CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.)
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analysis and Classification of CcNAC Genes
2.2. Multiple Sequence Alignment of CcNAC Genes
2.3. CcNAC Promoter Motifs and Gene Structure Analysis
2.4. Gene Duplication and Collinearity Analysis of CcNACs
2.5. Overexpression of CcNAC6 Increases Lignin Content in A. thaliana Plants
2.6. CcNAC6 Encodes a Nuclear Localization Protein
2.7. CcNAC6 Physically Interacts with CcCP1
3. Discussion
4. Materials and Methods
4.1. Data Used in This Study
4.2. Construction of Phylogenetic Tree
4.3. Analysis of Protein Conserved Domain and Collinear Relationship
4.4. Analysis of Gene Structure and Promoter Cis-Acting Elements of Gene Family
4.5. Plant Materials and Growth Conditions
4.6. Lignin Content Measurement Method
4.7. Quantitative Real-Time PCR (qRT–PCR) Verification
4.8. Subcellular Localization of CcNAC6 Protein
4.9. CcNAC6 Overexpression in Sudan Grass Plants
4.10. Yeast Two-Hybrid Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanani, J.; Lukefahr, S.D.; Stanko, R.L. Evaluation of tropical forage legumes (Medicago sativa, Dolichos lablab, Leucaena leucocephala and Desmanthus bicornutus) for growing goats. Small. Ruminant. Res. 2006, 65, 1–7. [Google Scholar] [CrossRef]
- Wolff, S.M.; Ellison, M.J.; Hao, Y.; Cockrum, R.R.; Austin, K.J.; Baraboo, M.; Burch, K.; Lee, H.J.; Maurer, T.; Patil, R.; et al. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome 2017, 5, 60–75. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, C.; Zhao, M.; Han, Y.; Li, S. Lignin synthesis, affected by sucrose in lotus (Nelumbo nucifera) seedlings, was involved in regulation of root formation in the Arabidopsis thanliana. Int. J. Mol. Sci. 2022, 23, 2250–2268. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Xu, W.; Kong, L.; Ye, X.; Zhuang, Q.; Fan, D.; Luo, K. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res. 2021, 9, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhao, L.; Song, X.; Lin, Z.; Gu, B.; Yan, J.; Zhang, S.; Tao, S.; Huang, X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol. 2019, 19, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Dalman, K.; Wind, J.J.; Nemesio-Gorriz, M.; Hammerbacher, A.; Lundén, K.; Ezcurra, I.; Elfstrand, M. Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol. 2017, 17, 6–23. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Mukherjee, A.; Mazumder, M.; De, A.; Ghosh, S.; Basu, D. Inducible expression of truncated NAC62 provides tolerance against Alternaria brassicicola and imparts developmental changes in Indian mustard. Plant Sci. 2022, 324, 111425. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Kong, L.; Wu, X.; Gao, J.; Niu, T.; Li, J.; Li, Z.; Dai, L. GsNAC2 gene enhances saline-alkali stress tolerance by promoting plant growth and regulating glutathione metabolism in Sorghum bicolor. Funct. Plant Biol. 2023, 50, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Wang, Y.; Hu, D.; Zhu, W.; Xiao, D.; Liu, T.; Hou, X.; Li, Y. BcNAC056 Interacts with BcWRKY1 to regulate leaf senescence in Pak Choi. Plant Cell Physiol. 2023, 4, 1091–1105. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Zhang, X.; Chen, X.; Sun, J.; Zhao, Y.; Zhang, J.; Yao, J.; Liao, L.; Zhou, H.; et al. Two adjacent NAC transcription factors regulate fruit maturity date and flavor in peach. New Phytol. 2024, 241, 632–649. [Google Scholar] [CrossRef]
- Diao, P.; Chen, C.; Zhang, Y.; Meng, Q.; Lv, W.; Ma, N. The role of NAC transcription factor in plant cold response. Plant Signal Behav. 2020, 15, 1785668. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wu, K.; Chen, J.; Liu, Q.; Wu, Y.; Liu, B.; Fu, X. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice 2018, 11, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, L.; Zhou, J.; Song, S.; Li, J.; Huang, H.; Chi, B.; Zhong, Y.; Liu, J.; Zheng, H.; et al. Combined metabolome and transcriptome analysis reveals a critical role of lignin biosynthesis and lignification in stem-like pneumatophore development of the mangrove Avicennia marina. Planta 2023, 259, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Ye, Z. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. Plant Signal Behav. 2015, 10, e989746. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wei, H. Deciphering the intricate hierarchical gene regulatory network: Unraveling multi-level regulation and modifications driving secondary cell wall formation. Hortic. Res. 2023, 11, uhad281. [Google Scholar] [CrossRef]
- Tang, F.; Jiao, B.; Zhang, M.; He, M.; Su, R.; Luo, K.; Lan, T. PtoMYB031, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar. Front. Plant Sci. 2024, 14, 1341245. [Google Scholar] [CrossRef]
