Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights
Abstract
:1. Introduction
2. Results
2.1. Photosynthetic Pigments
2.2. Fresh Biomass
2.3. Vitamin C
2.4. Total Antioxidant Capacity (TAC)
2.5. Total Phenolic Compounds (TPC)
2.6. Total Flavonoid Contents (TFC)
2.7. Anthocyanins (ACNs)
2.8. Nitrate
2.9. Proline Content
2.10. Soluble Carbohydrate Content
2.11. Starch Content
2.12. Antioxidant Potential Composite Index (APCI)
2.13. Production Value
2.14. The Balance between APCI and Biomass
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Cultivation System
4.2. Determination of Photosynthetic Pigments
4.3. Fresh Biomass
4.4. Vitamin C
4.5. Antioxidant Capacity, Polyphenols, Flavonoids, and Anthocyanin
4.6. Nitrate Concentration
4.7. Proline Content
4.8. Soluble Carbohydrates Content
4.9. Starch Content
4.10. Antioxidant Potential Composite Index Calculation
4.11. Production Value
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batista, D.S.; Felipe, S.H.S.; Silva, T.D.; de Castro, K.M.; Mamedes-Rodrigues, T.C.; Miranda, N.A.; Ríos-Ríos, A.M.; Faria, D.V.; Fortini, E.A.; Chagas, K.; et al. Light Quality in Plant Tissue Culture: Does It Matter? In Vitro Cell.Dev.Biol. Plant 2018, 54, 195–215. [Google Scholar] [CrossRef]
- Kochetova, G.V.; Avercheva, O.V.; Bassarskaya, E.M.; Kushunina, M.A.; Zhigalova, T.V. Effects of Red and Blue LED Light on the Growth and Photosynthesis of Barley (Hordeum vulgare L.) Seedlings. J. Plant Growth Regul. 2022, 42, 1804–1820. [Google Scholar] [CrossRef]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.-S.; Chung, I.-M.; Hwang, M.H.; Kim, S.-H.; Yu, C.Y.; Ghimire, B.K. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021, 26, 1477. [Google Scholar] [CrossRef] [PubMed]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue Light Dosage Affects Carotenoids and Tocopherols in Microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Bantis, F. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants 2021, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Ouzounis, T.; Razi Parjikolaei, B.; Frette, X.; Rosenqvist, E.; Ottosen, C.-O. Predawn and High Intensity Application of Supplemental Blue Light Decreases the Quantum Yield of PSII and Enhances the Amount of Phenolic Acids, Flavonoids, and Pigments in Lactuca Sativa. Front. Plant Sci. 2015, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The Proportion of Blue Light from Light-Emitting Diodes Alters Microgreen Phytochemical Profiles in a Species-Specific Manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- Lin, K.-H.; Huang, M.-Y.; Hsu, M.-H. Morphological and Physiological Response in Green and Purple Basil Plants (Ocimum basilicum) under Different Proportions of Red, Green, and Blue LED Lightings. Sci. Hort. 2021, 275, 109677. [Google Scholar] [CrossRef]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Samuolienė, G.; Miliauskienė, J.; Jankauskienė, J.; Duchovskis, P. Pulsed LED Light Increases the Phytochemical Level of Basil Microgreens. Acta Hort. 2018, 1227, 579–584. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum Basilicum L. Microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [PubMed]
- Fayezizadeh, M.R.; Ansari, N.A.; Sourestani, M.M.; Hasanuzzaman, M. Biochemical Compounds, Antioxidant Capacity, Leaf Color Profile and Yield of Basil (Ocimum sp.) Microgreens in Floating System. Plants 2023, 12, 2652. [Google Scholar] [CrossRef] [PubMed]
