Longevity Estimates of Canary Palms and Dragon Trees via Radiocarbon Dating: Initial Results
Abstract
:1. Introduction
2. Results
Plant | No. of Samples | Sampling Date | Height (m) | Perimeter (m) | Estimated Age (yrs) | Latitude °N | Longitude °W | Location |
---|---|---|---|---|---|---|---|---|
Palm 1 | 2 | 4 April 2023 | 36 6 | 2.8 6 | 335 1 | 28.12183 | 15.49251 | Tenoya, Gran Canaria |
Palm 2 | 2 | 4 April 2023 | 27 6 | 2.5 7 | 312 1 | 28.12183 | 15.49251 | Tenoya, Gran Canaria |
Palm 3 | 2 | 4 April 2023 | 10 7 | 1.6 7 | 220 2 | 28.13752 | 15.63104 | Guía, Gran Canaria |
Palm 4 | 2 | 5 May 2023 | 15 7 | 1.7 7 | 280 2 | 28.03045 | 15.51475 | Santa Brígida, Gran Canaria |
Dragon tree 1 | 3 | 4 May 2023 | 5 8 | 5 8 | 300 3 | 28.48587 | 16.31256 | La Laguna, Tenerife |
Dragon tree 2 | 4 | 4 May 2023 | 12 9 | 6.6 9 | 345 3 | 28.50191 | 16.40748 | Tacoronte, Tenerife |
Dragon tree 3 | 4 | 4 May 2023 | 8 10 | 6.9 10 | 345 3 | 28.51399 | 16.35552 | Tegueste, Tenerife |
Dragon tree 4 | 4 | 5 May 2023 | 17 4 | 4.8 4 | 230 4 | 28.03255 | 15.51308 | Santa Brígida, Gran Canaria |
Dragon tree 5 | 2 | 5 May 2023 | 8 4 | 4 5 | 300 5 | 28.14471 | 15.65532 | Gáldar, Gran Canaria |
Plant | Weight (mg) | Holocellulose (mg) | Recovery Yield (%) * | Fraction Modern (F14C ± 1σ) | 14C Calibrated (yr CE) ** | Field Notes |
---|---|---|---|---|---|---|
Palm 1 | 21.7 | 2.0 | 9.2 | 1.0526 ± 0.0017 | 1957.16 ± 0.14 | Soft exterior |
29.6 | 2.1 | 7.1 | 1.0602 ± 0.0018 | 1957.36 ± 0.14 | Soft exterior | |
Palm 2 | 26.2 | 2.3 | 8.8 | 1.0211 ± 0.0019 | 1956.11 ± 0.37 | Soft exterior |
24.2 | 2.1 | 8.7 | 1.0285 ± 0.0020 | 1956.43 ± 0.27 | Soft exterior | |
Palm 3 | 23.7 | 1.4 | 5.9 | 1.1438 ± 0.0021 | 1958.73 ± 0.08 | Soft exterior |
28.6 | 1.7 | 5.9 | 1.0249 ± 0.0017 | 1956.29 ± 0.25 | Soft exterior | |
Palm 4 | 30.8 | 10.6 | 34.4 | 0.9670 ± 0.0017 | 1539 ± 12 | Hard interior |
30.9 | 3.4 | 11.0 | 0.9750 ± 0.0020 | 1669 ± 14 | Hard interior | |
Dragon tree 1 | 35.9 | 2.7 | 7.5 | 1.5007 ± 0.0021 | 1963.17 ± 0.05 | Exterior |
28 | 8.1 | 28.9 | 1.0725 ± 0.0019 | 1957.70 ± 0.17 | Exterior | |
38.6 | 12.1 | 31.3 | 1.0869 ± 0.0018 | 1958.00 ± 0.13 | Exterior | |
Dragon tree 2 | 31.6 | 4.4 | 13.9 | 1.0082 ± 0.0018 | 1955.59 ± 0.40 | Exterior |
35 | 2.6 | 7.4 | 0.9770 ± 0.0016 | 1674 ± 11 | Interior | |
34.5 | 12.8 | 37.1 | 0.9862 ± 0.0018 | 1709 ± 18 | Fallen branch | |
30.3 | 6.5 | 21.5 | 0.9755 ± 0.0018 | 1671 ± 13 | Interior | |
Dragon tree 3 | 35.6 | 8.2 | 23.0 | 0.9765 ± 0.0019 | 1673 ± 12 | Hard interior |
37.7 | 8.8 | 23.3 | 0.9694 ± 0.0018 | 1652 ± 12 | Exterior high | |
28.7 | 3 | 10.5 | 0.9949 ± 0.0017 | 1714 ± 5 | Hard interior | |
37 | 10 | 27.0 | 1.0352 ± 0.0018 | 1956.64 ± 0.25 | Exterior | |
Dragon tree 4 | 36.1 | 4.3 | 11.9 | 1.0354 ± 0.0015 | 1956.64 ± 0.24 | Exterior |
34.3 | 1.7 | 5.0 | 1.0777 ± 0.0018 | 1957.81 ± 0.11 | Exterior | |
29.1 | 5 | 17.2 | 1.0390 ± 0.0018 | 1956.79 ± 0.15 | Exterior | |
