The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity
Abstract
:1. Introduction
2. Cd Uptake
3. Hyperaccumulators and Non-Hyperaccumulators
4. The Effect of Cd on Gene Expression in Plants
4.1. ATP-Binding Cassette Transporter Gene Family
4.2. PCR Gene Family
4.3. ZIP Gene Family
4.4. CDF/MTP Gene Family
4.5. NRAMP Gene Family
4.6. ACS and ACO Multigene Family
4.7. HIPP/HPP Gene Family
4.8. PCs Gene Family
4.9. MT Gene Family
4.10. Antioxidant Genes
4.11. HMA Gene Family
5. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACO | precursor 1-aminocyclopropane-1-carboxylic acid oxidase |
ACS | precursor 1-aminocyclopropane-1-carboxylic acid synthase |
APX | ascorbate peroxidase |
ASC | ascorbic acid |
bHLH | basic helix-loop-helix |
bZIP | basic leucine zipper |
CAT | catalase |
Cd | cadmium |
CDF/MTS | metal tolerance protein |
ERFs | ethylene response factors |
ERP | ethylene-responsive factor |
GSH | glutathione |
GSSG | oxidised glutathione |
GST | glutathione S-transferase |
HIPPs/HPP | heavy metal-associated isoprenylated plant proteins |
HMA | heavy metal ATPase |
IAA | indole-3-acetic acid |
JA | jasmonic acid |
MAPK | mitogen-activated protein kinase |
MTP | metal tolerance protein |
MTs | metalothionein |
MYB | myeloblastosis |
NRAMP | Natural resistance associated macrophage protein |
PCR | cadmium resistance family |
PCs | phytochelatin synthases |
POD | class III peroxidase |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
ZIP | iron-regulated transporter-like protein |
References
- Kim, Y.Y.; Yang, Y.Y.; Lee, Y. Pb and Cd uptake in rice roots. Physiol. Plant. 2002, 116, 368–372. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Gabbrielli, R. Response to Cadmium in Higher Plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K. Toxicological Profile for Cadmium; Agency for Toxic Substance and Disease Registry: Atlanta, Georgia, 2012; pp. 2–6. [Google Scholar]
- Hutton, M. Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 1983, 7, 9–24. [Google Scholar] [CrossRef]
- Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Chapter 7-Environmental Hazards of Cadmium: Past, Present, and Future. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 163–183. ISBN 978-0-12-814864-8. [Google Scholar] [CrossRef]
- Asghar, M.; Habib, S.; Zaman, W.; Hussain, S.; Ali, H.; Saqib, S. Synthesis and Characterization of Microbial Mediated Cadmium Oxide Nanoparticles. Microsc. Res. Tech. 2020, 83, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Sakthivadivel, D.; Balaji, K.; Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L. Chapter 1-Solar Energy Technologies: Principles and Applications. In Renewable-Energy-Driven Future; Ren, J., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–42. ISBN 978-0-12-820539-6. [Google Scholar]
- Haider, F.U.; Liqun, C.; Coulter, A.J.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Gong, Z.; Duan, Y.; Liu, D.; Zong, Y.; Zhang, D.; Shi, X.; Hao, X.; Li, P. Physiological and Transcriptome Analysis of Response of Soybean (Glycine max) to Cadmium Stress under elevated CO2 concentration. J. Hazard. Mater. 2023, 448, 130950. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; Abbas, M.; Rather, S.A.; Wani, S.H.; Soaud, N.; Noor, Z.; Qiulan, H.; Eldomiaty, A.S.; Mir, R.R.; Li, J. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein (MTP) Gene Family in Soybean (Glycine max) under Heavy Metal Stress. Mol. Biol. Rep. 2023, 50, 2975–2990. [Google Scholar] [CrossRef]
- El-Okkiah, S.A.F.; El-Tahan, A.M.; Ibrahim, O.M.; Taha, M.A.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; Abo Sen, E.Z.F.; Sharaf-Eldin, M.A. Under Cadmium Stress, Silicon Has a Defensive Effect on the Morphology, Physiology, and Anatomy of Pea (Pisum sativum L.) Plants. Front. Plant Sci. 2022, 13, 997475. [Google Scholar] [CrossRef]
- Kintlová, M.; Vrána, J.; Hobza, R.; Blavet, N.; Hudzieczek, V. Transcriptome Response to Cadmium Exposure in Barley (Hordeum vulgare L.). Front. Plant Sci. 2021, 12, 629089. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy Metal Stress and Responses in Plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Memon, A.R. Metal Hyperaccumulators: Mechanisms of Hyperaccumulation and Metal Tolerance. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 3, pp. 239–268. ISBN 978-3-319-40148-5. [Google Scholar]
