Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management
Abstract
:1. Introduction
2. Results
2.1. Grain Yield and Yield Components in Response to Irrigation Water and Fertilizer
2.2. The Accumulation of N, P, and K
2.3. N Harvest Index and Nitrogen Use Efficiency
2.4. Water Productivity
2.5. Optimization of Water and Fertilizer Management Based on Yield
2.6. Water and Fertilizer Management Based on Yield Using Grain Nitrogen Accumulation Correlation Analysis
3. Discussion
3.1. The Relationship between Rice Yield and the Absorption of Nitrogen, Phosphorus, and Potassium in Rice Plants under the Interaction of Irrigation and Fertilizer Rice Plants under the Interaction of Irrigation and Fertilizer
3.2. The Effect of Different Irrigation and Fertilizer Interactions on Rice Yield and Water–Fertilizer Use Efficiency
4. Materials and Methods
4.1. Overview of Study Site
4.2. Sampling and Measurement
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, M. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self-sufficiency. Food Secur. 2022, 14, 267–272. [Google Scholar] [CrossRef]
- Yuan, L. Progress in super-hybrid rice breeding. Crop. J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- Huang, M.; Tang, Q.-Y.; Ao, H.-J.; Zou, Y.-B. Yield potential and stability in super hybrid rice and its production strategies. J. Integr. Agric. 2017, 16, 1009–1017. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Luo, W.Q.; Chen, M.T.; Kang, Y.H.; Li, W.P.; Li, D.; Cui, Y.L.; Khan, S.; Luo, Y.F. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Gautam, N.K.; Sarkar, S. Estimating Crop Water Requirements and Assessing Irrigation Water Distribution Cost for Rice Production Using a Pipe Network. Pol. J. Environ. Stud. 2018, 27, 1071–1083. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, Y.; Wang, Q. Analysis of Demand and Structural Changes in China’s Water Resources over the Next 30 Years. Water 2023, 15, 745. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, W.; Liu, G.; Ding, Y.; Cao, X.; Chen, D.; Engel, B. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice. Sci. Total Environ. 2020, 739, 140032. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, T.; Zhang, C.; He, X.; Shi, A.; Tan, W.; Yi, Z.; Wang, X. Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice. Agronomy 2022, 12, 1190. [Google Scholar] [CrossRef]
- Faiz-ul Islam, S.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef]
- Zoffoli, G.; Gangi, F.; Ferretti, G.; Masseroni, D. The potential of a coordinated system of gates for flood irrigation management in paddy rice farm. Agric. Water Manag. 2023, 289, 108536. [Google Scholar] [CrossRef]
- Lv, Y.; Gu, L.; Xu, J.; Liu, X. A coupled hourly water-carbon flux model at plot and field scales for water-saving irrigated rice paddy. Agric. Water Manag. 2024, 293, 108706. [Google Scholar] [CrossRef]
- Liu, L.; Lian, Z.; Ouyang, W.; Yan, L.; Liu, H.; Hao, F. Potential of optimizing irrigation and fertilization management for sustainable rice production in China. J. Clean. Prod. 2023, 432, 139738. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Wang, X.; Yu, X.; Peng, S. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food Energy Secur. 2021, 10, 341–350. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; de Vries, W. Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X.; Li, J.; Guo, X.; Gong, H.; Ouyang, Z.; Zhang, L.; Mathijs, E. Excessive synthetic fertilizers elevate greenhouse gas emissions of smallholder-scale staple grain production in China. J. Clean. Prod. 2023, 430, 139720. [Google Scholar] [CrossRef]