- Fromm, M.; Avramova, Z. ATX1/AtCOMPASS and the H3K4me3 marks: How do they activate Arabidopsis genes? Curr. Opin. Plant Biol. 2014, 21, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Lee, C.; Haghighat, M.; Ye, Z. Xylem vessel-specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements. New Phytol. 2021, 231, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Lin, F.; Romero-Gamboa, S.P.; Saha, P.; Goh, H.J.; An, G.; Jung, K.H.; Hazen, S.P.; Bartley, L.E. Rice Genome-scale network integration reveals transcriptional regulators of grass cell wall synthesis. Front. Plant Sci. 2019, 10, 1275–1291. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, P.; Liu, G.; Zhan, N.; Wu, Z. Comparative transcriptomics analysis of contrasting varieties of Eucalyptus camaldulensis reveals wind resistance genes. PeerJ 2022, 10, 12954. [Google Scholar] [CrossRef]
- Hussey, S.G.; Mizrachi, E.; Spokevicius, A.V.; Bossinger, G.; Berger, D.K.; Myburg, A.A. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol. 2011, 1, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Koyama, H.; Bhati, K.K.; Alok, A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J. Plant Res. 2021, 134, 475–495. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Meng, L.; Song, L.; Li, X.; Du, S.; Hu, F.; Lv, Y.; Song, W. Identification and characterization of secondary wall-associated NAC genes and their involvement in hormonal responses in Tobacco (Nicotiana tabacum). Front. Plant Sci. 2021, 12, 712254. [Google Scholar] [CrossRef]
- Nakano, Y.; Yamaguchi, M.; Endo, H.; Rejab, N.A.; Ohtani, M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front. Plant Sci. 2015, 6, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Laubscher, M.; Brown, K.; Tonfack, L.B.; Myburg, A.A.; Mizrachi, E.; Hussey, S.G. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Sci. Rep. 2018, 8, 10983. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Zhao, Y.; Sun, Y.; Li, Y. NACs, generalist in plant life. Plant Biotechnol. J. 2023, 21, 2433–2457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, W.; Ran, L.; Chen, Z.; Wang, C.; Dou, Y.; Qin, Y.; Suo, Q.; Li, Y.; Zeng, J.; et al. DELLA-NAC interactions mediate ga signaling to promote secondary cell wall formation in cotton stem. Front. Plant Sci. 2021, 12, 655127. [Google Scholar] [CrossRef]
- Wang, H.; Dixon, R.A. On-off switches for secondary cell wall biosynthesis. Mol. Plant. 2012, 5, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Mao, Y.; Guo, Y.; Gao, J.; Liu, X.; Li, S.; Lin, Y.; Chen, H.; Wang, J.P.; Chiang, V.L.; et al. MYB transcription factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation. Plant Physiol. 2020, 184, 1389–1406. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, C.; Lin, J.; Antwi-Boasiako, A.; Wu, J.; Liu, Z.; Mao, Z.; Zhong, X. CcNAC1 by transcriptome analysis is involved in sudan grass secondary cell wall formation as a positive regulator. Int. J. Mol. Sci. 2023, 24, 6149. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Ke, S.; Chen, X.; Kenéz, Á.; Xu, W.; Wang, D.; Zhang, F.; Li, Y.; Cui, Z.; et al. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Anim. Nutr. 2022, 11, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Branco, I.; Choupina, A. Bioinformatics: New tools and applications in life science and personalized medicine. Appl. Microbiol. Biotechnol. 2021, 105, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.E.; McGregor, S.R.; Sun, H.; Gough, C.; Bågman, A.M.; Soyars, C.L.; Kroon, J.T.; Gaudinier, A.; Williams, C.J.; Yang, X.; et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell 2020, 32, 319–335. [Google Scholar] [CrossRef]
- Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T.W.; Gaudinier, A.; Young, N.F.; Trabucco, G.M.; Veling, M.T.; Lamothe, R.; et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 2015, 517, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luo, F.; Zhong, Y.; He, J.; Li, L. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis. J. Exp. Bot. 2020, 1, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Perrone, I.; Alallaq, S.; Singh, R.; Rigal, A.; Brunoni, F.; Chitarra, W.; Guinet, F.; Kohler, A.; Martin, F.; et al. Molecular basis of differential adventitious rooting competence in poplar genotypes. J. Exp. Bot. 2022, 73, 4046–4064. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Yamaguchi, M.; Tamura, T.; Nakano, Y.; Nishikubo, N.; Yoneda, A.; Kato, K.; Kubo, M.; Kajita, S.; Katayama, Y.; et al. Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation. Plant Cell Physiol. 2015, 56, 242–254. [Google Scholar] [CrossRef]