- Fayezizadeh, M.R.; Ansari, N.A.; Sourestani, M.M.; Hasanuzzaman, M. Balancing Yield and Antioxidant Capacity in Basil Microgreens: An Exploration of Nutrient Solution Concentrations in a Floating System. Agriculture 2023, 13, 1691. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2019, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Xu, Z.-G.; Dong, R.-Q.; Chang, S.-X.; Wang, L.-Z.; Khalil-Ur-Rehman, M.; Tao, J.-M. An RNA-Seq Analysis of Grape Plantlets Grown in Vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. Front. Plant Sci. 2017, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Villani, A.; Paciolla, F.; Mulè, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Sakalauskienė, S.; Samuolienė, G.; Jankauskienė, J.; Viršilė, A.; Novičkovas, A.; Sirtautas, R.; Miliauskienė, J.; Vaštakaitė, V.; Dabašinskas, L.; et al. The Effects of LED Illumination Spectra and Intensity on Carotenoid Content in Brassicaceae Microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef]
- Llorente, B.; Martinez-Garcia, J.F.; Stange, C.; Rodriguez-Concepcion, M. Illuminating Colors: Regulation of Carotenoid Biosynthesis and Accumulation by Light. Curr. Opin. Plant Biol. 2017, 37, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, L.; Jiang, D.; Xi, W. Effect of Post-Harvest LED and UV Light Irradiation on the Accumulation of Flavonoids and Limonoids in the Segments of Newhall Navel Oranges (Citrus sinensis Osbeck). Molecules 2019, 24, 1755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A Review on the Effects of Light-Emitting Diode (LED) Light on the Nutrients of Sprouts and Microgreens. Trend. Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Alrajhi, A.A.; Alsahli, A.S.; Alhelal, I.M.; Rihan, H.Z.; Fuller, M.P.; Alsadon, A.A.; Ibrahim, A.A. The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa). Plants 2023, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Chutimanukul, P.; Wanichananan, P.; Janta, S.; Toojinda, T.; Darwell, C.T.; Mosaleeyanon, K. The Influence of Different Light Spectra on Physiological Responses, Antioxidant Capacity and Chemical Compositions in Two Holy Basil Cultivars. Sci. Rep. 2022, 12, 588. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Yoon, E.K.; Muthusamy, M.; Kim, J.A.; Jeong, M.-J.; Lee, S.I. Blue LED Light Irradiation Enhances L-Ascorbic Acid Content While Reducing Reactive Oxygen Species Accumulation in Chinese Cabbage Seedlings. Sci. Hort. 2020, 261, 108924. [Google Scholar] [CrossRef]
- El-Esawi, M.; Arthaut, L.-D.; Jourdan, N.; d’Harlingue, A.; Link, J.; Martino, C.F.; Ahmad, M. Blue-Light Induced Biosynthesis of ROS Contributes to the Signaling Mechanism of Arabidopsis Cryptochrome. Sci. Rep. 2017, 7, 13875. [Google Scholar] [CrossRef] [PubMed]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Liu, J.; Osbourn, A.; Ma, P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, S.; Gu, M.; Chen, X.; Chen, X.; Yang, J.; Zhao, F.; Ye, N. Exploration of the Effects of Different Blue LED Light Intensities on Flavonoid and Lipid Metabolism in Tea Plants via Transcriptomics and Metabolomics. Inter. J. Mol. Sci. 2020, 21, 4606. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chen, L.; Zhou, C.; Tarin, M.W.K.; Yang, D.; Ren, K.; He, T.; Rong, J.; Zheng, Y. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Morphological Traits, and Phenylpropanoid-Derived Compounds Accumulation in Sarcandra Glabra Seedlings. BMC Plant Biol. 2020, 20, 476. [Google Scholar] [CrossRef] [PubMed]