25.6 | 1.9 | 7.4 | 1.0105 ± 0.0018 | 1955.68 ± 0.39 | Exterior | |
Dragon tree 5 | 29.8 | 2.1 | 7.0 | 1.4749 ± 0.0019 | 1963.06 ± 0.07 | Exterior |
33.5 | 9.9 | 29.6 | 0.9814 ± 0.0016 | 1684 ± 13 | Exterior |
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Körner, C. A matter of tree longevity. Science 2017, 355, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, G.; Biondi, F. On tree longevity. New Phytol. 2021, 231, 1318–1337. [Google Scholar] [CrossRef] [PubMed]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, G.; Biondi, F.; Baliva, M.; Dinella, A.; Di Fiore, L.; Marchianò, V.; Presutti Saba, E.; De Vivo, G.; Schettino, A.; Di Filippo, A. Tree growth patterns associated with extreme longevity: Implications for the ecology and conservation of primeval trees in Mediterranean mountains. Anthropocene 2019, 26, 100199. [Google Scholar] [CrossRef]
- Spicer, R.; Groover, A. Evolution of development of vascular cambia and secondary growth. New Phytol. 2010, 186, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.H.; Tomlinson, P.B. The vascular system of monocotyledonous stems. Bot. Gaz. 1972, 133, 141–155. [Google Scholar] [CrossRef]
- Molisch, H. The Longevity of Plants; E.H. Fulling: New York, NY, USA, 1938; English edition. [Google Scholar]
- Tomlinson, P.B. Non-homology of vascular organizations in monocotyledons and dicotyledons. In Monocotyledons: Systematics and Evolution; Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J., Eds.; Royal Botanic Gardens: Kew, UK, 1995; pp. 589–622. [Google Scholar]
- Tomlinson, P.B. The Structural Biology of Palms; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Tomlinson, P.B. The uniqueness of palms. Bot. J. Linn. Soc. 2006, 151, 5–14. [Google Scholar] [CrossRef]
- Jura-Morawiec, J.; Tulik, M.; Iqbal, M. Lateral meristems responsible for secondary growth of the monocotyledons: A survey of the state of the art. Bot. Rev. 2015, 81, 150–161. [Google Scholar] [CrossRef]
- del Arco Aguilar, M.J.; Rodríguez Delgado, O. Vegetation of the Canary Islands; Springer International Publishing: Cham, Switzerland, 2018; p. 429. [Google Scholar]
- Almeida Pérez, R.S. Dracaena draco (L.) L. In Atlas y Libro Rojo de la Flora Vascular Amenazada de España, 2nd ed.; Bañares, A., Blanca, G., Güemes, J., Moreno, J.C., Ortiz, S., Eds.; Publicaciones de Organismo Autónomo de Parques Nacionales: Madrid, Spain, 2004. [Google Scholar]
- Naranjo-Cigala, A.; Sosa, P.A.; Márquez, M. 9370 Palmerales de Phoenix Canariensis Endémicos Canarios. Bases Ecológicas Preliminares para la Conservación de los Tipos de Hábitat de Interés Comunitario en España; VV.AA. Dirección General de Medio Natural y Política Forestal: Madrid, Spain, 2009. [Google Scholar]
- Sosa, P.A.; Saro, I.; Johnson, D.; Obón, C.; Alcaraz, F.; Rivera, D. Biodiversity and conservation of Phoenix canariensis: A review. Biodivers. Conserv. 2021, 30, 275–293. [Google Scholar] [CrossRef]