- Chen, J.; Abou-Elwafa, S.F.; Huang, M. Dynamic changes in the fossil energy use efficiency in crop production: A case study from Hunan province of China. J. Clean. Prod. 2022, 371, 133627. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Moudrý, J.; Konvalina, P.; Hörtenhuber, S.J.; Ghorbani, M.; Neugschwandtner, R.W.; Jiang, Z.; Krexner, T.; Kopecký, M. Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability 2022, 14, 15870. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Konvalina, P.; Asadi, H.; Kopecký, M.; Amirahmadi, E. Comparative effects of biochar and compost applications on water holding capacity and crop yield of rice under evaporation stress: A two-years field study. Paddy Water Environ. 2023, 21, 47–58. [Google Scholar] [CrossRef]
- Duan, J.; Liu, H.; Zhang, X.; Ren, C.; Wang, C.; Cheng, L.; Xu, J.; Gu, B. Agricultural management practices in China enhance nitrogen sustainability and benefit human health. Nat. Food 2024, 5, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Dong, B.; Mao, Z.; Cui, Y.; Luo, Y.; Li, Y. Controlled Irrigation for Paddy Rice in China. Irrig. Drain. 2020, 69, 61–74. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, L.; Jiang, J.Y.; Chen, N.N.; Yang, X.M.; Xiong, Z.Q.; Zou, J.W. Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci. Total Environ. 2012, 426, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.M.; Wang, L.; Chen, F.X.; Ren, X.N.; Tan, Z.X. Soil carbon sequestration efficiency under continuous paddy rice cultivation and excessive nitrogen fertilization in South China. Soil Tillage Res. 2021, 213, 105108. [Google Scholar] [CrossRef]
- Bhaduri, D.; Purakayastha, T.J.; Chakraborty, D.; Chakraborty, K.; Singh, M. Integrated tillage-water-nutrient management effects on selected soil physical properties in a rice-wheat system in the Indian subcontinent. Arch. Agron. Soil Sci. 2018, 64, 132–145. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Sun, Y.; Xu, H.; Yang, Z.; Liu, S.; Jia, X.; Zheng, H. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crop. Res. 2012, 127, 85–98. [Google Scholar] [CrossRef]
- Sun, Y.J.; Sun, Y.Y.; Li, X.Y.; Zhang, R.P.; Guo, X.; Ma, J. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. Acta Agron. Sin. 2010, 36, 655–664. [Google Scholar] [CrossRef]
- Sun, Y.J.; Sun, Y.Y.; Li, X.Y.; Guo, X.; Ma, J. Relationship of nitrogen utilization and activities of key enzymes involved in nitrogen metabolism in rice under water–nitrogen interaction. Acta Agron. Sin. 2009, 35, 2055–2063. [Google Scholar] [CrossRef]
- Su, Q.; Cang, B.; Ullah, R.; Song, Z.; Li, Y.; Cui, J.; Wei, X.; Yang, M.; Yang, X.; Wu, Z. Interaction of the coupled effects of irrigation mode and nitrogen fertilizer timing on rice yield in different regions. Irrig. Drain. 2023, 72, 999–1012. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.; Wang, Z.; Du, Y.; Zhang, J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J. Integr. Plant Biol. 2007, 49, 1445–1454. [Google Scholar] [CrossRef]
- Hameed, F.; Xu, J.Z.; Rahim, S.F.; Wei, Q.; Khalil, A.U.R.; Liao, Q. Optimizing Nitrogen Options for Improving Nitrogen Use Efficiency of Rice under Different Water Regimes. Agronomy 2019, 9, 39. [Google Scholar] [CrossRef]