- Taulavuori, K.; Hyöky, V.; Oksanen, J.; Taulavuori, E.; Julkunen-Tiitto, R. Species-Specific Differences in Synthesis of Flavonoids and Phenolic Acids under Increasing Periods of Enhanced Blue Light. Environ. Exp. Bot. 2016, 121, 145–150. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Huché-Thélier, L.; Crespel, L.; Gourrierec, J.L.; Morel, P.; Sakr, S.; Leduc, N. Light Signaling and Plant Responses to Blue and UV Radiations—Perspectives for Applications in Horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of Light-Emitting Diodes on Phenylpropanoid Biosynthetic Gene Expression and Phenylpropanoid Accumulation in Agastache Rugosa. Appl. Biol. Chem. 2020, 63, 25. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Light Quality Affects Flavonoid Production and Related Gene Expression in Cyclocarya Paliurus. J. Photochem. Photobiol. Biol. 2018, 179, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Borbély, P.; Gasperl, A.; Pálmai, T.; Ahres, M.; Asghar, M.A.; Galiba, G.; Müller, M.; Kocsy, G. Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants 2022, 11, 1311. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed]
- Truffault, V.; Fry, S.C.; Stevens, R.G.; Gautier, H. Ascorbate Degradation in Tomato Leads to Accumulation of Oxalate, Threonate and Oxalyl Threonate. Plant J. 2017, 89, 996–1008. [Google Scholar] [CrossRef]
- Chan, T.Y.K. Vegetable-Borne Nitrate and Nitrite and the Risk of Methaemoglobinaemia. Toxicol. Lett. 2011, 200, 107–108. [Google Scholar] [CrossRef]
- Massot, C.; Stevens, R.; Génard, M.; Longuenesse, J.-J.; Gautier, H. Light Affects Ascorbate Content and Ascorbate-Related Gene Expression in Tomato Leaves More than in Fruits. Planta 2011, 235, 153–163. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, G.; Yamawaki, K.; Ikoma, Y.; Matsumoto, H.; Yoshioka, T.; Ohta, S.; Kato, M. Regulation of Ascorbic Acid Metabolism by Blue LED Light Irradiation in Citrus Juice Sacs. Plant Sci. 2015, 233, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Liu, T.; Deng, M.; Miao, H.; Cai, C.; Shen, W.; Wang, Q. Effects of Light Quality on Main Health-Promoting Compounds and Antioxidant Capacity of Chinese Kale Sprouts. Food Chem. 2016, 196, 1232–1238. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, Y.B.; Roh, Y.H.; Choi, I.-L.; Kim, J.; Kim, Y.; Yoon, H.S.; Kang, H.-M. Effect of Various LED Light Qualities, Including Wide Red Spectrum-LED, on the Growth and Quality of Mini Red Romaine Lettuce (Cv. Breen). Plants 2023, 12, 2056. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.W.; Yang, D.S.; Kays, S.J.; Lee, G.P.; Park, K.W. Sesquiterpene Lactones and Bitterness in Korean Leaf Lettuce Cultivars. HortSci. 2009, 44, 246–249. [Google Scholar] [CrossRef]