- Durán, I.; Marrero, Á.; Msanda, F.; Harrouni, C.; Gruenstaeudl, M.; Patiño, J.; Caujapé-Castells, J.; García-Verdugo, C. Iconic, threatened, but largely unknown: Biogeography of the Macaronesian dragon trees (Dracaena spp.) as inferred from plastid DNA markers. Taxon 2020, 69, 217–233. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, B.; Fu, M.; Liu, P.; Wei, J.-h. Structure and histochemistry of the stem of Dracaena cambodiana Pierre ex Gagnep. Microsc. Res. Techniq. 2023, 86, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; p. 458. [Google Scholar]
- Adolt, R.; Habrova, H.; Madera, P. Crown age estimation of a monocotyledonous tree species Dracaena cinnabari using logistic regression. Trees 2012, 26, 1287–1298. [Google Scholar] [CrossRef]
- Lengálová, K.; Kalivodová, H.; Habrová, H.; Maděra, P.; Tesfamariam, B.; Šenfeldr, M. First age-estimation model for Dracaena ombet and Dracaena draco subsp. caboverdeana. Forests 2020, 11, 264. [Google Scholar] [CrossRef]
- Rivera, D.; Abellán, J.; Rivera-Obón, D.-J.; Palazón, J.A.; Martínez-Rico, M.; Alcaraz, F.; Johnson, D.; Obón, C.; Sosa, P.A. Expanding dendrochronology to palms: A Bayesian approach to the visual estimate of a palm tree age in urban and natural spaces. Curr. Plant Biol. 2023, 35–36, 100301. [Google Scholar] [CrossRef]
- Piovesan, G.; Di Filippo, A.; Alessandrini, A.; Biondi, F.; Schirone, B. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J. Veg. Sci. 2005, 16, 13–28. [Google Scholar] [CrossRef]
- Rohner, B.; Bugmann, H.K.M.; Bigler, C. Estimating the age–diameter relationship of oak species in Switzerland using nonlinear mixed-effects models. Eur. J. Forest Res. 2013, 132, 751–764. [Google Scholar] [CrossRef]
- Maděra, P.; Forrest, A.; Hanáček, P.; Vahalík, P.; Gebauer, R.; Plichta, R.; Jupa, R.; Van Rensburg, J.J.; Morris, M.; Nadezhdina, N.; et al. What we know and what we do not know about dragon trees? Forests 2020, 11, 236. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; Zuidema, P.A. Dendroecology in the tropics: A review. Trees 2011, 25, 3–16. [Google Scholar] [CrossRef]
- Martínez-Ramos, M.; Alvarez-Buylla, E.R. How old are tropical rain forest trees? Trends Plant Sci. 1998, 3, 400–405. [Google Scholar] [CrossRef]
- Santos, G.M.; Komatsu, A.S.Y.; Renteria, J.M.; Brandes, A.F.N.; Leong, C.A.; Collado-Fabbri, S.; De Pol-Holz, R. A universal approach to alpha-cellulose extraction for radiocarbon analysis of 14C-free to post-bomb ages. Quat. Geochronol. 2023, 74, 101414. [Google Scholar] [CrossRef]
- Bronk Ramsey, C.; van der Plicht, J.; Weninger, B. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 2001, 43, 381–389. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Miyake, F.; Nagaya, K.; Masuda, K.; Nakamura, T. A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan. Nature 2012, 486, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Miyake, F.; Masuda, K.; Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 2013, 4, 1748. [Google Scholar] [CrossRef]
