Exploring Host Resistance against Chilli Leaf Curl Disease in a Tolerant Chilli Genotype
Abstract
:1. Introduction
2. Results
2.1. Effect of Plant Age on Leaf Curl Virus Resistance in DLS-Sel-10
2.2. Screening for Resistance against Vector
2.2.1. Free Choice Method
2.2.2. No Choice Method
2.3. Screening for Resistance Using Challenge Inoculation against ChiLCV
2.4. Detection of Presence of Virus and Viral Titer Load Estimation
3. Discussion
4. Materials and Methods
4.1. Effect of Plant Age on Resistance
4.2. Layout of the Experiment
4.3. Screening for Resistance against Vector
4.3.1. Free Choice Method
- Adult whitefly density = number of adult whiteflies/cm2 of leaf
- Egg density = number of eggs/cm2 of leaf,
- Nymphal density = number of nymphs/cm2 of leaf.
4.3.2. Sampling of Whiteflies to Determine Whitefly Population Density
4.3.3. No Choice Method
4.4. Screening for Resistance against Virus
4.4.1. Experimental Setup
4.4.2. Detection of Presence of Virus and Viral Titer Estimation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhanraj, K.S.; Seth, M.L. Enation in Capsicum annuum L. (chilli) caused by a new strain of leaf curl virus. Indian J. Hortic. 1968, 25, 70–71. [Google Scholar]
- Chattopadhyay, B.; Singh, A.K.; Yadav, T.; Fauquet, C.M.; Sarin, N.B.; Chakraborty, S. Infectivity of the cloned components of a begomovirus: DNA-β complex causing chilli leaf curl disease in India. Arch. Virol. 2008, 153, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.R.; Hagen, C.; Lucas, W.J.; Gilbertson, R.L. Exploiting chinks in the plant’s armor: Evolution and emergence of geminiviruses. Annu. Rev. Plant Physiol. 2005, 43, 361–394. [Google Scholar] [CrossRef]
- Stanley, J.; Bisar, D.M.; Briddon, R.W.; Brown, J.K.; Fauquet, C.M.; Harrison, B.D. Geminiviriae. In Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 1163–1169. [Google Scholar]
- Brown, J.K.; Zerbini, F.M.; Castillo, J.N.; Moriones, E.; Sobrinho, R.R.; Silva, J.C.F.; Olive, E.F.; Briddon, R.W.; Zepeda, C.H.; Idris, A.; et al. Revision of begomovirus taxonomy based on pair wise sequence comparisons. Arch. Virol. 2015, 160, 1593–1619. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.V.; Singh, A.K.; Chakraborty, S. A new monopartite begomovirus species, Chilli leaf curl Vellanad virus, and associated beta satellites infecting chilli in the Vellanad region of Kerala, India. New Dis. Rep. 2012, 25, 20. [Google Scholar] [CrossRef]
- Kumar, R.V.; Singh, A.K.; Singh, A.K.; Yadav, T.; Basu, S.; Kushwaha, N.; Chattopadhyay, B.; Chakraborty, S. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J. Gen. Virol. 2015, 96, 3143–3158. [Google Scholar] [CrossRef]
- Senanayake, D.M.J.B.; Mandal, B.; Lodha, S.; Varma, A. First report of Chilli leaf curl virus affecting chilli in India. Plant Pathol. 2007, 56, 343. [Google Scholar] [CrossRef]
- Senanayake, D.M.J.B.; Varma, A.; Mandal, B.J. Virus–vector relationships, host range, detection and sequence comparison of Chilli leaf curl virus associated with an epidemic of leaf curl disease of chilli in Jodhpur. Indian Phytopathol. 2012, 160, 146–155. [Google Scholar] [CrossRef]
- Kaur, S.; Kang, S.S.; Sharma, A.; Dhillon, N.K. Prevalence and incidence of viruses and root knot nematode infecting pepper (C. annuum) in Punjab. Plant Dis. Res. 2016, 31, 91–98. [Google Scholar]
- Khan, M.S.; Raj, S.K.; Singh, R. First report of tomato leaf curl New Delhi virus infecting chilli in India. Plant Pathol. 2006, 55, 289. [Google Scholar] [CrossRef]
