Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening and Antioxidant Properties of Aqueous and Methanolic Extracts
2.2. Chromatographic Profile and Chemical Constituents
2.3. Hypoglycemic Effect of Aqueous Extracts Obtained from Betonica bulgarica
2.4. Studies on Adsorption of Plant Constituents onto Starch
2.5. Study of Combined Effects of Acarbose and Plant Extracts
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Aqueous and Methanol Extracts
4.3. Extract Analyses
4.3.1. Determination of Total Phenolic Content
4.3.2. Determination of Total Flavonoid Content
4.3.3. Free Radical Scavenging Activity
4.3.4. Ferric-ferrozine Assay of Total Antioxidant Capacity
4.3.5. Qualitative and Quantitative Analysis of Extracts by High Performance Liquid Chromatography
4.3.6. Enzymatic Hydrolysis of Starch in the Presence of Betonica bulgarica Extracts
4.3.7. Inhibition of Glucose Release in the Presence of Betonica bulgarica Extracts
4.3.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.S.A.; Ahmad, I. Herbal medicine: Current trends and future prospects. In New Look to Phytomedicine; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Bulgarian State Gasette. 2021; 106, 3–9.
- Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. J. Nutr. 2018, 57, 1275–1299. [Google Scholar] [CrossRef]
- Pamukov, D.; Akhtarjiev, H. Natural pharmacy. In Zemizdat Sofia; Penguin Random House: New York, NY, USA, 1989; pp. 237–239. [Google Scholar]
- Shah, S.B.; Sartaj, L.; Ali, F.; Shah, S.I.A.; Khan, M.T. Plant extracts are the potential inhibitors of α-amylase: A review. MOJ Bioequiv. Availab. 2018, 5, 270–273. [Google Scholar] [CrossRef]
- Turdu, G.; Gao, H.; Jiang, Y.; Kabas, M. Plant dipeptidyl peptidase-IV inhibitors as antidiabetic agents: A brief review. Future Med. Chem. 2018, 10, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.B.; Krishnasamy, K.; Choi, K.C. Moringa concanensis Nimmo ameliorates hyperglycemia in 3T3-L1 adipocytes by upregulating PPAR-γ, C/EBP-α via Akt signaling pathway and STZ-induced diabetic rats. Biomed. Pharmacother. 2018, 103, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Bouknana, S.; Bouhrim, M.; Ouassou, H.; Bnouham, M. Review of Medicinal Plants and their Compounds for Aldose Reductase Inhibitory Activity. Lett. Drug Des. Discov. 2018, 15, 796–812. [Google Scholar] [CrossRef]
- Kalita, D.; Holm, D.G.; LaBarbera, D.V.; Petrash, J.M.; Jayanty, S.S. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS ONE 2018, 13, e0191025. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018, 108, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Morton, D.G. 8-Digestion and absorption. In The Digestive System, 2nd ed.; Smith, M.E., Morton, D.G., Eds.; Churchill Livingstone: London, UK, 2010; pp. 129–152. [Google Scholar] [CrossRef]
- Hillebrand, I.; Englert, R. Efficacy and tolerability of a 12-week treatment with acarbose (BAY g5421), miglitol (BAY m1099) and glibenclamid. Diabetes 1987, 26, 134A. [Google Scholar]
- Roze, S.; Valentine, W.J.; Evers, T.; Palmer, A.J. Acarbose in addition to existing treatments in patients with type 2 diabetes: Health economic analysis in a German setting. Curr. Med. Res. Opin. 2006, 22, 1415–1424. [Google Scholar] [CrossRef]
- Genova, E. Betonica bulgarica. In Red Data Book of the Republic of Bulgaria, 1st ed.; Peev, D., Ed.; BAS & MEW: Sofia, Bulgaria, 2011. [Google Scholar]
- Neychev, I. Several plants new to the Bulgarian flora. Annu. De Univ. De Sofia “Kliment Ochridski” 1906, 2, 138–144. [Google Scholar]
- Tomou, E.M.; Barda, C.; Skaltsa, H. Genus Stachys: A review of traditional uses, phytochemistry and bioactivity. Medicines 2020, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Isaev, I.; Landjiev, I.; Nechev, G. Herbs in Bulgaria and Their Use, 3rd ed.; Zemizdat: Sofia, Bulgaria, 1977. [Google Scholar]