- Pacenza, M.; Muto, A.; Chiappetta, A.; Mariotti, L.; Talarico, E.; Picciarelli, P.; Picardi, E.; Bruno, L.; Bitonti, M.B. In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Sci. Rep. 2021, 11, 10965. [Google Scholar] [CrossRef]
- Xiang, C.; Oliver, D.J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 1998, 10, 1539–1550. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Li, X. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot. Stud. 2018, 59, 22. [Google Scholar] [CrossRef]
- Sheng, Y.; Yan, X.; Huang, Y.; Han, Y.; Zhang, C.; Ren, Y.; Fan, T.; Xiao, F.; Liu, Y.; Cao, S. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ. 2019, 42, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-Z.; Tong, Y.-H.; Zhou, X.; Ling, L.-L.; Chun, C.-P.; Cao, L.; Zeng, M.; Peng, L.-Z. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 2017, 629, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Thomine, S.; Wang, R.; Ward, J.M.; Crawford, N.M.; Schroeder, J.I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA 2000, 97, 4991–4996. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.E. The Influence of PH, Soil Type and Time on Adsorption and Uptake by Plants of Cd Added to the Soil. Water Air Soil Pollut. 1989, 48, 317–335. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenke, S.; Verma, K.; Agarwal, S. Molecular Mechanisms Underlying Heavy Metal Uptake, Translocation and Tolerance in Hyperaccumulators analysis: Heavy Metal Tolerance in Hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Qin, L.; Han, P.; Chen, L.; Walk, C.T.; Li, Y.; Hu, X.; Xie, L.; Liao, H.; Liao, X. Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine max L.). Front. Plant Sci. 2017, 8, 1436. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Zhang, X.; Wu, S.; Han, X.; Li, X.; Xu, J. Comparative Transcriptomics Analysis of Roots and Leaves under Cd Stress in Calotropis gigantea L. Int. J. Mol. Sci. 2022, 23, 3329. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediation 2017, 19, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Abedi, T.; Mojiri, A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, G.; Vijayalatha, K.R.; Anitha, T. Heavy Metals and Its Impact in Vegetable Crops. Int. J. Chem. Stud. 2019, 7, 1612–1621. [Google Scholar]
- Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. ‘Omics’ Analyses of Regulatory Networks in Plant Abiotic Stress Responses. Curr. Opin. Plant Biol. 2010, 13, 132–138. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Reeves, R.D.; Baker, A.J.; Jaffré, M.T.; Erskine, P.D.; Echevarria, G.; Van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
- Phaenark, C.; Pokethitiyook, P.; Kruatrachue, M.; Ngernsansaruay, C. Cd and Zn Accumulation in Plants from the Padaeng Zinc Mine Area. Int. J. Phytoremediation 2009, 11, 479–495. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Wang, L.; Liu, W. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J. Hazard. Mater. 2009, 161, 808–814. [Google Scholar] [CrossRef]
- Kubota, H.; Takenaka, C. Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int. J. Phytoremediation 2003, 5, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D. Hyperaccumulation of trace elements by plants. In Phytoremediation of Metal-Contaminated Soils; Morel, J.L., Echevarria, G., Goncharova, N., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 68, pp. 25–52. [Google Scholar]
- Wei, S.; Zhou, Q.X. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp). Environ. Sci. Pollut. Res. 2006, 13, 151–155. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Wu, L.; Zhao, F.-J.; Xu, W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 2017, 215, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, M.; Li, T.; Xu, X.; Deng, L. A Newly Found Cadmium Accumulator-Malva sinensis Cavan. J. Hazard. Mater. 2010, 173, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, Q.; Wang, X.; Zhang, K.; Guo, G. A newly discovered Cd-hyperaccumulator Solatium nigrum L. Chin. Sci. Bull. 2005, 50, 33–38. [Google Scholar] [CrossRef]
