A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium
Abstract
:1. Introduction
2. Results
2.1. Herbivores
2.2. Plant Height
2.3. Leaf Damage
2.4. Fruit Production
2.5. Alkaloid Production
2.6. Accounting for Plant Damage
2.7. Host Plant Selection for Oviposition
2.8. Natural Selection
3. Discussion
3.1. Differences between Sites
3.2. Herbivores
3.3. Selection of the Plant for Oviposition
3.4. Why Populations Are Differentially Damaged by Herbivores?
- (1)
- Native populations of D. stramonium differ in resistance characters depending on the species of herbivores present [20,21]. The defensive role of an alkaloid may therefore vary among locations of native populations of D. stramonium due to the variable herbivore community [27]. Within localities, the defensive role of a specialized metabolite can affect different herbivores differently (e.g., specialists and generalists). For instance, differential damage due to specialist herbivores on native and non-native congeners of Senecio seems to be related to the absence of some pyrrolizidine alkaloids in the latter, which are damaged mostly by generalist herbivores [33]. Chemical defense in the non-native populations of D. stramonium may thus function to prevent damage by generalist herbivores (present in their non-native range), resulting in low divergence from native populations in chemical defense (see [14]).
- (2)
- Native and non-native populations of D. stramonium may differ in the production of cues or ‘attractants’ to herbivores or herbivores’ natural enemies (or both), thus producing differences in herbivore loads between plants of different ranges. For instance, although plants that are naïve to specialized herbivores (i.e., non-native) may be preferred as host plants, herbivores’ natural enemies may also be attracted, counteracting the increased herbivore load. The eggs and larvae of L. daturaphila are attacked by parasitoids (wasps and dipterans, respectively). Experiments with volatile organic compounds (VOCs) of damaged and intact plants of D. stramonium from both ranges would help to determine whether these affect the level of parasitoidism and whether they are involved in parasitoid attraction [35]. Preliminary results indicate that damaged native plants of D. stramonium emit more VOCs than non-native plants [S. Velázquez-Márquez, Pers. Comm, October 2024].
- (3)
- The absence of specialist herbivores in the non-native range predicts the reduction in the production of alkaloids or other constitutive and induced specialized defensive metabolites by plants. Retention of these traits may occur because (i) they might still offer benefits to the plants, according to the type of herbivore [14]; (ii) their production costs are low, especially in environments with high resource availability, or (iii) these remain due to random genetic drift. Hypothesis (i) is likely, given that plants in the non-native range can encounter many generalist herbivores [14]. Furthermore, evidence suggests diminishing benefits of ER with increasing time since the hypothetical introduction [8]; a long period since introduction predicts an increase in the diversity of herbivores and more effects on performance. Because D. stramonium was introduced to Spain a long time ago, the low level of damage suggests that its specialized metabolites still function as defenses.The assumption that (ii) alkaloids are low-cost is not supported, but the increase in plant performance in rich environments can mitigate their cost. In this sense, D. stramonium in Spain grows in environments that are water- and nitrogen-rich compared to their habitats in Mexico [36]. Furthermore, D. stramonium retains the phenology displayed in the native range (summer annual), whereas most Mediterranean plants grow in winter; the adaptation of non-natives to new climates has been shown to affect their interactions with other species and can enhance their ability to invade [37]. Thus, three non-exclusive ecological contexts co-occur: asynchrony with potential plant competitors, high resource availability, and partial enemy release [7]. Finally, the retention of defenses due to random genetic drift is very likely, but this scenario predicts no genetic variation and further defense evolution.
- (4)
- Native and non-native populations of D. stramonium differ in chemical defense, and these might be linked to differences in abiotic factors (soil, fertility, climatic regime, etc.). For instance, the concentration of tropane alkaloids in D. stramonium varies genetically (cf. Figure 3B), but also in relation to the nitrogen level in the soil, temperature, water, and light incidence [38,39]. Thus, experimental studies must assess whether plants of D. stramonium from the native and non-native populations show differential expression of specialized (secondary) chemistry with changes in a given environmental factor (i.e., adaptive plasticity), thus increasing, or at least maintaining, fitness [40]. Experimental studies that control soil fertility, water availability, and/or microbiome will help to understand the evolution of non-native plants in a new range and the role of enemy release in the evolution of plant resistance/defense.