- Park, J.; Southon, J.; Fahrni, S.; Creasman, P.P.; Mewaldt, R. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 2017, 59, 1147–1156. [Google Scholar] [CrossRef]
- Wang, F.Y.; Yu, H.; Zou, Y.C.; Dai, Z.G.; Cheng, K.S. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat. Commun. 2017, 8, 1487. [Google Scholar] [CrossRef] [PubMed]
- Miyake, F.; Jull, A.J.T.; Panyushkina, I.P.; Wacker, L.; Salzer, M.; Baisan, C.H.; Lange, T.; Cruz, R.; Masuda, K.; Nakamura, T. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proc. Nat. Acad. Sci. USA 2017, 114, 881–884. [Google Scholar] [CrossRef]
- Reimer, R.W.; Reimer, P.J. CALIBomb. Available online: http://calib.org/CALIBomb (accessed on 21 July 2023).
- Philippsen, B.; Feveile, C.; Olsen, J.; Sindbæk, S.M. Single-year radiocarbon dating anchors Viking Age trade cycles in time. Nature 2022, 601, 392–396. [Google Scholar] [CrossRef]
- Lorimer, J. Nonhuman charisma. Environ. Plan. D 2007, 25, 911–932. [Google Scholar] [CrossRef]
- Palli, J.; Baliva, M.; Biondi, F.; Calcagnile, L.; Cerbino, D.; D’Elia, M.; Muleo, R.; Schettino, A.; Quarta, G.; Sassone, N.; et al. The longevity of fruit trees in Basilicata (southern Italy): Implications for agricultural biodiversity conservation. Land 2023, 12, 550. [Google Scholar] [CrossRef]
- Maravelakis, E.; Bilalis, N.; Mantzorou, I.; Konstantaras, A.; Antoniadis, A. 3D modelling of the oldest olive tree of the world. Int. J. Comput. Eng. Res. 2012, 2, 340–347. [Google Scholar]
- Wikipedia contributors. Olive Tree of Vouves. Available online: http://en.wikipedia.org/wiki/Olive_tree_of_Vouves (accessed on 16 December 2023).
- Cherubini, P.; Humbel, T.; Beeckman, H.; Gärtner, H.; Mannes, D.; Pearson, C.L.; Schoch, W.; Tognetti, R.; Lev-Yadun, S. Olive tree-ring problematic dating: A comparative analysis on Santorini (Greece). PLoS ONE 2013, 8, e54730. [Google Scholar] [CrossRef] [PubMed]
- Bernabei, M. The age of the olive trees in the Garden of Gethsemane. J. Archaeol. Sci. 2015, 53, 43–48. [Google Scholar] [CrossRef]
- Hua, Q.; Turnbull, J.C.; Santos, G.M.; Rakowski, A.Z.; Ancapichún, S.; De Pol-Holz, R.; Hammer, S.; Lehman, S.J.; Levin, I.; Miller, J.B.; et al. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 2022, 64, 723–745. [Google Scholar] [CrossRef]
- Hua, Q.; Barbetti, M. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 2004, 46, 1273–1298. [Google Scholar] [CrossRef]
- Anonymous. Árboles Monumentales, Arboledas y Flora Singular de Tenerife; Cabildo Insular de Tenerife: Santa Cruz de Tenerife, Spain, 2001; p. 171. [Google Scholar]
- Almeida Pérez, R.S. Sobre la presencia de Dracaena draco (L.) L. en Gran Canaria (Islas Canarias): Aportación corológica, estado actual y significación biogeográfica. Botánica Macaronésica 2003, 24, 17–38. [Google Scholar]
- Consejería de Medio Ambiente. Drago de Gáldar. Available online: https://custodiadelterritorio.grancanaria.com/web/custodia-del-territorio/-/drago-de-g%C3%A1ldar (accessed on 15 December 2023).
