád Székely, Tímea Szalóki, Shoba Venkatanagappa, and János Pauk. 2023. "Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes" Plants 12, no. 9: 1774. https://doi.org/10.3390/plants12091774
APA StyleLantos, C., Jancsó, M., Székely, Á., Szalóki, T., Venkatanagappa, S., & Pauk, J. (2023). Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants, 12(9), 1774. https://doi.org/10.3390/plants12091774