- Kumar, Y.; Hallan, V.; Zaidi, A. Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite. Plant Pathol. 2011, 60, 1040–1047. [Google Scholar] [CrossRef]
- Shih, S.L.; Tsai, W.S.; Green, S.K.; Singh, D. First report of Tomato leaf curl Joydebpur virus infecting chilli in India. Plant Pathol. 2007, 56, 341. [Google Scholar] [CrossRef]
- Singh, A.; Kushwaha, N.; Chakraborty, S. Synergistic interaction among begomoviruses leads to the suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl. Microbiol. Biotechnol. 2016, 100, 4035–4049. [Google Scholar] [CrossRef]
- Mangal, M.; Srivastava, A.; Sharma, R.; Kalia, P. Conservation and Dispersion of Genes Conferring Resistance to Tomato Begomoviruses between Tomato and Pepper Genomes. Front. Plant Sci. 2017, 8, 1803. [Google Scholar] [CrossRef]
- Maurya, P.K.; Srivastava, S.; Mangal, M.; Talukdar, A.; Mondal, B.; Solanki, V.; Khar, A.; Kalia, P. Genetic analysis for resistance to leaf curl disease in Chilli Peppers (Capsicum annuum L.) under specific situations. Indian J. Genet. Plant Breed. 2019, 79, 741–748. [Google Scholar] [CrossRef]
- Srivastava, A.; Mangal, M.; Mandal, B.; Sharma, V.K.; Tomar, B.S. Solanum pseudocapsicum: Wild source of resistance to Chilli leaf curl disease. Physiol. Mol. Plant Pathol. 2021, 113, 101566. [Google Scholar] [CrossRef]
- Srivastava, A.; Mangal, M.; Saritha, R.K.; Kalia, P. Screening of chilli pepper (Capsicum spp.) lines for resistance to the begomoviruses causing chilli leaf curl disease in India. Crop Prot. 2017, 100, 177–185. [Google Scholar] [CrossRef]
- Roossinck, M.J. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 1997, 35, 191–209. [Google Scholar] [CrossRef]
- Harrison, B.D. Virus variation in relation to resistance-breaking in plants. Euphytica 2002, 124, 181–192. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef]
- Garcıa-Arenal, F.; McDonald, B.A. An analysis of the durability of the resistance to plant viruses. Phytopathology 2003, 93, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, S.; Briddon, R.W.; Bull, S.E.; Bedford, I.D.; Bashir, A.; Hussain, M.; Saeed, M.; Zafar, Y.; Malik, K.A.; Fauque, C.; et al. Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA-β. Arch. Virol. 2003, 148, 1969–1986. [Google Scholar] [CrossRef] [PubMed]
- Bosch, V.D.F.; Akudibilah, G.; Seal, S.; Jeger, M. Host Resistance and the Evolutionary Response of Plant Viruses. J. Appl. Ecol. 2006, 43, 506–516. [Google Scholar] [CrossRef]
- Maruthi, M.N.; Rekha, A.R.; Mirza, S.H.; Alam, S.N.; Colvin, J. PCR-based detection and partial genome sequencing indicate high genetic diversity in Bangladeshi begomoviruses and their whitefly vector Bemisia tabaci. Virus Genes 2007, 34, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Fekri, M.S.; Samih, M.A.; Sohrab, I.S.I.; Zarabi, M. Study of host preference and the comparison of some biological characteristcs of Bemisia tabaci on tomato varieties. J. Plant Prot. Res. 2013, 53, 2013–2020. [Google Scholar] [CrossRef]
- Lapidot, M.; Friedmann, M.; Pilowsky, M.; Ben-Joseph, R.; Cohen, S. Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 2001, 91, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Riley, D.; Diffie, S.; Sparks, A.; Adkins, S. Whitefly population dynamics and evaluation of whitefly-transmitted Tomato yellow leaf curl virus (TYLCV)-Resistant tomato genotypes as whitefly and TYLCV reservoirs. J. Econ. Entomol. 2012, 105, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Gorovits, R.; Moshe, A.; Kolot, M.; Sobol, I.; Czosnek, H. Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res. 2013, 171, 33–43. [Google Scholar] [CrossRef]