- Consejería de Medio Ambiente. Palmeras de Tenoya. Available online: https://custodiadelterritorio.grancanaria.com/web/custodia-del-territorio/-/palmeras-de-tenoya (accessed on 15 December 2023).
- Cabildo de Tenerife. Drago del Seminario. Available online: https://arbolesmonumentales.tenerife.es/index.php/list-especies/details/9/105 (accessed on 16 December 2023).
- Cabildo de Tenerife. Drago de San Juan. Available online: https://arbolesmonumentales.tenerife.es/index.php/list-especies/details/9/96 (accessed on 16 December 2023).
- Cabildo de Tenerife. Drago de Montaña de Los Dragos. Available online: https://arbolesmonumentales.tenerife.es/index.php/list-especies/details/9/111 (accessed on 16 December 2023).
- Beech, E. Phoenix canariensis, Palma Canaria (errata version). In The IUCN Red List of Threatened Species 2017; 2018; e.T13416997A122966725. Available online: https://www.iucnredlist.org/species/13416997/122966725 (accessed on 17 December 2023).
- Silva, L.; Caujapé-Castells, J.; Lobo, C.; Casimiro, P.; Moura, M.; Elias, R.B.; Fernandes, F.; Fontinha, S.S.; Romeiras, M.M. Dracaena draco. The IUCN Red List of Threatened Species 2021; 2021; e.T30394A119836316. Available online: https://www.iucnredlist.org/species/30394/119836316 (accessed on 17 December 2023).
- Mairal, M.; Sanmartín, I.; Pellissier, L. Lineage-specific climatic niche drives the tempo of vicariance in the Rand Flora. J. Biogeogr. 2017, 44, 911–923. [Google Scholar] [CrossRef]
- Sanmartín, I.; Anderson, C.L.; Alarcon, M.; Ronquist, F.; Aldasoro, J.J. Bayesian island biogeography in a continental setting: The Rand Flora case. Biol. Lett. 2010, 6, 703–707. [Google Scholar] [CrossRef]
- Ehrlich, Y.; Regev, L.; Boaretto, E. Radiocarbon analysis of modern olive wood raises doubts concerning a crucial piece of evidence in dating the Santorini eruption. Sci. Rep. 2018, 8, 11841. [Google Scholar] [CrossRef]
- Patrut, A.; Woodborne, S.; von Reden, K.F.; Hall, G.; Patrut, R.T.; Rakosy, L.; Danthu, P.; Pock-Tsy, J.-M.L.; Lowy, D.A.; Margineanu, D. The growth stop phenomenon of baobabs (Adansonia spp.) identified by radiocarbon dating. Radiocarbon 2017, 59, 435–448. [Google Scholar] [CrossRef]
- Jura-Morawiec, J.; Oskolski, A.; Simpson, P. Revisiting the anatomy of the monocot cambium, a novel meristem. Planta 2021, 254, 6. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Sinclair, T.R. Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant Cell Environ. 1992, 15, 401–409. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Sinclair, T.R. Water balance in the arborescent palm, Sabal palmetto. I. Stem structure, tissue water release properties and leaf epidermal conductance. Plant Cell Environ. 1992, 15, 393–399. [Google Scholar] [CrossRef]
- Hogg, A.G.; Heaton, T.J.; Ramsey, C.B.; Boswijk, G.; Palmer, J.G.; Turney, C.S.M.; Southon, J.; Gumbley, W. The influence of calibration curve construction and composition on the accuracy and precision of radiocarbon wiggle-matching of tree rings, illustrated by southern hemisphere atmospheric data sets from ad 1500–1950. Radiocarbon 2019, 61, 1265–1291. [Google Scholar] [CrossRef]