- Liu, W.; Shu, W.; Lan, C. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin. Sci. Bull. 2004, 49, 29–32. [Google Scholar] [CrossRef]
- Ng, C.W.W.; So, P.S.; Wong, F.T.J.; Lau, Y.S. Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield. Environ. Pollut. 2023, 318, 120930. [Google Scholar] [CrossRef]
- Singh, R.; Jha, A.B.; Misra, A.N.; Sharma, P. Chapter 13-Adaption Mechanisms in Plants Under Heavy Metal Stress Conditions During Phytoremediation. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 329–360. ISBN 978-0-12-813912-7. [Google Scholar]
- Memon, A.R.; Aktoprakligil, D.; Özdemir, A.; Vertii, A. Heavy metal accumulation and detoxification mechanisms in plants. Turk. J. Bot. 2001, 25, 111–121. [Google Scholar]
- Memon, A.R.; Yatazawa, M. Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Sci. Plant Nutr. 1982, 28, 401–412. [Google Scholar] [CrossRef]
- Memon, A.R. Heavy metal–induced gene expression in plants. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–173. ISBN 978-3-030-41552-5. [Google Scholar]
- Ijaz, M.; Rasul, B.; Zaib, P.; Masoud, M.S.; Zubair, M.; Iqbal, M.; Mahmood-ur-Rahman. Chapter 21-Genetics of Metal Hyperaccumulation in Plants. In Handbook of Bioremediation; Hasanuzzaman, M., Prasad, M.N.V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 329–340. ISBN 978-0-12-819382-2. [Google Scholar]
- Talke, I.N.; Hanikenne, M.; Kramer, U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 2006, 142, 148–167. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, A.; Küpper, H. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant Sci. 2017, 8, 835. [Google Scholar] [CrossRef] [PubMed]
- Wojas, S.; Clemens, S.; Hennih, J.; Sklodowska, A.; Kopera, E.; Schat, H.; Bal, W.; Antosiewicz, D.M. Overexpression of phytochelatin synthase in tobacco: Distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J. Exp. Bot. 2008, 59, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tan, H.; Han, J.; Zhang, Y.; He, X.; Ding, Y.; Chen, Z.; Zhu, C. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environ. Sci. Eur. 2019, 31, 82. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Ma, X.; Guo, L.; He, Y.; Ren, Z.; Kuang, Z.; Zhang, X.; Zhang, Z. Analysis of Potential Strategies for Cadmium Stress Tolerance Revealed by Transcriptome Analysis of Upland Cotton. Sci. Rep. 2019, 9, 86. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Q.; Liu, S.; Zhai, Y.; Long, Y.L.; Pan, Y. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol. Environ. Saf. 2018, 162, 35–41. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Song, K.; Sun, Y.; Qin, Q.; Xue, Y. Transcriptome Analysis of Rice (Oryza sativa L.) Shoots Responsive to Cadmium Stress. Sci. Rep. 2019, 9, 10177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Tan, M.; Yu, H.; Li, L.; Thu, D.; Chen, Y.; Jiang, M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genom. 2018, 19, 709. [Google Scholar] [CrossRef]
- DalCorso, G.; Farinati, S.; Furini, A. Regulatory networks of cadmium stress in plants. Plant Signal. Behav. 2010, 5, 663–667. [Google Scholar] [CrossRef]
- Van Den Brûle, S.; Smart, C.C. The plant PDR family of ABC transporters. Planta 2002, 216, 95–106. [Google Scholar] [CrossRef]
- Schellingen, K.; Van Der Straeten, D.; Vandenbussche, F.; Prinsen, E.; Remans, T.; Vangronsveld, J.; Cuypers, A. Cadmium-Induced Ethylene Production and Responses in Arabidopsis thaliana Rely on ACS2 and ACS6 Gene Expression. BMC Plant Biol. 2014, 14, 214. [Google Scholar] [CrossRef]