- Jin, Z.; Yue, R.; Ma, Z.; Cheng, S.; Khan, M.N.; Nie, L. Effect of water and nitrogen coupling on energy balance and production efficiency in rice production. Energy 2024, 288, 129739. [Google Scholar] [CrossRef]
- Song, T.; Das, D.; Hu, Q.; Yang, F.; Zhang, J. Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Sci. Total Environ. 2021, 752, 141862. [Google Scholar] [CrossRef] [PubMed]
- Cabangon, R.J.; Castillo, E.G.; Tuong, T.P. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crop. Res. 2011, 121, 136–146. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, S.; Jiang, Z.; Xu, Y.; Jiao, X. Effect of Irrigation and Fertilizer Management on Rice Yield and Nitrogen Loss: A Meta-Analysis. Plants 2022, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, Q.; Qi, D.; Zhu, J. Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation. Agric. Water Manag. 2022, 263, 107486. [Google Scholar] [CrossRef]
- Sudhir, Y.; Evangelista, G.; Fardnilo, J.; Humphreys, E.; Henry, A.; Fernandez, L. Establishment method effects on crop performance and water productivity of irrigated rice in the tropics. Field Crops Res. 2014, 166, 112–127. [Google Scholar] [CrossRef]
- Wu, M.Y.; Cao, X.C.; Guo, X.P.; Xiao, J.F.; Ren, J. Assessment of grey water footprint in paddy rice cultivation: Effects of field water management policies. J. Clean. Prod. 2021, 313, 127876. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Cheng, X.; Qiu, R.; Hamoud, Y.A.; Hong, C.; Zong, X.; Wang, Y.; Agathokleous, E.; Guo, X. Dissecting the combined effects of cultivar, fertilization, and irrigation on rhizosphere bacterial communities and nitrogen productivity in rice. Sci. Total Environ. 2022, 835, 155534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Rasool, G.; Guo, X.P.; Sen, L.; Cao, K.W. Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water 2020, 12, 2239. [Google Scholar] [CrossRef]
- Zhao, Z.; Xia, L.; Qin, Z.; Cao, J.; Mohammed, A.A.O.; Toland, H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns. Chemosphere 2021, 269, 128774. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-C.; Wu, L.-L.; Lu, R.-H.; Zhu, L.-F.; Zhang, J.-H.; Jin, Q.-Y. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency. Irrig. Sci. 2021, 39, 235–249. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Yang, S.; Wang, W. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, L.; Wu, M.; Li, Y. Nutrient uptake and water use efficiency as affected by modified rice cultivation methods with reduced irrigation. Paddy Water Environ. 2011, 9, 25–32. [Google Scholar] [CrossRef]
- Kapoor, V.; Singh, U.; Patil, S.K.; Magre, H.; Shrivastava, L.K.; Mishra, V.N.; Das, R.O.; Samadhiya, V.K.; Sanabria, J.; Diamond, R. Rice growth, grain yield, and floodwater nutrient dynamics as affected by nutrient placement method and rate. Agron. J. 2008, 100, 526–536. [Google Scholar] [CrossRef]
- Huang, M.; Tao, Z.; Lei, T.; Cao, F.; Chen, J.; Yin, X.; Zou, Y.; Liang, T. Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice. Field Crop. Res. 2021, 270, 108212. [Google Scholar] [CrossRef]
- Meng, T.; Zhang, X.; Ge, J.; Chen, X.; Zhu, G.; Chen, Y.; Zhou, G.; Wei, H.; Dai, Q. Improvements in grain yield and nutrient utilization efficiency of japonica inbred rice released since the 1980s in eastern China. Field Crop. Res. 2022, 277, 108427. [Google Scholar] [CrossRef]
SOV | Yield | Panicles (×104 ha−1) | Spikelet’s Panicle−1 | Spikelet Filling (%) | Grain Weight (mg) |
---|---|---|---|---|---|