- Nagano, S.; Mori, N.; Tomari, Y.; Mitsugi, N.; Deguchi, A.; Kashima, M.; Tezuka, A.; Nagano, A.J.; Usami, H.; Tanabata, T.; et al. Effect of Differences in Light Source Environment on Transcriptome of Leaf Lettuce (Lactuca sativa L.) to Optimize Cultivation Conditions. PLoS ONE 2022, 17, e0265994. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. Front. Plant Sci. 2021, 12, 678197. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-X.; Xue, F.; Song, B.; Chen, L.-Z.; Xu, G.; Xu, H. Effects of Blue and Red Light On Growth And Nitrate Metabolism In Pakchoi. Open Chem. 2019, 17, 456–464. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Yanagisawa, S. Light Signalling-Induced Regulation of Nutrient Acquisition and Utilisation in Plants. Semin. Cell Develop. Biol. 2018, 83, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.-H.; Cheng, R.-F.; Yang, Q.-C.; Wang, J.; Lu, C. Continuous Light from Red, Blue, and Green Light-Emitting Diodes Reduces Nitrate Content and Enhances Phytochemical Concentrations and Antioxidant Capacity in Lettuce. J. Am. Soc. Hort. Sci. 2016, 141, 186–195. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EC) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs setting. Offic. J. Europ. Union 2011, 320, 15–17. [Google Scholar]
- Xu, X.; Zhang, G.; Chen, Y.; Xu, W.; Liu, Y.; Ji, G.; Xu, H. Can Proline Dehydrogenase—A Key Enzyme Involved in Proline Metabolism—Be a Novel Target for Cancer Therapy? Front. Oncol. 2023, 13, 1254439. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xin, G.; Liu, C.; Shi, Q.; Yang, F.; Wei, M. Effects of Red and Blue Light on Leaf Anatomy, CO2 Assimilation and the Photosynthetic Electron Transport Capacity of Sweet Pepper (Capsicum annuum L.) Seedlings. BMC Plant Biol. 2020, 20, 318. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.G.; Hay Mele, B.; Vitale, L.; Vitale, E.; Arena, C. The Role of Monochromatic Red and Blue Light in Tomato Early Photomorphogenesis and Photosynthetic Traits. Environ. Exp. Bot. 2020, 179, 104195. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently Asked Questions about in Vivo Chlorophyll Fluorescence: Practical Issues. Photo Res. 2014, 122, 121–158. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Shi, Q.; Yang, F.; Wei, M. Mixed Red and Blue Light Promotes Tomato Seedlings Growth by Influencing Leaf Anatomy, Photosynthesis, CO2 Assimilation and Endogenous Hormones. Sci. Hort. 2021, 290, 110500. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Chen, G.; Chen, X.; He, X. Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra. Forests 2019, 11, 44. [Google Scholar] [CrossRef]
- Arnon, A.N. Method of extraction of chlorophyll in the plants. Agric. J. 1967, 23, 112–121. [Google Scholar]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R.; Sustaita-Rivera, F.; Hernández-Carlos, B.; García-Ortega, S.; Santos-Sánchez, N.F. Effect of Nitrogen Fertilization and Bacillus Licheniformis Biofertilizer Addition on the Antioxidants Compounds and Antioxidant Activity of Greenhouse Cultivated Tomato Fruits (Solanum lycopersicum L. Var. Sheva). Sci. Hor. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Responses of Sweet Basil to Different Daily Light Integrals in Photosynthesis, Morphology, Yield, and Nutritional Quality. HortScience 2018, 53, 496–503. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Inter. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Hachiya, T.; Okamoto, Y. Simple Spectroscopic Determination of Nitrate, Nitrite, and Ammonium in Arabidopsis thaliana. Bio-Protoc. 2017, 7, e2280. [Google Scholar] [CrossRef] [PubMed]
- Paquin, R.; Lechasseur, P. Observations Sur Une Méthode de Dosage de La Proline Libre Dans Les Extraits de Plantes. Can. J. Bot. 1979, 57, 1851–1854. [Google Scholar] [CrossRef]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owens, H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