- Wu, X.; Han, Y.; Zhu, X.; Shah, A.; Wang, W.; Sheng, Y.; Fan, T.; Cao, S. Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. Plant Mol. Biol. 2019, 101, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Chai, T.; Zhang, Y.; Xu, J.; Wei, W. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 2009, 76, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Lua, H.; Yua, J.; Liua, J.; Liuc, Y.; Yana, C.H. Identification of Cadmium-responsive Kandelia obovata SOD family genes and response to Cd toxicity. Environ. Exp. Bot. 2019, 162, 230–238. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Yan, X.; Liu, Y.; Wang, R.; Fan, T.; Ren, Y.; Tang, X.; Xiao, F.; Liu, Y.; et al. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis. Plant Physiol. 2016, 171, 707–719. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, G.; Sun, H.; Tang, J.; Yang, J.; Wang, Y.; Garran, T.A.; Guo, L. Effects of Different Doses of Cadmium on Secondary Metabolites and Gene Expression in Artemisia annua L. Front. Med. 2017, 11, 137–146. [Google Scholar] [CrossRef]
- Santoro, D.F.; Sicilia, A.; Testa, G.; Cosento, S.L.; Roberta Lo Piero, A. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genom. 2022, 23, 427. [Google Scholar] [CrossRef]
- DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol. 2008, 50, 1268–1280. [Google Scholar] [CrossRef]
- Syed, R.; Kapoor, D.; Bhat, A.A. Heavy Metal Toxicity in Plants: A Review. Plant Arch. 2018, 18, 1229–1238. [Google Scholar]
- Foyer, C.H.; Lopez-Delgado, H.; Dat, F.J.; Scott, M.I. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 1997, 100, 241–254. [Google Scholar] [CrossRef]
- Fan, P.; Wu, L.; Wang, Q.; Wang, Y.; Luo, H.; Song, J.; Yang, M.; Yao, H.; Chen, S. Physiological and Molecular Mechanisms of Medicinal Plants in Response to Cadmium Stress: Current Status and Future Perspective. J. Hazard. Mater. 2023, 450, 131008. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Corpas, F.J.; Rodríguez-Serrano, M.; Gómez, M.; del Río, L.A.; Sandalio, L.M. Differential Expression and Regulation of Antioxidative Enzymes by Cadmium in Pea Plants. J. Plant Physiol. 2007, 164, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, A.; Mazhoudi, S.; Ghorbal, M.H.; El Ferjani, E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 1997, 127, 139–147. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.-J.; Mimura, T. Vacuolar Compartmentalization as Indispensable Component of Heavy Metal Detoxification in Plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, T.; Xu, W.; Chai, Y. Distribution of cadmium in subcellular fraction and expression difference of its transport genes among three cultivars of pepper. Ecotoxicol. Environ. Saf. 2021, 216, 112182. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Yu, L.; Yang, M.; Zou, X.; Yin, C.H.; Lin, Y. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells 2022, 11, 569. [Google Scholar] [CrossRef]
- Li, S.; Han, X.; Lu, Z.; Qiu, W.; Yu, M.; Li, H.; He, Z.; Zhuo, R. MAPK cascades and transcriptional factors: Regulation of heavy metal tolerance in plants. Int. J. Mol. Sci. 2022, 23, 4463. [Google Scholar] [CrossRef]
- Liptáková, Ľ.; Demecsová, L.; Valentovičová, K.; Zelinová, V.; Tamás, L. Early Gene Expression Response of Barley Root Tip to Toxic Concentrations of Cadmium. Plant Mol. Biol. 2022, 108, 145–155. [Google Scholar] [CrossRef]
- Han, Y.; Fan, T.; Zhu, X.; Wu, X.; Ouyang, J.; Jiang, L.; Cao, S. WRKY12 Represses GSH1 Expression to Negatively Regulate Cadmium Tolerance in Arabidopsis. Plant Mol. Biol. 2019, 99, 149–159. [Google Scholar] [CrossRef]
- Li, G.-Z.; Zheng, Y.-X.; Liu, T.-H.; Liu, J.; Kang, G.-Z. WRKY74 regulates cadmium tolerance through glutathione-dependent pathway in wheat. Environ. Sci. Pollut. Res. 2022, 29, 68191–68201. [Google Scholar] [CrossRef]
- Zheng, T.; Lu, X.; Yang, F.; Zhang, D. Synergetic Modulation of Plant Cadmium Tolerance via MYB75-Mediated ROS Homeostasis and Transcriptional Regulation. Plant Cell Rep. 2022, 41, 1515–1530. [Google Scholar] [CrossRef]
- Sterckeman, T.; Thomine, S. Mechanisms of cadmium accumulation in plants. Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
- Gupta, D.K.; Vandenhove, H.; Inouhe, M. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In Heavy Metal Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 73–94. [Google Scholar] [CrossRef]