4. Materials and Methods
4.1. Study System
4.2. Herbivorous Insects
4.3. Sampled Populations
4.4. Experimental Localities
4.5. Plant Material
4.6. Experimental Design
4.7. Data Collection
4.8. Plant Resistance to Herbivores
4.9. Tropane Alkaloids of Datura stramonium
4.10. Statistical Analyses
4.10.1. Host Plant Selection for Oviposition
4.10.2. Natural Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawley, M.J. What makes a community invasible? In Colonization, Succession and Stability; Gray, A.J., Crawley, M.J., Edwards, P.J., Eds.; Blackwell: London, UK, 1987; pp. 429–453. [Google Scholar]
- Maron, J.L.; Vilà, M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 2001, 95, 361–373. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Liu, H.; Stiling, P. Testing the enemy release hypothesis: A review and meta-analysis. Biol. Invasions 2006, 8, 1535–1545. [Google Scholar] [CrossRef]
- Rotter, M.C.; Holeski, L.M. A meta-analysis of the evolution of increased competitive ability hypothesis: Genetic-based trait variation and herbivory resistance trade-offs. Biol. Invasions 2018, 20, 2647–2660. [Google Scholar] [CrossRef]
- Brian, J.B.; Catford, J.A. A mechanistic framework of enemy release. Ecol. Lett. 2023, 26, 2021–2166. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.V. Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am. Nat. 2007, 170, 832–843. [Google Scholar] [CrossRef]
- Xu, M.; Mu, X.; Zhang, S.; Dick, J.T.; Zhu, B.; Gu, D.; Yang, Y.; Luo, D.; Hu, Y. A global analysis of enemy release and its variation with latitude. Glob. Ecol. Biogeogr. 2021, 30, 1277–1288. [Google Scholar] [CrossRef]
- Franks, S.J.; Pratt, P.D.; Dray, F.A.; Simms, E.E. Selection on herbivory resistance and growth rate in an invasive plant. Am. Nat. 2008, 171, 678–691. [Google Scholar] [CrossRef]
- Honor, R.; Colautti, R.I. EICA 2.0: A general model of enemy release and defence in plant and animal invasions. In Plant Invasions: The Role of Biotic Interactions; Traveset, A., Richardson, D.M., Eds.; CABI: Wallingford, UK, 2020; Volume 4, pp. 192–207. [Google Scholar]
- Núñez-Farfán, J.; Valverde, P.L. Natural selection of plant defense against herbivores in native and non-native ranges. In Evolutionary Ecology of Plant-Herbivore Interaction; Núñez-Farfán, J., Valverde, P., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 87–105. [Google Scholar] [CrossRef]
- Blossey, B.; Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Joshi, J.; Vrieling, K. The enemy release and EICA hypothesis revisited: Incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 2005, 8, 704–714. [Google Scholar] [CrossRef]
- Núñez-Farfán, J.; Dirzo, R. Evolutionary ecology of Datura stramonium L. in central Mexico: Natural selection for resistance to herbivorous insects. Evolution 1994, 48, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Shonle, I.; Bergelson, J. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 2000, 54, 778–788. [Google Scholar]
- Valverde, P.L.; Fornoni, J.; Núñez-Farfán, J. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J. Evol. Biol. 2001, 14, 424–432. [Google Scholar] [CrossRef]
- Fornoni, J.; Valverde, P.L.; Núñez-Farfán, L. Population variation in the cost and benefit of tolerance and resistance against herbivory in Datura stramonium. Evolution 2004, 58, 1696–1704. [Google Scholar] [PubMed]