F | ** | ** | ** | ** | ** |
V | ** | ** | ** | ** | ** |
W | ** | ** | ** | ** | * |
Y | ** | ** | ** | ** | ** |
F × V | ** | ** | ** | ** | NS |
F × W | ** | NS | NS | NS | NS |
F × Y | ** | NS | NS | ** | NS |
V × W | NS | ** | NS | ** | NS |
V × Y | ** | NS | NS | NS | NS |
W × Y | NS | NS | NS | ** | NS |
F × V × Y | NS | NS | NS | ** | NS |
V × W × Y | NS | NS | NS | ** | NS |
Item | Treatment | Heading | Mature | |||
---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Total | ||
Year | 2022 | 125.8 b | 19.96 a | 54.84 b | 111.73 b | 166.57 b |
2023 | 132.72 a | 21.66 a | 58.51 a | 115.58 a | 174.53 a | |
Variety | XXLY1751 | 129.95 a | 22 a | 57.22 a | 117.34 a | 174.56 a |
YLYMXXZ | 127.37 a | 19.78 b | 55.75 b | 110.62 b | 166.37 b | |
Strategies | W1F1 | 75 f | 17.48 ef | 36.35 e | 74.47 g | 110.81 f |
W1F2 | 127.05 d | 19.61 cd | 57.03 d | 123.03 d | 180.06 d | |
W1F3 | 149.52 c | 23.34 b | 62.22 bcd | 143.89 a | 206.11 a | |
W1F4 | 165.86 b | 26.59 a | 67.57 abc | 136.63 b | 204.2 ab | |
W2F1 | 72.24 f | 15.54 g | 33.58 e | 68.3 h | 101.88 g | |
W2F2 | 118.74 e | 18.28 def | 58.99 d | 110.9 f | 169.89 e | |
W2F3 | 144.53 c | 20.42 c | 62.56 bcd | 128.27 cd | 190.83 c | |
W2F4 | 176.71 a | 25.17 a | 68.26 ab | 125.18 cd | 193.44 c | |
W3F1 | 75.93 f | 16.67 fg | 36.97 e | 72.82 gh | 109.79 f | |
W3F2 | 126.78 d | 18.95 cde | 59.47 d | 117.03 e | 176.5 d | |
W3F3 | 146.86 f | 22.42 b | 65.62 abc | 136.89 b | 202.5 ab | |
W3F4 | 164.66 f | 26.23 a | 69.23 a | 130.37 c | 199.6 b | |
SOV | F | ** | ** | ** | ** | ** |
W | ** | ** | ** | ** | ** | |
V | ** | ** | ** | ** | ** | |
Y | ** | ** | ** | ** | ** | |
F × W | ** | NS | ** | ** | ** | |
F × W × V | NS | NS | NS | NS | NS | |
F × W × Y | * | NS | NS | NS | NS | |
F × W × V × Y | NS | NS | NS | NS | NS |
Item | Treatment | Heading | Mature | |||
---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Total | ||
Year | 2022 | 20.06 b | 6.27 b | 8.26 b | 27.9 b | 36.15 b |
2023 | 23.16 a | 6.66 a | 9.77 a | 30.6 a | 40.37 a | |
Variety | XXLY1751 | 21.72 a | 6.84 a | 9.08 a | 30.58 a | 39.66 a |
YLYMXXZ | 21.44 a | 6.12 b | 8.89 a | 28.29 b | 37.17 b | |
Strategies | W1F1 | 14.51 g | 4.4 g | 5.72 e | 24.61 f | 30.33 a |
W1F2 | 20.99 ef | 6.35 d | 8.62 d | 27.45 e | 36.06 a | |
W1F3 | 24.67 bc | 7.78 a | 9.69 bcd | 37.63 a | 47.32 b | |
W1F4 | 25.67 b | 7.53 bc | 10.89 ab | 31.96 c | 42.85 c | |
W2F1 | 14.23 g | 4.6 f | 6.06 e | 22.78 g | 28.84 c | |
W2F2 | 19.8 f | 6.22 de | 8.7 cd | 25.15 f | 33.85 d | |
W2F3 | 23.09 cd | 7.64 ab | 9.6 bcd | 35.04 b | 44.65 e | |
W2F4 | 27.42 a | 7.57 bc | 11.22 a | 29.98 d | 41.2 e | |
W3F1 | 15.18 g | 4.54 fg | 6.13 e | 24.01 fg | 30.14 f | |
W3F2 | 21.72 de | 6.12 e | 9.24 cd | 26.77 e | 36.01 g | |
W3F3 | 25.28 b | 7.53 bc | 10.48 ab | 36.68 a | 47.16 gh | |
W3F4 | 26.39 ab | 7.45 c | 11.45 a | 31.16 cd | 42.61 h | |
SOV | F | ** | ** | ** | ** | ** |
W | ** | ** | ** | ** | ** | |
V | * | ** | ** | ** | ** | |
Y | ** | ** | ** | ** | ** | |
F × W | ** | ** | ** | NS | NS | |
F × W × V | NS | ** | NS | NS | NS | |
F × W × Y | NS | * | NS | NS | ** | |
F × W × V × Y | NS | NS | NS | NS | NS |
Item | Treatment | Heading | Mature | |||
---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Total | ||
Year | 2022 | 172.96 b | 6.27 b | 140.22 b | 27.9 b | 36.15 b |
2023 | 193.46 a | 6.66 a | 150.90 a | 30.6 a | 40.37 a | |
Variety | XXLY1751 | 188.68 a | 6.84 a | 155.01 a | 30.58 a | 39.66 a |
