Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus
Abstract
:1. Introduction
2. Results
2.1. Effectiveness of Extracts against J2 of N. aberrans
2.2. Nematocidal Effectiveness of the Fractions against J2 of N. aberrans
2.3. Comparison of Nematocidal Activity and Hatching Inhibition between the AQU Fraction and Commercial Chitosan
2.4. Identification of Compounds Present in AQU Fraction
2.5. Toxicity of Extracts against P. redivivus
3. Discussion
4. Materials and Methods
4.1. Obtaining Hydroalcoholic Extracts of T5, T2, AT5, and AT2
4.2. Liquid–Liquid Partition of AT5 Extract
4.3. Nematocidal Test on Nacobbus Aberrans J2
4.3.1. Obtaining Eggs and J2 of N. aberrans
4.3.2. Larvicidal Activity of Extracts against J2 of N. aberrans
4.4. Nematocidal Activity of AQU, DM, and EAC Fractions against J2 of N. aberrans
4.5. Comparing the Effectiveness of AQU Fraction and Commercial Nematicide against N. aberrans
4.6. Gas Chromatography–Mass Spectrometry Analysis of AQU Fraction
4.7. Nematocidal Test on Panagrellus redivivus Mix Population
4.7.1. Panagrellus redivivus Culturing
4.7.2. Nematocidal Activity of Extracts against P. redivivus Larvae
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niazi, A.R.; Ghafoor, A. Different ways to exploit mushrooms: A Review. All Life 2021, 14, 450–460. [Google Scholar] [CrossRef]
- Phan, C.-W.W.; Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms Technology and Applications; Zied, D.C., Pardo-Giménez, A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; p. 455. [Google Scholar]
- Grimm, D.; Wösten, H.A.B. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [PubMed]
- Zied, D.C.; Sánchez, J.E.; Noble, R.; Pardo-Giménez, A. Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy 2020, 10, 1239. [Google Scholar] [CrossRef]
- Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.S. Utilization of biomaterials as soil amendments and crop protection agents in integrated nematode management. In Plant, Soil and Microbes; Springer: Cham, Switzerland, 2016; pp. 203–224. [Google Scholar]
- Kang, D.-S.; Min, K.-J.; Kwak, A.-M.; Lee, S.-Y.; Kang, H. Defense response and suppression of Phytophthora blight disease of pepper by water extract from spent mushroom substrate of Lentinula edodes. Plant Pathol. J. 2017, 33, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Kwak, A.M.; Min, K.J.; Lee, S.Y.; Kang, H.W. Water extract from spent mushroom substrate of Hericium erinaceus suppresses bacterial wilt disease of tomato. Mycobiology 2015, 43, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Noshad, A.; Iqbal, M.; Iqbal, Z.; Bibi, H.; Saifullah; Bibi, S.; Shah, H.U. Aphidicidal potential of ethyl acetate extract from Pleurotus ostreatus. Sarhad J. Agric. 2015, 31, 101–105. [Google Scholar] [CrossRef]
- Tanimola, A.A.; Adedokun, O. Nematicidal potential of aqueous extracts of two mushroom species and spent mushroom substrate on Meloidogyne incognita and Meloidogyne javanica. Niger. J. Agric. Food Environ. 2020, 16, 110–119. [Google Scholar]
- Hahn, M.H.; May De Mio, L.L.; Kuhn, O.J.; Silveira Duarte, H.d.S. Nematophagous mushrooms can be an alternative to control Meloidogyne javanica. Biol. Control 2019, 138, 104024. [Google Scholar] [CrossRef]
- Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.D.J.; Sánchez, J.E.; Mendoza-de-Gives, P.; González-Cortázar, M.; Zamilpa, A.; Al-ani, L.K.T.; Sandoval-Castro, C.; de Freitas Soares, F.E.; Aguilar-Marcelino, L. The Possible Biotechnological Use of Edible Mushroom Bioproducts for Controlling Plant and Animal Parasitic Nematodes. Biomed. Res. Int. 2020, 2020, 6078917. [Google Scholar] [CrossRef] [PubMed]
- Colmenares-Cruz, S.; González-Cortazar, M.; Castañeda-Ramírez, G.S.; Andrade-Gallegos, R.H.; Sánchez, J.E.; Aguilar-Marcelino, L. Nematocidal activity of hydroalcoholic extracts of spent substrate of Pleurotus djamor on L3 larvae of Haemonchus contortus. Vet. Parasitol. 2021, 300, 109608. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Soares, F.E.; Nakajima, M.V.; Sufiate, L.B.; Satiro, S.L.A.; Honorato, G.E.; Vieira, F.F.; Porto, S.F.; Braga, F.R.; de Queiroz, J.H. Proteolytic and nematicidal potential of the compost colonized by Hypsizygus marmoreus. Exp. Parasitol. 2019, 197, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Hugo, L.A.G.; Filippe, E.d.F.S.; Joss, H.d.Q.; Angelica, d.S.G.; Jackson, V.A.; Fabio, R.B.; Iara, R.P.; Maria, C.M.K. Activity of the fungus Pleurotus ostreatus and of its proteases on Panagrellus sp. larvae. Afr. J. Biotechnol. 2015, 14, 1496–1503. [Google Scholar] [CrossRef]
- Kwok, O.C.H.; Plattner, R.; Weisleder, D.; Wicklow, D.T. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 1992, 18, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Heydari, R.; Pourjam, E.; Goltapeh, E.M. Antagonistic effect of some species of Pleurotus on the root-knot nematode, Meloidogyne javanica in vitro. Plant Pathol. J. 2006, 5, 173–177. [Google Scholar] [CrossRef]