- Castillo, G.; Cruz, L.L.; Hernandez-Cumplido, J.; Oyama, K.; Flores-Ortiz, C.M.; Fornoni, J.; Valverde, P.L.; Núñez-Farfán, J. Geographic association and temporal variation of chemical and physical defense and leaf damage in Datura stramonium. Ecol. Res. 2013, 28, 663–672. [Google Scholar] [CrossRef]
- Carmona, D.; Fornoni, J. Herbivores can select for mixed defensive strategies in plants. New Phytol. 2013, 197, 576–585. [Google Scholar] [CrossRef]
- Castillo, G.; Cruz, L.L.; Tapia-López, R.; Olmedo-Vicente, E.; Carmona, D.; Anaya-Lang, A.L.; Fornoni, J.; Andraca-Gómez, G.; Valverde, P.L.; Núñez-Farfán, J. Selection mosaic exerted by specialist and generalist herbivores on chemical and physical defense of Datura stramonium. PLoS ONE 2014, 9, e102478. [Google Scholar] [CrossRef]
- Miranda-Pérez, A.; Castillo, G.; Hernández-Cumplido, J.; Valverde, P.L.; Borbolla, M.; Cruz, L.L.; Tapia-López, R.; Fornoni, J.; Flores-Ortiz, C.M.; Núñez-Farfán, J. Natural selection drives chemical resistance of Datura stramonium. PeerJ 2016, 4, e1898. [Google Scholar] [CrossRef]
- Sanz Elorza, M.; Dana Sánchez, E.D.; Sobrino Vesperinas, E. (Eds.) Atlas de las Plantas Alóctonas Invasoras en España; Dirección General para la Biodiversidad: Madrid, Spain, 2004; 384p. [Google Scholar]
- Valverde, P.L.; Arroyo, J.; Núñez-Farfán, J.; Castillo, G.; Calahorra, A.; Pérez-Barrales, R.; Tapia-López, R. Natural selection on plant resistance to herbivores in the native and introduced range. AoB Plants 2015, 7, plv090. [Google Scholar] [CrossRef]
- Castillo, G.; Calahorra-Oliart, A.; Núñez-Farfán, J.; Valverde, P.L.; Arroyo, J.; Cruz, L.L.; Tapia-López, R. Selection on tropane alkaloids in native and non-native populations of Datura stramonium. Ecol. Evol. 2019, 9, 10176–10184. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz, I.M.; Juan Núñez-Farfán, J. Inter-annual variation in the abundance of specialist herbivores determines plant resistance in Datura stramonium. Ecol. Evol. 2023, 13, e10794. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz, I.M.; Merilä, J.; Valverde, P.L.; Flores-Ortiz, C.M.; Núñez-Farfán, J. Genomic and chemical evidence for local adaptation in resistance to different herbivores in Datura stramonium. Evolution 2020, 74, 2629–2643. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.N. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 1999, 153, S1–S14. [Google Scholar] [CrossRef]
- Cloutier, C.; Jean, C.; Fournier, M.; Yelle, S.; Michaud, D. Adult colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I- transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch. Insect Biochem. Physiol. 2000, 44, 69–81. [Google Scholar] [CrossRef]
- Smallegange, R.C.; van Loon, J.J.A.; Blatt, S.E.; Harvey, J.A.; Dicke, M. Parasitoid load affects plant fitness in a tritrophic system. Entomol. Exp. Appl. 2008, 128, 172–183. [Google Scholar] [CrossRef]
- Lin, H.; Kogan, M. Influence of induced resistance in soybean on the development and nutrition of the soybean looper and the Mexican bean beetle. Entomol. Exp. Appl. 1990, 55, 131–138. [Google Scholar] [CrossRef]
- Wilson, J.K.; Wood, H.A. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants. Oecologia 2015, 179, 1159–1171. [Google Scholar] [CrossRef]