YLYMXXZ | 178.49 b | 6.12 b | 136.36 b | 28.29 b | 37.17 b | |
Strategies | W1F1 | 132.05 g | 9.51 g | 96.98 h | 15.45 g | 112.44 h |
W1F2 | 187.2 e | 13.46 de | 141.83 e | 23.43 d | 165.26 e | |
W1F3 | 207.26 c | 16.9 c | 168.36 b | 29.26 a | 197.63 b | |
W1F4 | 222.09 a | 21.2 b | 169.76 b | 28.26 bc | 198.02 b | |
W2F1 | 127.06 h | 9.98 f | 105.85 f | 16.31 f | 122.16 f | |
W2F2 | 180.58 f | 13.78 d | 145.88 d | 22.88 de | 168.76 d | |
W2F3 | 201.97 d | 16.74 c | 166.94 b | 28.69 ab | 195.63 b | |
W2F4 | 215.13 b | 21.78 a | 174.57 a | 28.41 bc | 202.98 a | |
W3F1 | 128.26 h | 9.38 g | 102.23 g | 16.03 fg | 118.26 g | |
W3F2 | 182.56 f | 13.27 e | 142.9 e | 22.5 e | 165.4 e | |
W3F3 | 203.75 d | 16.66 c | 163.28 c | 28.25 bc | 191.53 c | |
W3F4 | 215.11 b | 20.91 b | 169.62 b | 27.92 c | 197.54 b | |
SOV | F | ** | ** | ** | ** | ** |
W | ** | ** | ** | ** | ** | |
V | ** | ** | ** | ** | ** | |
Y | ** | ** | ** | ** | ** | |
F × W | ** | ** | ** | ** | ** | |
F × W × V | ** | ** | ** | ** | ** | |
F × W × Y | ** | ** | ** | * | ** | |
F × W × V × Y | ** | NS | ** | NS | ** |
Item | Treatment | AE | PFP | RE | HI |
---|---|---|---|---|---|
Year | 2022 | 8.94 a | 37.67 b | 36.12 a | 67.02 a |
2023 | 10.39 a | 39.14 a | 36.45 a | 66.37 a | |
Variety | XXLY1751 | 9.85 a | 40.99 a | 36.58 a | 67.25 a |
YLYMXXZ | 9.78 a | 36.92 b | 36.24 a | 66.4 b | |
Strategies | W1F1 | 67.12 bcd | |||
W1F2 | 10.55 a | 47.13 a | 34.72 b | 68.32 ab | |
W1F3 | 12.15 a | 41.4 c | 42.35 a | 69.82 a | |
W1F4 | 6.96 b | 31.35 e | 34.74 b | 66.93 bcd | |
W2F1 | 67.01 bcd | ||||
W2F2 | 10.83 a | 45.77 ab | 34.5 b | 65.27 de | |
W2F3 | 11.08 a | 39.02 d | 39.57 a | 67.21 bcd | |
W2F4 | 7.31 b | 30.6 e | 33.6 b | 64.69 e | |
W3F1 | 66.29 cde | ||||
W3F2 | 10.82 a | 45.63 b | 33.72 b | 66.29 cde | |
W3F3 | 11.71 a | 39.56 d | 41.21 a | 67.6 bc | |
W3F4 | 6.91 b | 30.12 e | 33.26 b | 65.32 de | |
SOV | F | ** | ** | ** | ** |
W | ** | ** | ** | ** | |
V | NS | ** | NS | ** | |
Y | NS | ** | NS | NS | |
F × W | ** | ** | ** | ** | |
F × W × V | NS | NS | NS | NS | |
F × W × Y | NS | NS | NS | NS | |
F × W × V × Y | NS | NS | NS | NS |
PH | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Olsen Phosphorus (mg kg−1) | Alkali-Hydrolysis Nitrogen (mg kg−1) | Exchangeable Potassium (mg kg−1) |
---|---|---|---|---|---|
5.1 | 34.8 | 1.6 | 13.8 | 166.8 | 106.4 |
Irrigation | RS | ES | LS | JS | HS | GS | MS |
---|---|---|---|---|---|---|---|
W1 | 0–20–30 | 0–20–30 | SF | 0–20–30 | 0–20–30 | 0–20–30 | DF |
W2 | 20–50–70 | 20–50–70 | SF | 20–50–70 | 20–50–70 | 20–50–70 | DF |
W3 | 10–30–50 | 10–30–50 | SF | 10–40–60 | 10–40–60 | 10–20–40 | DF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; He, X.; Wang, X.; Long, P. Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management. Plants 2024, 13, 1717. https://doi.org/10.3390/plants13121717
Zhu H, He X, Wang X, Long P. Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management. Plants. 2024; 13(12):1717. https://doi.org/10.3390/plants13121717
Chicago/Turabian StyleZhu, Haijun, Xiaoe He, Xuehua Wang, and Pan Long. 2024. "Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management" Plants 13, no. 12: 1717. https://doi.org/10.3390/plants13121717
APA StyleZhu, H., He, X., Wang, X., & Long, P. (2024). Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management. Plants, 13(12), 1717. https://doi.org/10.3390/plants13121717