Treatments | Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | Total Chl (mg g−1 FW) | Carotenoids (mg g−1 FW) | Biomass (kg m−2) | |
---|---|---|---|---|---|---|
Light Spectra | Cultivars | |||||
B: R (12/12 h) | Violeto | 0.53 cdef | 0.18 bc | 0.71 def | 0.27 de | 3.92 b |
Red Rubin | 0.53 cdef | 0.20 bc | 0.74 cdef | 0.30 cde | 2.86 g | |
Ablagh | 0.61 bcd | 0.31 a | 0.93 abc | 0.38 abcd | 3.67 bcd | |
Kapoor | 0.56 bcdef | 0.23 bc | 0.79 cde | 0.32 bcde | 3.48 cde | |
RB | Violeto | 0.66 abc | 0.23 abc | 0.89 abcd | 0.43 ab | 4.36 a |
Red Rubin | 0.45 def | 0.17 c | 0.62 ef | 0.21 e | 3.94 b | |
Ablagh | 0.58 bcde | 0.21 bc | 0.79 cde | 0.36 abcd | 4.54 a | |
Kapoor | 0.57 bcdef | 0.20 bc | 0.77 cdef | 0.33 abcde | 4.28 a | |
W | Violeto | 0.70 abc | 0.22 bc | 0.91 abcd | 0.41 abc | 2.50 hi |
Red Rubin | 0.48 def | 0.18 bc | 0.66 ef | 0.26 de | 1.67 j | |
Ablagh | 0.40 f | 0.16 c | 0.56 f | 0.20 e | 3.08 fg | |
Kapoor | 0.53 cdef | 0.18 bc | 0.71 def | 0.30 cde | 2.42 i | |
R | Violeto | 0.59 bcd | 0.20 bc | 0.80 bcde | 0.45 a | 2.79 gh |
Red Rubin | 0.41 ef | 0.17 c | 0.57 f | 0.42 abc | 2.38 i | |
Ablagh | 0.58 bcde | 0.19 bc | 0.77 cdef | 0.28 de | 3.33 def | |
Kapoor | 0.54 cdef | 0.19 bc | 0.73 cdef | 0.38 abcd | 2.83 gh | |
B | Violeto | 0.82 a | 0.18 bc | 1.00 ab | 0.35 abcd | 3.15 efg |
Red Rubin | 0.79 a | 0.27 ab | 1.06 a | 0.21 e | 2.94 g | |
Ablagh | 0.62 bcd | 0.21 bc | 0.82 bcde | 0.26 de | 3.81 bc | |
Kapoor | 0.73 ab | 0.21 bc | 0.94 abc | 0.27 de | 3.30 ef | |
Significance | ** | * | ** | ** | ** |
B | Chl a | Chl b | Total Chl | CARs | TAC | TPC | TFC | Vit C | ACNs | APCI | VP | Nit | Pro | Carbo | Star | ||
B | 0.098 | 0.182 | 0.139 | −0.018 | 0.298 * | −0.003 | 0.159 | −0.132 | 0.091 | 0.156 | 0.852 ** | 0.423 ** | −0.040 | 0.113 | −0.112 | ||
Chl a | 0.358 ** | 0.951 ** | 0.218 | −0.067 | 0.237 | 0.041 | 0.190 | 0.062 | 0.265 * | 0.215 | 0.378 ** | 0.144 | 0.001 | −0.531 ** | |||
Chl b | 0.628 ** | 0.203 | −0.024 | −0.009 | 0.150 | 0.119 | 0.135 | 0.217 | 0.262 * | 0.087 | 0.074 | 0.209 | −0.118 | ||||
Total Chl | 0.254 | −0.068 | 0.197 | 0.084 | 0.194 | 0.100 | 0.295 * | 0.264 * | 0.346 ** | 0.145 | 0.069 | −0.479 ** | |||||
Cars | −0.239 | 0.157 | 0.277 * | 0.112 | −0.051 | 0.367 ** | 0.152 | −0.290 * | 0.241 | 0.193 | 0.287 * | ||||||
TAC | −0.125 | −0.079 | −0.084 | 0.160 | 0.114 | 0.312 * | 0.284 * | −0.272 * | −0.058 | −0.179 | |||||||
TPC | 0.688 ** | 0.642 ** | 0.072 | 0.855 ** | 0.437 ** | 0.201 | 0.830 ** | 0.225 | −0.203 | ||||||||
TFC | 0.469 ** | 0.013 | 0.825 ** | 0.535 ** | −0.144 | 0.676 ** | 0.437 ** | 0.263 * | |||||||||
Vit C | −0.133 | 0.639 ** | 0.271 * | −0.008 | 0.722 ** | 0.175 | −0.192 | ||||||||||
ACNs | 0.102 | 0.121 | 0.260 * | 0.045 | 0.145 | −0.065 | |||||||||||
APCI | 0.638 ** | 0.178 | 0.776 ** | 0.416 ** | −0.068 | ||||||||||||
VP | 0.444 ** | 0.387 ** | 0.331 ** | −0.140 | |||||||||||||
Nit | 0.055 | 0.081 | −0.603 ** | ||||||||||||||
Pro | 0.392** | −0.060 | |||||||||||||||
Carbo | 0.270 * | ||||||||||||||||
Star |
Treatments | TAC (%DPPH Inhibition) | TPC (mg GA 100 g−1 FW) | TFC (mg CAE g−1 FW) | Vitamin C (mg 100 g−1 FW) | ACNs (mg 100 g−1 FW) | Nitrate (mg kg−1 FW) | Proline (mg g−1 FW) | Carbohydrate (g 100 g−1 FW) | Starch (mg g−1 FW) | |
---|---|---|---|---|---|---|---|---|---|---|