- Chant, S.R. The effect of infection with tobacco mosaic and cowpea yellow mosaic viruses on growth rate and yield of cowpea in Nigeria. Emp. J. Exp. Agric. 1960, 28, 114–120. [Google Scholar]
- Gilmer, R.N.; Whitney, W.K.; Williams, R.J. Proceedings of the First IITA Grain Legume Improvement Programme Workshop; Internat Institute of Tropical Agriculture: Ibadan, Nigeria, 1974; Volume 325. [Google Scholar]
- van Emden, H. Mechanisms of resistance: Antibiosis, antixenosis, tolerance, nutrition. Encycl. Pest Manag. 2002, 1, 483–486. [Google Scholar]
- Firdaus, S.; van Heusden, A.W.; Hidayati, N.; Supena, E.D.J.; Visser, R.G.F.; Vosman, B. Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 2012, 187, 31–45. [Google Scholar] [CrossRef]
- Firdaus, S. Identification of Whitefly Resistance in Tomato and Hot Pepper. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- de Ponti, O.M.B.D.; Pet, G.; Hogenboom, N.G. Resistance to glasshouse whitefly (Trialeurodes vaporariorum Westw) in Tomato (Lycopersicon esculentum Mill) and related species. Euphytica 1975, 24, 645–649. [Google Scholar] [CrossRef]
- Sippell, D.W.; Bindra, O.S.; Khalifa, H. Resistance to whitefly (Bemisia tabaci) in cotton (Gossypium hirsutum) in the Sudan. Crop Prot. 1987, 6, 171–178. [Google Scholar] [CrossRef]
- Snyder, J.C.; Simmons, A.M.; Thacker, R.R. Attractancy and ovipositional response of adult Bemisia argentifolii (Homoptera: Aleyrodidae) to type IV trichome density on leaves of Lycopersicon hirsutum grown in three day-length regimes. J. Entomol. Sci. 1998, 33, 270–281. [Google Scholar] [CrossRef]
- Toscano, L.C.; Boiça, J.A.L.; Maruyama, W.I. Non preference of whitefly for oviposition in tomato genotypes. Sci. Agric. 2002, 59, 677–681. [Google Scholar] [CrossRef]
- Channarayappa, C.; Shivashankar, G.; Muniyappa, V.; Frist, R.H. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can. J. Bot. 1992, 70, 2184–2192. [Google Scholar] [CrossRef]
- Chermenskaya, T.D.; Petrova, M.O.; Savelieva, E.I. Laboratory and field evaluation of biological active substances of plant origin against greenhouse whitefly, Trialeurodes vaporariorum Westw. (Homoptera: Aleyrodidae). Arch. Phytopathol. Plant Prot. 2009, 42, 864–873. [Google Scholar] [CrossRef]
- Berlinger, M.J. A yellow sticky trap for whiteflies Trialeurodes vaporariorum and Bemisia tabaci (Aleurodidae). Entomol. Exp. Appl. 1980, 27, 98–102. [Google Scholar] [CrossRef]
- Liu, T.X.; Stansly, P.A. Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosasinensis (Malvaceae). Fla. Entomol. 1998, 81, 437–445. [Google Scholar] [CrossRef]
- Cohen, A.C.; Chu, C.C.; Henneberry, T.J.; Freeman, T.; Buckner, J.; Nelson, D. Cotton leaf surface features serve as behavioral cues to silverleaf whiteflies. Southwest Entomol. 1996, 21, 377–385. [Google Scholar]
- Janssen, J.A.M.; Tjallingii, W.F.; van Lenteren, J.C. Electrical recording and ultrastructure of stylet penetration by the greenhouse whitefly. Entomol. Exp. Appl. 1989, 52, 69–81. [Google Scholar] [CrossRef]
- Pilowsky, M.; Cohen, S. Tolerance to Tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis. 1990, 74, 248–250. [Google Scholar] [CrossRef]