- Jacquemart, A.-L.; Vanparys, V.; Meerts, P. Generalist versus specialist herbivores on the invasive Senecio inaequidens and a native related species: What makes the difference? Am. J. Plant Sci. 2013, 4, 386–394. [Google Scholar] [CrossRef]
- Müller, C. 2018. Evolution of increased competitive ability and shifting defense hypothesis. In Invasion Biology: Hypotheses and Evidence; Jeschke, J.M., Heger, T., Eds.; CAB International: Boston, MA, USA, 2018; pp. 103–123. [Google Scholar]
- Turlings, C.J.T.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef]
- Benítez, G.; March-Salas, M.; Villa-Kamel, A.; Cháves-Jiménez, U.; Hernández, J.; Montes-Osuna, N.; Moreno-Chocano, J.; Cariñanos, P. The genus Datura L. (Solanaceae) in Mexico and Spain—Ethnobotanical perspective at the interface of medical and illicit uses. J. Ethnopharmacol. 2018, 219, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.M.; Levine, J.M. Earlier phenology of a nonnative plant increases impacts on native competitors. Proc. Natl. Acad. Sci. USA 2019, 119, 6199–6204. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, E.; Jurzyesta, M.; Gorski, P. Effect of availability of nitrogen on alkaloid synthesis in Solanaceae. Bull. Acad. Pol. Sc. Ser. Sc. Biol. 1975, 23, 219–225. [Google Scholar]
- Waller, G.R.; Nowacki, E.K. Alkaloid Biology and Metabolism in Plants; Plenum Press: New York, NY, USA, 1978. [Google Scholar]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.S. Studies in the Genus Datura (Solanaceae) I. Taxonomy of the Subgenus Datura. Ph.D. Dissertation, Harvard University, Cambridge, MA, USA, 1959; p. 221. [Google Scholar]
- Symon, D.; Haegi, L. Datura (Solanaceae) is a new world genus. In Solanaceae. III. Taxonomy, Chemistry, and Evolution; Hawkes, J.G., Lester, R.N., M Nee, M., Estrada, N., Eds.; Royal Botanic Gardens Press: Kew, UK, 1991; pp. 197–210. [Google Scholar]
- Weaver, S.; Warwick, S. The biology of Canadian weeds. Datura stramonium L. Can. J. Plant Sci. 1984, 64, 979–991. [Google Scholar] [CrossRef]
- De-la-Mora, M.; Piñero, D.; Núñez-Farfán, J. Phylogeography of specialist weevil Trichobaris soror: A seed predator of Datura stramonium. Genetica 2015, 143, 681–691. [Google Scholar] [CrossRef]
- Sanz-Elorza, M.; Sobrino Vesperinas, E.; Dana Sánchez, E.D. Aproximación al listado de plantas alóctonas invasoras reales y potenciales en España. Lazaroa 2001, 22, 121–131. [Google Scholar]
- De la Cruz, M.; Badiano, J. Libellus de Medicinalibus Indorum Herbis; Translated to Latin by Juan Badiano (Reprint. 1964); Instituto Mexicano del Seguro Social, Fondo de Cultura Económica: Mexico City, Mexico, 1552.
- De Sahagún, B. Historia General de las Cosas de la Nueva España; (Reprint 1830); Imprenta de Alejandro Valdés: Mexico City, Mexico, 1577. [Google Scholar]
- Essig, E.O. Insects and Mites of Western North America, 2nd ed.; MacMillan: New York, NY, USA, 1958; p. 1050. [Google Scholar]
- Force, D.C. Reactions of the three-lined potato beetle, Lema trilineata (Coleoptera: Chrysomelidae), to its host and certain nonhost plants. Annals Entomol. Soc. America 1966, 59, 1112–1119. [Google Scholar] [CrossRef]
- Barber, H.S. The Tobacco and Solanum Weevils of the Genus Trichobaris (No. 226); US Department of Agriculture: Washington, DC, USA, 1935; 28p.