Light Spectra | Cultivars | |||||||||
B: R (12/12 h) | Violeto | 78.35 a | 1170.33 de | 4.56 c | 174.48 ef | 23.70 ab | 1031.00 bc | 2.19 fgh | 5.35 ab | 8.62 bcde |
Red Rubin | 60.02 bcd | 900.69 ef | 2.14 gh | 165.88 f | 26.33 a | 726.82 fgh | 2.47 fgh | 5.52 a | 9.31 abc | |
Ablagh | 52.43 de | 930.33 ef | 4.03 cd | 184.56 ef | 24.54 ab | 627.00 hji | 3.33 def | 4.13 cde | 7.71 efg | |
Kapoor | 63.60 bc | 1000.45 def | 3.58 cde | 174.97 ef | 8.85 hi | 794.94 efg | 2.67 fgh | 5.00 abc | 8.55 bcdef | |
RB | Violeto | 48.24 ef | 1191.50 de | 5.85 b | 271.00 bcd | 18.98 e | 846.50 ef | 4.60 bc | 5.54 a | 9.14 abcd |
Red Rubin | 64.42 bc | 999.51 def | 1.82 gh | 153.29 f | 24.44 ab | 979.26 cd | 1.63 h | 1.79 k | 7.57 fgh | |
Ablagh | 59.25 bcd | 1084.21 de | 2.72 efg | 203.65 def | 20.07 cde | 804.42 ef | 2.39 fgh | 2.50 hijk | 8.54 bcdef | |
Kapoor | 57.31 cd | 1091.74 de | 3.46 def | 209.31 cdef | 10.16 h | 876.72 de | 2.87 efgh | 3.28 efghi | 8.41 cdef | |
W | Violeto | 53.07 de | 1017.86 def | 1.07 h | 279.81 bc | 15.41 fg | 546.31 ijk | 3.09 defg | 2.99 ghij | 6.83 ghi |
Red Rubin | 52.69 de | 1006.57 def | 2.50 fg | 263.44 bcd | 19.58 de | 672.00 ghi | 2.78 efgh | 3.51 defgh | 9.52 ab | |
Ablagh | 67.13 b | 736.92 f | 1.71 gh | 179.31 ef | 14.71 g | 424.35 ki | 1.66 h | 1.97 jk | 8.17 def | |
Kapoor | 57.63 cd | 920.45 ef | 1.76 gh | 240.85 bcde | 6.33 ij | 547.55 jik | 2.51 fgh | 2.82 ghij | 8.18 def | |
R | Violeto | 66.79 b | 1696.91 b | 1.24 h | 277.29 bc | 17.68 ef | 348.80 i | 3.96 cde | 3.05 fghi | 9.36 abc |
Red Rubin | 34.18 g | 1504.91 bc | 4.56 c | 239.27 bcde | 22.77 bc | 533.83 jk | 5.80 b | 4.10 cdef | 9.81 a | |
Ablagh | 42.69 f | 1250.79 cd | 6.14 b | 285.31 b | 16.11 fg | 318.42 i | 4.28 de | 4.23 cde | 8.79 bcd | |
Kapoor | 47.89 ef | 1484.20 bc | 3.98 cd | 267.30 bcd | 5.42 j | 400.35 i | 4.68 bc | 3.80 defg | 9.32 abc | |
B | Violeto | 60.99 bcd | 1079.98 de | 7.67 a | 169.45 ef | 22.39 bc | 1210.83 a | 1.95 gh | 2.39 ijk | 5.93 i |
Red Rubin | 40.79 fg | 1747.72 b | 4.38 cd | 272.25 bcd | 26.14 a | 1002.00 c | 4.81 bc | 3.74 defg | 6.71 hi | |
Ablagh | 83.57 a | 2027.25 a | 5.74 b | 405.76 a | 23.78 ab | 1186.00 a | 7.47 a | 4.48 bcd | 6.06 i | |
Kapoor | 43.78 f | 1618.32 b | 5.93 b | 282.49 bc | 7.83 hij | 1132.94 ab | 4.75 bc | 3.54 defgh | 6.24 i | |
Significance | * | ** | ** | ** | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayezizadeh, M.R.; Ansari, N.A.; Sourestani, M.M.; Fujita, M.; Hasanuzzaman, M. Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights. Plants 2024, 13, 1394. https://doi.org/10.3390/plants13101394
Fayezizadeh MR, Ansari NA, Sourestani MM, Fujita M, Hasanuzzaman M. Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights. Plants. 2024; 13(10):1394. https://doi.org/10.3390/plants13101394
Chicago/Turabian StyleFayezizadeh, Mohammad Reza, Naser Alemzadeh Ansari, Mohammad Mahmoodi Sourestani, Masayuki Fujita, and Mirza Hasanuzzaman. 2024. "Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights" Plants 13, no. 10: 1394. https://doi.org/10.3390/plants13101394
APA StyleFayezizadeh, M. R., Ansari, N. A., Sourestani, M. M., Fujita, M., & Hasanuzzaman, M. (2024). Management of Secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens Using Different Continuous-Spectrum LED Lights. Plants, 13(10), 1394. https://doi.org/10.3390/plants13101394