- Rono, J.K.; Sun, D.; Yang, Z.M. Metallochaperones: A Critical Regulator of Metal Homeostasis and Beyond. Gene 2022, 822, 146352. [Google Scholar] [CrossRef]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Tian, S.; Hu, Y.; Zhao, J.; Ge, J.; Lu, L. Cadmium Contributes to Heat Tolerance of a Hyperaccumulator Plant Species Sedum alfredii. J. Hazard. Mater. 2023, 441, 129840. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Cheng, D.; Yang, Y.; Zhang, G.; Qin, M.; Chen, J.; Chen, Y.; Jiang, M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biol. 2017, 17, 194. [Google Scholar] [CrossRef]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Sachdev, A.; Praveen, S. Role of ATP-Binding Cassette Transporters in Maintaining Plant Homeostasis under Abiotic and Biotic Stresses. Physiol. Plant 2021, 171, 785–801. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Aarts, M.G.M. The Molecular Mechanism of Zinc and Cadmium Stress Response in Plants. Cell. Mol. Life Sci. 2012, 69, 3187–3206. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Bover, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Song, W.-Y.; Hörtensteiner, S.; Tomioka, R.; Lee, Y.; Martinoia, E. Common Functions or Only Phylogenetically Related? The Large Family of PLAC8 Motif-Containing/PCR Genes. Mol. Cells 2011, 31, 1–7. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, X.; Zhao, J.; Zhang, J.; Chen, S.; Lu, L. Plant Cadmium Resistance 2 (SaPCR2) facilitates cadmium efflux in the roots of hyperaccumulator Sedum alfredii Hance. Front. Plant Sci. 2020, 11, 568887. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Liu, Z.; Shi, Y.; Han, T.; Ye, Y.; Gong, N.; Sun, J.; Zhu, C. Different Responses of Low Grain-Cd-Accumulating and High Grain-Cd-Accumulating Rice Cultivars to Cd Stress. Plant Physiol. Biochem. 2015, 96, 261–269. [Google Scholar] [CrossRef]
- Hu, X.; Wang, S.; Zhang, H.; Zhang, H.; Feng, S.; Qiao, K.; Lv, F.; Gong, S.; Zhou, A. Plant Cadmium Resistance 6 from Salix linearistipularis (SlPCR6) Affects Cadmium and Copper Uptake in Roots of Transgenic Populus. Ecotoxicol. Environ. Saf. 2022, 245, 114116. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [Google Scholar] [CrossRef]
- Song, J.; Feng, S.J.; Chen, J.; Zhao, W.T.; Yang, Z.M. A Cadmium Stress-Responsive Gene AtFC1 Confers Plant Tolerance to Cadmium Toxicity. BMC Plant Biol. 2017, 17, 187. [Google Scholar] [CrossRef]
- Zhang, C.; Tong, C.; Cao, L.; Zheng, P.; Tang, X.; Wang, L.; Miao, M.; Liu, Y.; Cao, S.; Zheng, P.; et al. Regulatory Module WRKY33-ATL31-IRT1 Mediates Cadmium Tolerance in Arabidopsis. Plant Cell Environ. 2023, 46, 1653–1670. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.E.; Eide, D.J.; Guerinot, M.L. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. USA 2000, 97, 12356–12360. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, C.; Wang, K.; Zhao, J.; Shao, J.; Chen, H.; Zhou, M.; Zhu, X. Metal tolerance protein encoding gene family in Fagopyrum tartaricum: Genome-wide identification, characterization, and expression under multiple metal stresses. Plants 2022, 11, 850. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; Elbaiomy, R.G.; Elrys, A.S.; Wang, Y.; Zhu, Y.; Huang, Q.; Yan, K.; Xianming, Z.; Abbas, M.; El-Tarabily, K.A.; et al. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress. Front. Genet. 2021, 12, 1340. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Li, G.; Kumar, S.; Sun, Z.; Li, Y.; Guo, W.; Yang, J.; Hou, H. Genome-Wide Identification of the Nramp Gene Family in Spirodela polyrhiza and Expression Analysis under Cadmium Stress. Int. J. Mol. Sci. 2021, 22, 6414. [Google Scholar] [CrossRef]
- Oomen, R.J.F.J.; Wu, J.; Lelièvre, F.; Blanchet, S.; Richaud, P.; Barbier-Brygoo, H.; Aarts, M.G.M.; Thomine, S. Functional Characterization of NRAMP3 and NRAMP4 from the Metal Hyperaccumulator Thlaspi caerulescens. New Phytol. 2009, 181, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishmi, H.; Nishizawa, N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef] [PubMed]