- Paun, G.; Neagu, E.; Albu, C.; Moroeanu, V.; Radu, G.L. Antioxidant activity and inhibitory effect of polyphenolic-rich extract from Betonica officinalis and Impatiens noli-tangere herbs on key enzyme linked to type 2 diabetes. J. Taiwan Inst. Chem. Eng. 2016, 60, 1–7. [Google Scholar] [CrossRef]
- Dinev, T.G.; Rusenova, N.V.; Tsanova, M.T.; Grozeva, N.H.; Gerdzhikova, M.A.; Stoyanov, P.S.; Mladenova, T.R.; Beev, G.G. Antimicrobial Potential of Methanolic Extracts from Betonica bulgarica Degen et Neič. (Lamiaceae). Ecol. Balk. 2020, 12, 165–174. [Google Scholar]
- Mladenova, T.; Batsalova, T.; Dzhambazov, B.; Mladenov, R.; Teneva, I.; Stoyanov, P.; Bivolarska, A. Antitumor and Immunomodulatory Properties of the Bulgarian Endemic Plant Betonica bulgarica Degen et Neič. (Lamiaceae). Plants 2022, 11, 1689. [Google Scholar] [CrossRef] [PubMed]
- Mladenova, T.; Stoyanov, P.; Todorov, K.; Davcheva, D.; Kirova, G.; Deneva, T.; Bivolarska, A. Phytochemical and Biological Traits of Endemic Betonica bulgarica (Lamiaceae). Separations 2021, 8, 11. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2012, 51, 2862–2866. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef]
- Marles, R.J.; Farnsworth, N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995, 2, 137–189. [Google Scholar] [CrossRef]
- Bever, B.O.; Zahnd, G.R. Plants with Oral Hypoglycaemic Action. Q. J. Crude Drug Res. 1979, 17, 139–196. [Google Scholar] [CrossRef]
- Piparo, E.L.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for Controlling Starch Digestion: Structural Requirements for Inhibiting Human α-Amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Warren, F.J.; Gidley, M.J. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci. Technol. 2019, 91, 262–273. [Google Scholar] [CrossRef]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Acree, W.E. On the solubility of quercetin. J. Mol. Liq. 2014, 197, 157–159. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Huang, G. Structure-activity relationship and interaction mechanism of nine structurally similar flavonoids and α-amylase. J. Funct. Foods 2021, 86, 104739. [Google Scholar] [CrossRef]
- Tzanova, M.; Grozeva, N.; Gerdzhikova, M.; Argirova, M.; Pavlov, D.; Terzieva, S. Flavonoid content and antioxidant activity of Betonica bulgarica Degen et Neič. Bulg. Chem. Commun. 2018, 50, 90–97. [Google Scholar]
- Bankova, V.; Koeva-Todorovska, J.; Stambolijska, T.; Ignatova-Groceva, M.D.; Todorova, D.; Popov, S. Polyphenols in Stachys and Betonica species (Lamiaceae). Z. für Nat. C 1999, 54, 876–880. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Snow, P.; O’Dea, K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 1981, 34, 2721–2727. [Google Scholar] [CrossRef]
- Chai, Y.; Wang, M.; Zhang, G. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J. Agric. Food Chem. 2013, 61, 8608–8615. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; He, H.; Lu, Y.H. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. J. Agric. Food Chem. 2014, 62, 7760–7770. [Google Scholar] [CrossRef] [PubMed]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine flavonoids in health and disease prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Yip, Y.M.; Panda, P.; Ong, L.L.; Wong, P.W.K.; Zhang, D.; Judeh, Z. Cinnamoyl sucrose esters as alpha glucosidase inhibitors for the treatment of diabetes. Molecules 2021, 26, 469. [Google Scholar] [CrossRef] [PubMed]
- Tong, W. Drug-Induced Liver Injury Severity and Toxicity (DILIst) Dataset. 2023. Available online: www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-severity-and-toxicity-dilist-dataset (accessed on 12 March 2024).
