In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Explants Disinfection
2.3. Establishment of In Vitro Culture
2.4. Shoot Proliferation and Root Induction
2.5. Acclimatization Process
2.6. Experimental Design and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wojtania, A.; Matysiak, B. In vitro propagation of Rosa ‘Konstancin’ (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Hort. 2018, 30, 259–267. [Google Scholar] [CrossRef]
- Omidi, M.; Khandan-Mirkohi, A.; Kafi, M.; Zamani, Z.; Ajdanian, L.; Babaei, M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biol. 2022, 22, 373. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, T.; Jovtchev, G.; Gateva, S.; Topashka-Ancheva, M.; Stankov, A.; Angelova, T.; Dobreva, A.; Mileva, M. Study on cytotoxic and genotoxic potential of Bulgarian Rosa damascena Mill. and Rosa alba L. hydrosols—In Vivo and In Vitro. Life 2022, 12, 1452. [Google Scholar] [CrossRef] [PubMed]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 184, 471–479. [Google Scholar] [CrossRef]
- Noodezh, H.M.; Mojeni, A.; Baghizadeh, A. In vitro propagation of the Damask rose (Rosa damascena Mill.). Vitr. Cell. Dev. Biol. Plant 2012, 48, 530–538. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Orlikowska, T.; Trojak-Goluch, A.; Wojtania, A. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Soc. Bot. Pol. 2022, 91, 914. [Google Scholar] [CrossRef]
- Kaviani, B.; Deltalab, B.; Kulus, D.; Tymoszuk, A.; Bagheri, H.; Azarinejad, T. In vitro propagation of Pyracantha angustifolia (Franch.) CK Schneid. Horticulturae 2022, 8, 964. [Google Scholar] [CrossRef]
- Doina, C.; Fira, A.; Borsai, O.; Hârța, M.; Sisea, C.; Pop, R.; Pamfil, D. Micropropagation of Rosa damascena Mill.: The effects of gelling agents on the multiplication stages and acclimatization. Agric. Sci. Pract. 2017, 3–4, 56–62. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose—A review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef]
- Kwaśniewska, E.; Pawłowska, B. Efficient in vitro propagation of historical roses for biodiversity conservation. Propag. Ornam. Plants 2017, 17, 3–11. [Google Scholar]
- Mirzaei, S.; Zare Ghamari, A.; Jafary, S. Evaluating micropropagation of Kashan Damask rose, Yasooj aromatic rose and their hybrid. Intl. J. Environ. Agric. Biotechnol. 2019, 4, 1407–1413. [Google Scholar] [CrossRef]
- Badzhelova, V. In vitro propagation of oil-bearing rose (Rosa damascena Mill.). Agric. Sci. Technol. 2017, 9, 194–197. [Google Scholar] [CrossRef]
- Bosh, A.; Moieni, A.; Dehghani, H.; Movahedi, Z. In vitro propagation of Damask rose using the temporary immersion system. J. Plant Physiol. Breed. 2016, 6, 9–18. [Google Scholar]
- Rezanejad, F.; Abdirad, S.; Abarian, M. Comparison of shoot and root regeneration of miniature potted rose (Rosa × hybrida L.) and Damask rose (R. damascena Mill.) in microculture system. Acta Agric. Slov. 2023, 119, 1–10. [Google Scholar] [CrossRef]
- Salekjalali, M. Phloroglucinol, BAP and NAA enhance axillary shoot proliferation and other growth indicators in vitro culture of Damask rose (Rosa damascena Mill.). Am. Eur. J. Agric. Environ. Sci. 2012, 12, 960–966. [Google Scholar]
- Teixeira da Silva, J.A.; Bobránszki, J.; Ross, S. Phloroglucinol in plant tissue culture. Vitr. Cell. Dev. Biol. Plant 2013, 49, 1–16. [Google Scholar] [CrossRef]
- Deltalab, B.; Kaviani, B.; Kulus, D. In vitro propagation of oil-bearing Rosa damascena using phloroglucinol: A protocol for rapid and high-quality shoot multiplication and rooting. Ind. Crops Prod. 2023, 203, 117139. [Google Scholar] [CrossRef]
- Felek, W.; Mekibib, F.; Admassu, B. Micropropagation of peach, Prunus persica (L.) Batsch. cv. Garnem. Afr. J. Biotechnol. 2017, 16, 490–498. [Google Scholar]
- Nasri, A.; Baklouti, E.; Ben Romdhane, A.; Maalej, M.; Schumacher, H.M.; Drira, N.; Fki, L. Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci. Hortic. 2019, 9, 144–153. [Google Scholar] [CrossRef]