- De-la-Cruz, I.M.; Cruz, L.L.; Martínez-García, L.; Valverde, P.L.; Flores-Ortiz, C.M.; Hernández-Portilla, L.B.; Núñez-Farfán, J. Evolutionary response to herbivory: Population differentiation in microsatellite loci, tropane alkaloids and leaf trichome density in Datura stramonium. Arthropod-Plant Interact. 2020, 14, 21–30. [Google Scholar] [CrossRef]
- Lawrence, M.J. The genetical analysis of ecological traits. In Evolutionary Biology; Shorrocks, B., Ed.; Blackwell Scientific Publication: Oxford, UK, 1982; pp. 27–63. [Google Scholar]
- Kirkpatrick, B.L.; Bazzaz, F.A. Influence of certain fungi on seed germination and seedling survival of four colonizing annuals. J. Appl. Ecol. 1979, 16, 515–527. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill Inc.: Tokyo, Japan, 1980; p. 633. [Google Scholar]
- Cueva del Castillo, R.; Núñez-Farfán, J. Sexual selection on maturation time and body size in Sphenarium purpurascens (Orthoptera: Pyrgomorphidae): Correlated response to selection. Evolution 1999, 53, 209–215. [Google Scholar] [CrossRef]
- Lande, R.; Arnold, S.J. The measurement of selection on correlated characters. Evolution 1983, 37, 1210–1226. [Google Scholar] [CrossRef] [PubMed]
Native Plants | Non-Native Plants | |||||
---|---|---|---|---|---|---|
Term | Estimate (Standard Error) | t Ratio | Prob > |t| | Estimate (Standard Error) | t Ratio | Prob > |t| |
Intercept | 0.2681 (0.0676) | 3.96 | 0.0005 * | 0.2157 (0.0452) | 4.77 | <0.0001 * |
Plant Height | 0.0023 (0.0018) | 1.26 | 0.216 | 0.0044 (0.0014) | 2.96 | 0.0057 * |
Atropine | 0.0313 (0.03657) | 0.86 | 0.398 | 0.0472 (0.0405) | 1.16 | 0.2532 |
Scopolamine | −0.0647 (0.0317) | −2.04 | 0.050 * | −0.1155 (0.0349) | −3.31 | 0.0023 * |
No. Lema larvae | 0.0526 (0.0326) | 1.61 | 0.118 | 0.0426 (0.0292) | 1.46 | 0.1549 |
Term | Estimate | S.E. | t Ratio | Prob > |t| |
---|---|---|---|---|
Intercept | 1.3846 | 0.1494 | 9.27 | <0.0001 * |
Range | −0.0166 | 0.0636 | −0.26 | 0.7936 |
Adults of Lema daturaphila | 0.7426 | 0.1055 | 7.04 | <0.0001 * |
Scopolamine | −0.2616 | 0.5653 | −2.32 | 0.0214 * |
Effect Tests | ||||
Source | Sum of Squares | d.f. | F Ratio | Prob > F |
Range | 0.0456 | 1 | 0.0687 | 0.7936 |
Adults of Lema daturaphila | 32.9161 | 1 | 49.5296 | <0.0001 * |
Scopolamine | 3.5847 | 1 | 5.3940 | 0.0214 * |
Error | 110.3195 | 166 | ||
Total | 155.9339 | 169 |
Atlixco Site | Teotihuacán Site | |||||
---|---|---|---|---|---|---|
Range | n | Plant Height β | Plant Damage β | n | Plant Height β | Plant Damage β |
Native | 125 | −0.0693 (0.0561) | −0.1479 ** (0.0561) | 56 | 0.5006 ** (0.1646) | 0.1102 (0.1578) |
Non-native | 108 | 0.1694 * (0.0703) | −0.0557 (0.0500) | 63 | 0.6372 ** (0.1318) | −0.0521 (0.1431) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Farfán, J.; Velázquez-Márquez, S.; Torres-García, J.R.; De-la-Cruz, I.M.; Arroyo, J.; Valverde, P.L.; Flores-Ortiz, C.M.; Hernández-Portilla, L.B.; López-Cobos, D.E.; Matías, J.D. A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium. Plants 2024, 13, 131. https://doi.org/10.3390/plants13010131
Núñez-Farfán J, Velázquez-Márquez S, Torres-García JR, De-la-Cruz IM, Arroyo J, Valverde PL, Flores-Ortiz CM, Hernández-Portilla LB, López-Cobos DE, Matías JD. A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium. Plants. 2024; 13(1):131. https://doi.org/10.3390/plants13010131
Chicago/Turabian StyleNúñez-Farfán, Juan, Sabina Velázquez-Márquez, Jesús R. Torres-García, Ivan M. De-la-Cruz, Juan Arroyo, Pedro L. Valverde, César M. Flores-Ortiz, Luis B. Hernández-Portilla, Diana E. López-Cobos, and Javier D. Matías. 2024. "A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium" Plants 13, no. 1: 131. https://doi.org/10.3390/plants13010131
APA StyleNúñez-Farfán, J., Velázquez-Márquez, S., Torres-García, J. R., De-la-Cruz, I. M., Arroyo, J., Valverde, P. L., Flores-Ortiz, C. M., Hernández-Portilla, L. B., López-Cobos, D. E., & Matías, J. D. (2024). A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium. Plants, 13(1), 131. https://doi.org/10.3390/plants13010131