- Van De Poel, B.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene! Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Liu, J.; Niu, Y.; Chen, Y.; Hao, Y.; Zhao, J.; Sun, L.; Wang, H.; Xiao, J.; et al. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein (HIPP) Gene Family from Triticeae Species. Int. J. Mol. Sci. 2020, 21, 6191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.N.; Wang, M.Q.; Li, C.; Cao, H.W.; Rono, J.K.; Yang, Z.M. The Metallochaperone OsHIPP56 Gene Is Required for Cadmium Detoxification in Rice Crops. Environ. Exp. Bot. 2022, 193, 104680. [Google Scholar] [CrossRef]
- Zhang, X.; Rui, H.; Zhang, F.; Hu, Z.; Xia, Y.; Shen, Z. Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front. Plant Sci. 2018, 9, 107. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Gu, J.; Bai, X.; Ren, Y.; Fan, T.; Han, Y.; Jiang, L.; Xiao, F.; Liu, Y.; et al. MAN3 Gene Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis thaliana. New Phytol. 2015, 205, 570–582. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Y.; Song, H.; Chen, F.; Geng, Q.; Hu, M.; Zhang, C.; Wu, X.; Fan, T.; Cao, S. A MYB4-MAN3-Mannose-MNB1 Signaling Cascade Regulates Cadmium Tolerance in Arabidopsis. PLoS Genet. 2021, 17, e1009636. [Google Scholar] [CrossRef]
- Gao, C.; Gao, K.; Yang, H.; Ju, T.; Zhu, J.; Tang, Z.; Zhao, L.; Chen, Q. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol. Res. 2022, 55, 1. [Google Scholar] [CrossRef]
- Pakdee, O.; Thsering, S.; Pokethitiyook, P.; Meetam, M. Examination of the Metallothionein Gene Family in Greater Duckweed Spirodela polyrhiza. Plants 2023, 12, 125. [Google Scholar] [CrossRef]
- Shim, D.; Hwang, J.-U.; Lee, J.; Lee, S.; Choi, Y.; An, G.; Martinoia, E.; Lee, Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 2009, 21, 4031–4043. [Google Scholar] [CrossRef] [PubMed]
- Zameer, R.; Fatima, K.; Azeem, F.; Algwaiz, H.I.M.; Sadaqat, M.; Rasheed, A.; Batool, R.; Shah, A.N.; Zaynab, M.; Shah, A.A.; et al. Genome-Wide Characterization of Superoxide Dismutase (SOD) Genes in Daucus Carota: Novel Insights into Structure, Expression, and Binding Interaction With Hydrogen Peroxide (H2O2) Under Abiotic Stress Condition. Front. Plant Sci. 2022, 13, 870241. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Liu, C.; Hu, C.; Liang, S. Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (Lolium perenne L.) under Different Cadmium Concentrations. Toxics 2022, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Li, H.; Zhang, X.; Fu, J. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 2011, 20, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Lu, H.; Yang, C.; Wang, L.; Chen, J.; Yan, C. Comparative Transcriptome Analysis Reveals Different Functions of Kandelia Obovata Superoxide Dismutases in Regulation of Cadmium Translocation. Sci. Total Environ. 2021, 771, 144922. [Google Scholar] [CrossRef]
- Huang, Q.; Qiu, W.; Yu, M.; Li, S.; Lu, Z.; Zhu, Y.; Kan, X.; Zhou, R. Genome-wide characterization of Sedum plumbizincicola HMA gene family provides functional implications in cadmium response. Plants 2022, 11, 215. [Google Scholar] [CrossRef]
- Sasaki, A.; Yamaji, N.; Ma, J.F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Q.; Zhang, X.; Zhang, X.; Yu, T.; Wu, Y.; Fang, Y.; Xue, D. Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley. Plants 2021, 10, 1849. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Chen, D.; Han, X.; Li, B.; Yang, Y.; Yang, Y. Comparative expression analysis of heavy metal ATPase subfamily genes between Cd-tolerant and Cd-sensitive turnip landraces. Plant Divers. 2019, 41, 275–283. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene Limiting Cadmium Accumulation in Rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yi, H.; Gong, J. Isolation and characterization of cadmium tolerant gene SpMT2 in the hyperaccumulator Sedum plumbizincicola. Sheng Wu Gong Cheng Xue Bao 2020, 36, 541–548. [Google Scholar] [CrossRef]
- Cailliatte, R.; Lapeyre, B.; Briat, J.-F.; Mari, S.; Curie, C. The NRAMP6 Metal Transporter Contributes to Cadmium Toxicity. Biochem. J. 2009, 422, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Kühnlenz, T.; Schmidt, H.; Uraguchi, S.; Clemens, S. Arabidopsis Thaliana Phytochelatin Synthase 2 Is Constitutively Active in Vivo and Can Rescue the Growth Defect of the PCS1-Deficient Cad1-3 Mutant on Cd-Contaminated Soil. J. Exp. Bot. 2014, 65, 4241–4253. [Google Scholar] [CrossRef]