- Lapidot, M.; Friedmann, M.; Lachman, O.; Yehezel, A.; Nahon, S.; Cohen, S.; Pilowsky, M. Comparison of resistance to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 1997, 81, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, M.; Lapidot, M.; Cohen, S.; Pilowsky, M. A novel source of resistance to Tomato Yellow Leaf Curl Virus exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 1998, 123, 1004–1007. [Google Scholar] [CrossRef]
- Banerjee, M.K.; Kalloo, G. Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor. Appl. Genet. 1987, 73, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Singh, M.; Singh, A.K.; Rai, M. Identification of host plant resistance to pepper leaf curl virus in chilli (Capsicum species). Sci. Hort. 2006, 110, 359–361. [Google Scholar] [CrossRef]
- Ramesh, K.B.; Mahendra, C.; Kelageri, S.S.; Rajna, S.; Subramanian, S. Distribution and Mitotype Diversity of Bemisia tabaci. Indian J. Entomol. 2022, 85, 35–39. [Google Scholar] [CrossRef]
- Chaubey, R.J.; Naveen, N.C.; Ramamurthy, V.V. An illustrated taxonomic diagnosis of Bemisia tabaci (Gennadius) with additional notes on its life stages. Indian J. Entomol. 2010, 72, 321–325. [Google Scholar]
- Maliepaard, C.; Bas, N.; van Heusden, S.; Kos, J.; Pet, G.; Verkerk, R.; Vrielink, R.; Zabel, P.; Lindhout, P. Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 1995, 75, 425–433. [Google Scholar] [CrossRef]
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers, 2nd ed.; ICAR: New Delhi, India, 1967; p. 381. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
- Mangal, M.; Srivastava, A.; Mirajkar, S.J.; Singh, K.; Solanki, V.; Mandal, B.; Kalia, P. Differential expression profiling of defense related genes for Leaf Curl Virus (ChiLCV) in resistant and susceptible genotypes of Chiili. Indian J. Genet. Plant Breed. 2020, 80, 308–317. [Google Scholar] [CrossRef]
Test Genotypes | Number of Egg | Nymphal Count | Average No. of Adults | Sooty Mold Growth |
---|---|---|---|---|
Phule Mukta | 34.25 | 14.5 | 6.25 | 2.5 |
DLS-Sel-10 | 8.75 | 4.25 | 0.75 | 0.25 |
CD | 15.994 | 5.151 | 2.563 | 0.975 |
SEM | 4.53 | 1.46 | 0.726 | 0.27 |
Days after Inoculation | Disease Score | |
---|---|---|
Infection with ChiLCV | ||
Phule Mukta | DLS-Sel-10 | |
7 days | 0 | 0 |
14 days | 2 | 0 |
21 days | 3 | 0 |
28 days | 4 | 0 |
35 days | 4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangal, M.; Srivastava, A.; Mandal, B.; Solanki, V.; Mirajkar, S.J.; Shashank, P.R.; Kalia, P.; Rana, J.C.; Sharma, V.K. Exploring Host Resistance against Chilli Leaf Curl Disease in a Tolerant Chilli Genotype. Plants 2024, 13, 1647. https://doi.org/10.3390/plants13121647
Mangal M, Srivastava A, Mandal B, Solanki V, Mirajkar SJ, Shashank PR, Kalia P, Rana JC, Sharma VK. Exploring Host Resistance against Chilli Leaf Curl Disease in a Tolerant Chilli Genotype. Plants. 2024; 13(12):1647. https://doi.org/10.3390/plants13121647
Chicago/Turabian StyleMangal, Manisha, Arpita Srivastava, Bikash Mandal, Vikas Solanki, Shriram J. Mirajkar, Pathour R. Shashank, Pritam Kalia, Jai Chand Rana, and Vinod Kumar Sharma. 2024. "Exploring Host Resistance against Chilli Leaf Curl Disease in a Tolerant Chilli Genotype" Plants 13, no. 12: 1647. https://doi.org/10.3390/plants13121647
APA StyleMangal, M., Srivastava, A., Mandal, B., Solanki, V., Mirajkar, S. J., Shashank, P. R., Kalia, P., Rana, J. C., & Sharma, V. K. (2024). Exploring Host Resistance against Chilli Leaf Curl Disease in a Tolerant Chilli Genotype. Plants, 13(12), 1647. https://doi.org/10.3390/plants13121647