- Bai, M.-Y.; Shang, J.-X.; Oh, E.; Fan, M.; Bai, Y.; Zentella, R.; Sun, T.-P.; Yong, Z. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012, 14, 810–817. [Google Scholar] [CrossRef]
- Pohanish, R.P. Sitting’s Handbook of Pesticides and Agricultural Chemicals, 2nd ed.; William Andrew Publisher: Norwich, NY, USA, 2015; ISBN 1455731579/9781455731572. [Google Scholar]
- Mbaveng, A.; Kuete, V. Harmful and protective effects of terpenoids from African medicinal plants. In Toxicological Survey of African Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 557–576. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. The regulatory signaling of gibberellin metabolism and its crosstalk with phytohormones in response to plant abiotic stresses. In Plant Signaling Molecules; Woodhead Publishing: Cambridge, UK, 2019; pp. 333–339. [Google Scholar] [CrossRef]
- Misra, P.; Chakrabarty, D. Clonal propagation of Rosa clinophylla Thory. through axillary bud culture. Sci. Hortic. 2009, 119, 212–216. [Google Scholar] [CrossRef]
- Kardavani, P.; Amirhossein, G. Investigating the rose water industry and its importance in Qamsar Kashan. Geogr. Res. 2001, 36, 95–109. [Google Scholar]
- Toluei, Z.; Arefi Tork Abadi, M. Evaluation of morphological variation of different populations of Rosa damascena Mill. from Kashan and its correlation with essential oil content. Plant Res. J. 2020, 33, 142–154. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT Software, version 9.1; Software for Windows; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Kudělková, M.; Pavelková, R.; Ondrušiková, E.; Vachůn, M. The issues of apricot (Prunus armeniaca L.) micropropagation. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2017, 65, 67–72. [Google Scholar] [CrossRef]
- Kucharska, D.; Orlikowska, T.; Maciorowski, R.; Kunka, M.; Wójcik, D.; Pluta, S. Application of meta-Topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci. Hortic. 2020, 272, 109529. [Google Scholar] [CrossRef]
- Carelli, B.P.; Echeverrigaray, S. An improved system for the in vitro propagation of rose cultivars. Sci. Hortic. 2002, 92, 69–74. [Google Scholar] [CrossRef]
- Sedlak, J.; Paprstein, F. Micropropagation of Rosa pomifera. Acta Hortic. 2014, 1048, 215–220. [Google Scholar] [CrossRef]
- Pahnekolayi, M.D.; Tehranifar, A.; Samiei, L.; Shoor, M. Micropropagation of Rosa canina through axillary shoot proliferation. J. Ornam. Plants 2014, 1, 45–51, ISSN: 2251-6441. [Google Scholar]
- Ambros, E.V.; Vasilyeva, O.Y.R.; Novikova, T. Effects of in vitro propagation on ontogeny of Rosa canina L. micropropagated plants as a promising rootstock for ornamental roses. Plant Cell. Biotechnol. Mol. Biol. 2016, 17, 72–78. [Google Scholar] [CrossRef]
- Nizamani, F.; Nizamani, G.S.; Nizamani, M.R.; Ahmed, S.; Ahmed, N. Propagation of rose (Rosa hybrida L.) under tissue culture technique. Int. J. Biol. Res. 2016, 1, 23–27, ISSN: 2455-6548. [Google Scholar]
- Morzadec, J.M.; Hourmant, A. In vitro rooting improvement of globe artichoke (cv. Camus de Bretagne) by GA3. Sci. Hortic. 1997, 72, 59–62. [Google Scholar] [CrossRef]
- Scherer, R.F.; Holderbaum, D.F.; Garcia, A.C.; da Silva, D.A.; Steinmacher, D.A.; Guerra, M.P. Effects of immersion system and gibberellic acid on the growth and acclimatization of micropropagated pineapple. Crop Breed. Appl. Biotechnol. 2015, 15, 66–71. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, N.; Anis, M.; Alatar, A.A.; Abdel-Salam, E.M.; Qahtan, A.A.; Faisal, M. Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell Tiss. Org. Cult. 2021, 144, 449–462. [Google Scholar] [CrossRef]
- Saks, Y.; Van Staden, J. The role of gibberellic acid in the scenescence of carnation flowers. J. Plant Physiol. 1992, 139, 484–488. [Google Scholar] [CrossRef]
- Beevers, L. Effect of gibberellic acid on the senescence of leaf discs of nasturtium (Tropaeolum majus L.). Plant Physiol. 1966, 41, 1074–1076. [Google Scholar] [CrossRef]