- Bughio, N.; Yamaguchi, H.; Nishizawa, N.K.; Nakanishi, H.; Mori, S. Cloning an Iron-Regulated Metal Transporter from Rice. J. Exp. Bot. 2002, 53, 1677–1682. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Zanella, L.; Fattorini, L.; Brunetti, P.; Roccotiello, E.; Cornara, L.; D’Angeli, S.; Della Rovere, F.; Cardarelli, M.; Barbieri, M.; Sanità di Toppi, L.; et al. Overexpression of AtPCS1 in Tobacco Increases Arsenic and Arsenic plus Cadmium Accumulation and Detoxification. Planta 2016, 243, 605–622. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kang, B.S. Expression of Arabidopsis Phytochelatin Synthase 2 Is Too Low to Complement an AtPCS1-Defective Cad1-3 Mutant. Mol. Cells 2005, 19, 81–87. [Google Scholar] [CrossRef]
- Djemal, R.; Khoudi, H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma 2022, 259, 19–31. [Google Scholar] [CrossRef]
Gene Family | Plant | Gene ID | Gene | Function | Reference |
---|---|---|---|---|---|
ABC | Arabidopsis thaliana | BK001007.1 | AtPDR8 | Cd transport | [87] |
Oryza sativa | 4327728 | ABCG36 | Cd transport | [57] | |
ACS | Arabidopsis thaliana | 825324 | ACS1 | Cd tolerance | [58] |
Arabidopsis thaliana | 837082 | ACS2 | Cd tolerance | [58] | |
Arabidopsis thaliana | 816812 | ACS4 | Cd tolerance | [58] | |
Arabidopsis thaliana | 836709 | ACS5 | Cd tolerance | [58] | |
Arabidopsis thaliana | 826730 | ACS6 | Cd tolerance | [58] | |
Arabidopsis thaliana | 828726 | ACS7 | Cd tolerance | [58] | |
Arabidopsis thaliana | 829933 | ACS8 | Cd tolerance | [58] | |
Antioxidant genes | Lolium perenne L. | N/A | MnSOD | Cd tolerance | [112] |
Kandelia obovata | N/A | KoFSD2 | Cd tolerance | [114] | |
Kandelia obovata | N/A | KoCSD3 | Cd tolerance | [114] | |
CDF/MTP | Citrus sinensis L. | N/A | CitMTP1 | Cd tolerance | [19] |
Citrus sinensis L. | N/A | CitMTP3 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP4 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP5 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP7 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP10 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP11 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP12 | Cd tolerance | [19] | |
Citrus sinensis L. | N/A | CitMTP8 | Cd tolerance | [19] | |
Glycine max | N/A | GmaMTP1.1 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP1.2 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP3.1 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP3.2 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP4 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP4.3 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP10.4 | Cd tolerance | [10] | |
Glycine max | N/A | GmaMTP11.1 | Cd tolerance | [10] | |
Fagopyrum tartaricum | N/A | FtMTP8.2 | Cd tolerance | [96] | |
Medicago truncatula | N/A | MtMTP1.2 | Cd tolerance | [97] | |
Medicago truncatula | N/A | MtMTP4 | Cd tolerance | [97] | |
Medicago truncatula | N/A | MtMTP1.2 | Cd tolerance | [97] | |
Medicago truncatula | N/A | MtMTP4 | Cd tolerance | [97] | |
HMA | Oryza sativa | 4342783 | OsHMA3 | Cd translocation, acccumulation | [120] |
MT | Sedum plumbizincicola | MK893990.1 | SpMT2 | Cd detoxification | [121] |
Zea mays | N/A | ZmMT3 | Cd tolerance | [108] | |
Zea mays | N/A | ZmMT7 | Cd tolerance | [108] | |
Zea mays | N/A | ZmMT1 | Cd tolerance | [108] | |
Zea mays | N/A | ZmMT7 | Cd tolerance | [108] | |
Zea mays | N/A | ZmMT8 | Cd tolerance | [108] | |
Spirodela polyrhiza | N/A | SpMT2a | Cd tolerance | [109] | |
Calotropis gigantea | N/A | MTB2 | Cd tolerance | [24] | |
Calotropis gigantea | N/A | MTB3 | Cd tolerance | [24] | |
Calotropis gigantea | N/A | MTB15 | Cd tolerance | [24] | |
NRAMP | Arabidopsis thaliana | 841127 | AtNRAMP2 | Cd transport | [20] |
Arabidopsis thaliana | 816847 | AtNRAMP3 | Cd transport | [20] | |
Arabidopsis thaliana | 836868 | AtNRAMP4 | Cd transport | [20] | |