- Magnabosco Marra, D.; Lima, A.J.N.; dos Santos, B.d.O.; Higuchi, N.; Trumbore, S. Radiocarbon estimates of age and growth for a dominant Amazon palm species. Biotropica 2023, 55, 7–12. [Google Scholar] [CrossRef]
- Wiesberg, L.H.G.; Linick, T.W. The question of diffuse secondary growth of palm trees. Radiocarbon 1983, 25, 803–809. [Google Scholar] [CrossRef]
- Santos, G.M.; Rodriguez, D.R.O.; Barreto, N.d.O.; Assis-Pereira, G.; Barbosa, A.C.; Roig, F.A.; Tomazello-Filho, M. Growth assessment of native tree species from the southwestern Brazilian Amazonia by post-ad 1950 14C analysis: Implications for tropical dendroclimatology studies and atmospheric 14C reconstructions. Forests 2021, 12, 1177. [Google Scholar] [CrossRef]
- Michczyńska, D.J.; Krąpiec, M.; Michczyński, A.; Pawlyta, J.; Goslar, T.; Nawrocka, N.; Piotrowska, N.; Szychowska-Krąpiec, E.; Waliszewska, B.; Zborowska, M. Different pretreatment methods for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quat. Geochronol. 2018, 48, 38–44. [Google Scholar] [CrossRef]
- Hogg, A.G.; Hua, Q.; Blackwell, P.G.; Niu, M.; Buck, C.E.; Guilderson, T.P.; Heaton, T.J.; Palmer, J.G.; Reimer, P.J.; Reimer, R.W.; et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 2013, 55, 1889–1903. [Google Scholar] [CrossRef]
- Christen, J.A.; Litton, C.D. A bayesian approach to wiggle-matching. J. Archaeol. Sci. 1995, 22, 719–725. [Google Scholar] [CrossRef]
- Gupta, D.; Bleakley, B.; Gupta, R.K. Dragon’s blood: Botany, chemistry and therapeutic uses. J. Ethnopharmacol. 2008, 115, 361–380. [Google Scholar] [CrossRef]
- Español-Echániz, I. Aesthetic experience of (landscape) nature as a means for environmental awareness. Enrahonar 2010, 45, 41–50. [Google Scholar] [CrossRef]
- Santos, G.M.; Xu, X. Bag of tricks: A set of techniques and other resources to help 14C laboratory setup, sample processing, and beyond. Radiocarbon 2017, 59, 785–801. [Google Scholar] [CrossRef]
- Stuiver, M.; Polach, H.A. Discussion: Reporting of 14C Data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef]
- Reimer, P.J.; Brown, T.A.; Reimer, R.W. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 2004, 46, 1299–1304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biondi, F.; Santos, G.M.; Rodríguez, P.R.; Sosa, P.A. Longevity Estimates of Canary Palms and Dragon Trees via Radiocarbon Dating: Initial Results. Plants 2024, 13, 45. https://doi.org/10.3390/plants13010045
Biondi F, Santos GM, Rodríguez PR, Sosa PA. Longevity Estimates of Canary Palms and Dragon Trees via Radiocarbon Dating: Initial Results. Plants. 2024; 13(1):45. https://doi.org/10.3390/plants13010045
Chicago/Turabian StyleBiondi, Franco, Guaciara M. Santos, Priscila Rodríguez Rodríguez, and Pedro A. Sosa. 2024. "Longevity Estimates of Canary Palms and Dragon Trees via Radiocarbon Dating: Initial Results" Plants 13, no. 1: 45. https://doi.org/10.3390/plants13010045
APA StyleBiondi, F., Santos, G. M., Rodríguez, P. R., & Sosa, P. A. (2024). Longevity Estimates of Canary Palms and Dragon Trees via Radiocarbon Dating: Initial Results. Plants, 13(1), 45. https://doi.org/10.3390/plants13010045