- Uuh Narvaez, J.J.; Segura Campos, M.R. Combination therapy of bioactive compounds with acarbose: A proposal to control hyperglycemia in type 2 diabetes. J. Food Biochem. 2022, 46, e14268. [Google Scholar] [CrossRef] [PubMed]
- Panayotova, G.; Grozeva, N.; Pavlov, D.; Todorova, M.; Gerdzhikova, M. Seed germination, growth and morphological parameters of Betonica bulgarica Deg. et Neic. cultivated under different conditions. Türk Tarım ve Doğa Bilimleri Dergisi 2014, 1, 2006–2013. [Google Scholar]
- Grozeva, N.; Panayotova, G.; Gerdzhikova, M.; Todorova, M. Possibilities for ex situ conservation of Bulgarian endemic Betonica bulgarica Degen. & Neič. Sci. Pap. Ser. B Hortic. 2020, 64, 578. [Google Scholar]
- Fitzloff, J.F. Phenolic content. In Official Methods of Analysis of AOAC International, online ed.; Latimer, G.W., Jr., Ed.; Oxford University Press: New York, NY, USA, 2023; pp. C51–C67. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Demirata, B.; Apak, R. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Anal. Methods 2010, 2, 1770–1778. [Google Scholar] [CrossRef]
- Sherova, G.; Pavlov, A.; Georgiev, V. Polyphenols profiles and antioxidant activities of extracts from Capsicum chinense in vitro plants and callus cultures. Food Sci. Appl. Biotechnol. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Burrin, J.M.; Price, C.P. Measurement of blood glucose. Ann. Clin. Biochem. 1985, 22, 327–342. [Google Scholar] [CrossRef] [PubMed]
Phytochemical Parameters | BBL/MeOH | BBL/H2O | BBF/MeOH | BBF/H2O |
---|---|---|---|---|
Total phenolic content (GAE/g) | 118.0 ± 8.3 | 139.8 ± 11.8 | 124.8 ± 3.7 | 137.3 ± 9.2 |
Of which flavonoids (QE/g) | 11.6 ± 0.1 | 19.3 ± 0.2 * | 13.4 ± 0.7 | 20.5 ± 0.3 * |
Antioxidant properties | ||||
Radical-scavenging properties (DPPH method, IC50, μg/mL) | 29.1 ± 0.8 | 74.2 ± 2.6 * | 36.0 ± 1.0 | 46.2 ± 1.6 * |
Total reducing capacity (Trolox equivalents, μmol) | 991.7 ± 53.7 | 449.5 ± 16.2 | 814.8 ± 31.2 | 694.4 ± 12.1 |
Compound | Amount in BBL, mg/g | Amount in BBF, mg/g |
---|---|---|
Phenolic acids | ||
Gallic acid | N.A. | N.A. |
Protocatechuic acid | 0.35 | 0.57 |
Vanillic acid | 1.81 | 0.94 |
Caffeic acid | 0.41 | 0.26 |
Syringic acid | 0.04 | 0.07 |
p-Coumaric acid | 0.23 | 0.25 |
Chlorogenic acid | 4.06 | 1.20 |
Ferulic acid | 0.44 | 0.75 |
Salicylic acid | 26.54 | 38.87 |
Rosmarinic acid | 1.78 | 0.66 |
Flavonoids | ||
Rutin | 1.92 | 1.15 |
Hesperidin | 4.44 | 4.33 |
(+)-Catechin | 0.67 | 1.05 |
(−)-Epicatechin | 0.12 | 0.23 |
Quercetin | 1.27 | 1.28 |
Kaempferol | 0.46 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slavova, I.; Genisheva, T.; Angelova, G.; Chalumov, V.; Tomova, T.; Argirova, M. Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič. Plants 2024, 13, 1406. https://doi.org/10.3390/plants13101406
Slavova I, Genisheva T, Angelova G, Chalumov V, Tomova T, Argirova M. Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič. Plants. 2024; 13(10):1406. https://doi.org/10.3390/plants13101406
Chicago/Turabian StyleSlavova, Iva, Tea Genisheva, Gabriela Angelova, Vasilyan Chalumov, Teodora Tomova, and Mariana Argirova. 2024. "Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič" Plants 13, no. 10: 1406. https://doi.org/10.3390/plants13101406