- Li, W.; Zeng, Y.; Yin, F.; Wei, R.; Mao, X. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Sci. Rep. 2021, 11, 19865. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Liu, K.; Sun, L. Inferring protein function by domain context similarities in protein-protein interaction networks. BMC Bioinform. 2009, 10, 395–401. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, S.; Li, H.; Zeng, F. Transcriptional properties of eight synthetic pathogen-inducible promoters in transgenic Arabidopsis thaliana. Biol. Plant. 2017, 61, 389–393. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Xu, Y.; Joo, S.H.; Kim, S.K.; Xue, Z.; Xu, Z.; Wang, Z.; Chong, K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J. 2009, 57, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, J.; Liu, J.; Hu, J.; Liu, J.; Chen, Y.; Cai, Z.; Wang, X. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant 2018, 11, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yang, Z.; Xing, M.; Jing, Y.; Zhang, Y.; Zhang, K.; Zhou, Y.; Zhao, H.; Qiao, W.; Sun, J. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging. J. Genet. Genom. 2023, 50, 861–871. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Liu, Y.; Sang, K.; Wang, T.; Yu, J.; Zhou, Y.; Xia, X. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato. J. Integr. Plant Biol. 2023, 65, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gou, Y.; Heng, Y.; Ding, W.; Li, Y.; Zhou, D.; Li, X.; Liang, C.; Wu, C.; Wang, H.; et al. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice. Plant Biotechnol. J. 2023, 21, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Ren, Y.; Yu, W.; Zhang, P.; Dong, T.; Jia, H.; Fang, J. The roles of brassinosteroids and methyl jasmonate on postharvest grape by regulating the interaction between VvDWF4 and VvTIFY5A. Plant Sci. 2023, 336, 111830. [Google Scholar] [CrossRef] [PubMed]
- Peres, A.L.G.L.; Soares, J.S.; Tavares, R.G.; Righetto, G.; Zullo, M.A.T.; Mandava, N.B.; Menossi, M. Brassinosteroids, the sixth class of phytohormones: A molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int. J. Mol. Sci. 2019, 20, 331. [Google Scholar] [CrossRef]
- Nakashima, K.; Takasaki, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 2012, 181, 97–103. [Google Scholar] [CrossRef]
- Botha, J.; Pinard, D.; Creux, N.; Hussey, S.; Maritz-Olivier, C.; Spokevicius, A.; Bossinger, G.; Mizrachi, E.; Myburg, A. Characterising the role of the Eucalyptus grandis SND2 promoter in secondary cell wall biosynthesis. BMC Proc. 2011, 5, 105. [Google Scholar] [CrossRef]
- Iakimova, E.T.; Woltering, E.J. Xylogenesis in zinnia (Zinnia elegans) cell cultures: Unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 2017, 245, 681–705. [Google Scholar] [CrossRef] [PubMed]
- Huai, B.; Liang, M.; Lin, J.; Tong, P.; Bai, M.; He, H.; Liang, X.; Chen, J.; Wu, H. Involvement of vacuolar processing enzyme CgVPE1 in vacuole rupture in the programmed cell death during the development of the secretory cavity in Citrus grandis ‘Tomentosa’ fruits. Int. J. Mol. Sci. 2023, 24, 1681. [Google Scholar] [CrossRef]
- Sun, M.; Liu, X.; Huang, X.; Yang, J.; Qin, P.; Zhou, H.; Jiang, M.; Liao, H. Genome-Wide Identification and Expression Analysis of the NAC Gene Family in Kandelia obovata, a Typical Mangrove Plant. Curr. Issues Mol. Biol. 2022, 44, 5622–5637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Xing, Q.; Yue, L.; Qi, H. Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.). PLoS ONE 2020, 15, e0232756. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liang, G.; Lu, S.; Wang, P.; Liu, T.; Ma, Z.; Zuo, C.; Sun, X.; Chen, B.; Mao, J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.). Genes 2019, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Huang, Y.; Lv, W.; Zhang, Y.; Bhat, J.A.; Kong, J.; Xing, H.; Zhao, J.; Zhao, T. GmNAC8 acts as a positive regulator in soybean drought stress. Plant Sci. 2020, 293, 110442. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Zhang, R.; Wu, B.; Xiao, G. Expression identification of three OsWRKY genes in response to abiotic stress and hormone treatments in rice. Plant Signal Behav. 2023, 18, 2292844. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wu, J.; Lin, J.; Liu, Z.; Mao, Z.; Qian, C.; Zhong, X. CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.). Plants 2024, 13, 1352. https://doi.org/10.3390/plants13101352
Huang Y, Wu J, Lin J, Liu Z, Mao Z, Qian C, Zhong X. CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.). Plants. 2024; 13(10):1352. https://doi.org/10.3390/plants13101352
Chicago/Turabian StyleHuang, Yanzhong, Juanzi Wu, Jianyu Lin, Zhiwei Liu, Zhengfeng Mao, Chen Qian, and Xiaoxian Zhong. 2024. "CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.)" Plants 13, no. 10: 1352. https://doi.org/10.3390/plants13101352
APA StyleHuang, Y., Wu, J., Lin, J., Liu, Z., Mao, Z., Qian, C., & Zhong, X. (2024). CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.). Plants, 13(10), 1352. https://doi.org/10.3390/plants13101352