Arabidopsis thaliana | 827613 | AtNRAMP5 | Cd transport | [20] | |
Arabidopsis thaliana | 838166 | AtNRAMP6 | Cd transport | [122] | |
Glycine max | 100812381 | NRAMP2A | Cd transport | [23] | |
Glycine max | 100815628 | NRAMP5A | Cd transport | [23] | |
Glycine max | 100789871 | NRAMP1B | Cd transport | [23] | |
Glycine max | 100791117 | NRAMP3A | Cd transport | [23] | |
Glycine max | 100797298 | NRAMP6A | Cd transport | [23] | |
Oryza sativa | 4342862 | OsNRAMP1 | Cd transport | [101] | |
Spirodela polyrhiza | N/A | SpNramp1 | Cd transport | [99] | |
Spirodela polyrhiza | N/A | SpNramp2 | Cd transport | [99] | |
Spirodela polyrhiza | N/A | SpNramp3 | Cd transport | [99] | |
Capsicum annuum | N/A | NRAMP1 | Cd transport | [72] | |
Capsicum annuum | N/A | NRAMP2 | Cd transport | [72] | |
Capsicum annuum | N/A | NRAMP3 | Cd transport | [72] | |
Capsicum annuum | N/A | NRAMP5 | Cd transport | [72] | |
Capsicum annuum | N/A | NRAMP6 | Cd transport | [72] | |
PCR | Oryza sativa | N/A | OsPCR1 | Cd detoxification | [90] |
Salix linearistipulari | N/A | SlPCR6 | Cd detoxification | [91] | |
Hordeum vulgare L. | N/A | HvPCR2 | Cd detoxification | [12] | |
Sedum alfredii | N/A | SaPCR2 | Cd detoxification | [89] | |
PCs | Arabidopsis thaliana | 831845 | PCS1 | Cd detoxification | [62] |
Arabidopsis thaliana | 839354 | PCS2 | Cd detoxification | [62,123] | |
Arabidopsis thaliana | 828409 | GSH1 | Cd tolerance | [76] | |
Arabidopsis thaliana | 832797 | GSH2 | Cd tolerance | [76] | |
Arabidopsis thaliana | 842387 | AtIRT3 | Cd transport | [17] | |
ZIP | Arabidopsis thaliana | 836336 | AtZIP12 | Cd transport | [17] |
Arabidopsis thaliana | N/A | AtZIP5 | Cd transport | [17] | |
Arabidopsis thaliana | 829439 | AtZIP9 | Cd transport | [93] | |
Arabidopsis thaliana | 827713 | AtIRT1 | Cd transport | [93] | |
Arabidopsis thaliana | 820457 | AtZIP1 | Cd transport | [93] | |
Oryza sativa | 4333669 | OsIRT1 | Cd transport | [92,124] | |
Oryza sativa | 4333667 | OsIRT2 | Cd transport | [92] | |
Oryza sativa | AY324148.1 | OsZIP1 | Cd transport | [17] | |
Energetic pathway | Oryza sativa | 4342404 | LOC4342404 | Unknown | [54] |
Oryza sativa | 4347395 | LOC4347395 | Unknown | [54] | |
Oryza sativa | 4334300 | LOC4334300 | Unknown | [54] | |
Oryza sativa | 4352085 | LOC4352085 | Unknown | [54] | |
Oryza sativa | 4335799 | LOC4335799 | Unknown | [54] | |
Oryza sativa | 4342192 | OS07G0105600 | Unknown | [54] | |
Oryza sativa | 4329766 | LOC4329766 | Unknown | [54] | |
Oryza sativa | 4344281 | LOC4344281 | Unknown | [54] | |
Oryza sativa | 4347336 | LOC4347336 | Unknown | [54] | |
Oryza sativa | 4344281 | LOC4344281 | Unknown | [54] | |
Signalling pathway | Oryza sativa | 4347336 | LOC4347336 | Unknown | [54] |
Oryza sativa | 4324556 | LOC4324556 | Unknown | [54] | |
Oryza sativa | 4332175 | OS03G0235000 | Unknown | [54] | |
Oryza sativa | 4332175 | LOC4332175 | Unknown | [54] | |
Peroxidase pathway | Oryza sativa | 4337483 | LOC4337483 | Unknown | [54] |
Oryza sativa | 4337892 | LOC4337892 | Unknown | [54] | |
Oryza sativa | 4350051 | LOC4350051 | Unknown | [54] | |
Oryza sativa | 4349585 | LOC4349585 | Unknown | [54] | |
Oryza sativa | 4324556 | LOC4324556 | Unknown | [54] | |
Oryza sativa | 4332175 | OS03G0235000 | Unknown | [54] | |
Oryza sativa | 4332175 | LOC4332175 | Unknown | [54] | |
Oryza sativa | 4337483 | LOC4337483 | Unknown | [54] | |
Oryza sativa | 4337892 | LOC4337892 | Unknown | [54] | |
Oryza sativa | 4350051 | LOC4350051 | Unknown | [54] | |
Oryza sativa | 4349585 | LOC4349585 | Unknown | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravčíková, D.; Žiarovská, J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. Plants 2023, 12, 1848. https://doi.org/10.3390/plants12091848
Moravčíková D, Žiarovská J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. Plants. 2023; 12(9):1848. https://doi.org/10.3390/plants12091848
Chicago/Turabian StyleMoravčíková, Dagmar, and Jana Žiarovská. 2023. "The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity" Plants 12, no. 9: 1848. https://doi.org/10.3390/plants12091848