- Nikbakht, A.; Kafi, M.; Mirmasoumi, M.; Babalar, M. Micropropagation of Damask rose (Rosa damascena Mill.) cvs Azaran and Ghamsar. Int. J. Agric. Biol. 2005, 7, 535–538. [Google Scholar]
- Mahipal, S.; Shekhawat, N.S.; Manokari, M. In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis Aubl.): A multipurpose threatened species. Physiol. Mol. Biol. Plants 2016, 22, 131–142. [Google Scholar] [CrossRef]
- Dong, C.; Li, X.; Xi, Y. Micropropagation of Pyracantha coccinea. HortScience 2017, 52, 271–273. [Google Scholar] [CrossRef]
- Dinesh, R.M.; Patel, A.K.; Vibha, J.B.; Shekhawat, S.; Shekhawat, S.N. Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos 2019, 32, 181–189. [Google Scholar] [CrossRef]
- Sulusoglu, M.; Cavusoglu, A. Micropropagation of cherry laurel Prunus laurocerasus L. J. Food Agric. Environ. 2013, 11, 576–579, ISBN: 1459-0255. [Google Scholar]
- Nand, N.; Drew, R.A.; Ashmore, S. Micropropagation of two Australian native fruit species, Davidsonia pruriens and Davidsonia jerseyana G. Harden and J.B. Williams. Plant Cell Tiss. Org. Cult. 2004, 77, 193–201. [Google Scholar] [CrossRef]
- Prakash, E.; Sha Valli Khan, P.S.; Vivek Sreenivasa Rao, T.J.; Meru, E.S. Micropropagation of red sanders (Pterocarpus santalinus L.) using mature nodal explants. J. For. Res. 2006, 11, 329–335. [Google Scholar] [CrossRef]
- Adibi Baladeh, D.; Kaviani, B. 2021. Micropropagation of medlar (Mespilus germanica L.), a Mediterranean fruit tree. Int. J. Fruit Sci. 2021, 21, 242–254. [Google Scholar] [CrossRef]
- Jagiełło-Kubiec, K.; Nowakowska, K.; Ilczuk, A.; Łukaszewska, A. Optimizing micropropagation conditions for a recalcitrant ninebark (Physocarpus opulifolius L. maxim.) cultivar. Vitr. Cell. Dev. Biol. Plant 2021, 57, 281–295. [Google Scholar] [CrossRef]
- Vujović, T.; Jevremović, D.; Marjanović, T.; Glišić, I. In vitro propagation and medium-term conservation of autochthonous plum cultivar ‘Crvena Ranka’. Acta Agric. Serbica 2020, 25, 141–147. [Google Scholar] [CrossRef]
- Win Pe, P.P.; Naing, A.H.; Soe, M.T.; Kang, H.; Park, K.I.; Kim, C.K. Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Sci. Hortic. 2020, 272, 109591. [Google Scholar] [CrossRef]
- Rouinsard, A.; Hamama, L.; Oyant, L.H.-S.; Grapin, A. Effects of the in vitro behavior of micropropagated plants on the stability of variegation in Yucca gloriosa, Phormium tenax, and Cordyline australis. Sci. Hortic. 2021, 287, 110115. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. The Background, Plant Propagation by Tissue Culture; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
Micropropagation Stages | |||
---|---|---|---|
Additives (mg·L−1) | Establishment | Shoot Multiplication | Rooting |
BAP | 1 | 0, 0.5, 1, 1.5, 2 and 2.5 | 0, 0.5, 1, 1.5, 2 and 2.5 |
GA3 | 0.2 | 0, 0.1, 0.2, 0.4, 0.8 and 1 | 0, 0.1, 0.2, 0.4, 0.8 and 1 |
IBA | - | - | 0.1 |
PG | 0.1 | 0.1 | 0.1 |
Antibiotic | 250 | 250 | 250 |
Ascorbic acid | 20 | 20 | 20 |
Active charcoal | - | - | 20 |
FeNaEDTA | - | 100 | 100 |
Fe(OH)3 | 50 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviani, B.; Deltalab, B.; Kulus, D.; Khoddamzadeh, A.A.; Roque-Borda, C.A. In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications. Plants 2024, 13, 1364. https://doi.org/10.3390/plants13101364
Kaviani B, Deltalab B, Kulus D, Khoddamzadeh AA, Roque-Borda CA. In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications. Plants. 2024; 13(10):1364. https://doi.org/10.3390/plants13101364
Chicago/Turabian StyleKaviani, Behzad, Bahareh Deltalab, Dariusz Kulus, Amir Ali Khoddamzadeh, and Cesar Augusto Roque-Borda. 2024. "In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications" Plants 13, no. 10: 1364. https://doi.org/10.3390/plants13101364
APA StyleKaviani, B., Deltalab, B., Kulus, D., Khoddamzadeh, A. A., & Roque-Borda, C. A. (2024). In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications. Plants, 13(10), 1364. https://doi.org/10.3390/plants13101364