- Li, G.-H.; Zhang, K.-Q. Nematode-Toxic Fungi and Their Nematicidal Metabolites. In Nematode-Trapping Fungi; Zhang, K.-Q., Hyde, K.D., Eds.; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2014; pp. 348–357. [Google Scholar]
- Pineda-Alegría, J.A.; Sánchez-Vázquez, J.E.; González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Cuevas-Padilla, E.J.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L. The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J. Med. Food 2017, 20, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.S.; Aneko, K.K.; Wei, L.I.; Oike, K.K. The toxin produced by Pleurotus ostreatus reduces the head size of nematodes. Biol. Pharm. Bull. 2008, 31, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Stadler, M.; Anke, H.; Sterner, O. Linoleic Acid- The nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Microbiology 1993, 160, 401–405. [Google Scholar] [CrossRef]
- Cortez-Hernández, M.; Rojas-Martínez, R.I.; Pérez-Moreno, J.; Ayala-Escobar, V.; Silva-Valenzuela, M.; Zavaleta-Mejía, E. Control biológico de Nacobbus aberrans mediante hongos antagonistas. Nematropica 2019, 49, 140–151. [Google Scholar]
- Cid del Prado-Vera, I.; Franco-Navarro, F.; Godinez-Vidal, D. Plant Parasitic Nematodes and Management Strategies of Major Crops in Mexico. In Sustainability in Plant and Crop Protection Plant Parasitic Nematodes in Sustainable Agriculture of North America; Subbotin, S.A., Chitambar, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1, pp. 31–49. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Cabrera-Hidalgo, A.J.; Valdovinos-Ponce, G.; Mora-Aguilera, G.; Rebollar-Alviter, A.; Marbán-Mendoza, N. Occurrence of Nacobbus aberrans in horticultural crops in Northwestern. Nematrópica 2014, 44, 107–117. [Google Scholar]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B. A Phytochemical perspective on plant defense against nematodes. Front. Plant Sci. 2020, 11, 602079. [Google Scholar] [CrossRef] [PubMed]
- Oguh, C.E.; Okpaka, C.O.; Ubani, C.S.; Okekaji, U.; Shaba, P.J.; Amadi, E.U. View of natural pesticides (biopesticides) and uses in pest management- A critical review. Asian J. Biotechnol. Genet. Eng. 2019, 2, 1–18. [Google Scholar]
- Yadav, S.; Patil, J.; Kanwar, R.S. The role of free living nematode population in the organic matter recycling. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2726–2734. [Google Scholar] [CrossRef]
- Ingham, E.R. Nematodes. In The Soil Biology Primer; Tugel, A.J., Lewandowsky, A.M., Happe-von Arb, D., Eds.; USDA: Washington, DC, USA, 2010; pp. 20–22. [Google Scholar]
- Iqbal, S.; Jones, M.G.K. Nematodes. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3, pp. 113–119. [Google Scholar]
- Pica-Granados, Y. Ensayo de toxicidad con el nemátodo Panagrellus redivivus. In Ensayos Toxicológicos para la Evaluación de Sustancias Químicas en Agua y Suelo. La Experiencia en México; SEMARNAT: Mexico City, Mexico, 2008; pp. 139–154. [Google Scholar]
- Rivas-Morales, C.; Oranday-Cárdenas, M.A.; Verde-Star, M.J. Actividad antioxidante y toxicidad. In Investigación en Plantas de Importancia Médica; OmniaScience: Palo Alto, CA, USA, 2016; pp. 351–410. [Google Scholar]
- Carrasco-Cabrera, C.P.; Bell, T.L.; Kertesz, M.A. Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Appl. Microbiol. Biotechnol. 2019, 103, 5831–5841. [Google Scholar] [CrossRef]
- Castañeda-Ramírez, G.S.; Lara-Vergara, I.Y.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Sánchez, J.E.; Ventura-Cordero, J.; García-Rubio, V.G.; Aguilar-Marcelino, L. In vitro Anthelmintic activity of extracts from coffee pulp waste, maize comb waste and Digitaria eriantha S. Hay alone or mixed, against Haemonchus contortus. Waste Biomass Valorization 2022, 13, 3523–3533. [Google Scholar] [CrossRef]
- Gomesa, E.H.; Soares, F.E.F.; Souza, D.C.; Lima, L.T.; Sufiate, B.L.; Ferreira, T.F.; Queiroz, J.H. Role of Synadenium grantii latex proteases in nematicidal activity on Meloidogyne incognita and Panagrellus redivivus. Braz. J. Biol. 2019, 79, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Sosa, A.L.; Girardi, N.S.; Rosso, L.C.; Salusso, F.; Etcheverry, M.G.; Passone, M.A. In vitro compatibility of Pimpinella anisum and Origanum vulgare essential oils with nematophagous fungi and their effects against Nacobbus aberrans. J. Pest Sci. 2020, 93, 1381–1395. [Google Scholar] [CrossRef]
- Keshari, N.; Kranti, K.V.V.S.K. Integrated Management of Phytopathogenic Nematodes Infesting Mushroom. In Management of Phytonematodes: Recent Advances and Future Challenges; Ali Ansari, R., Lizvi, R., Mahmood, I., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 1–339. [Google Scholar]
- Almutairi, F.M.; Khan, A.; Ajmal, M.R.; Khan, R.H.; Khan, M.F.; Lal, H.; Ullah, M.F.; Ahmad, F.; Ahamad, L.; Khan, A.; et al. Phytochemical analysis and binding interaction of cotton seed cake derived compounds with target protein of Meloidogyne incognita for nematicidal evaluation. Life 2022, 12, 2109. [Google Scholar] [CrossRef]
- Akshaya, S.; Krishnamoorthy, A.; Nakkeeran, S.; Poornima, K.; Sivakumar, U. Inhibitory potential of ethyl acetate extract from mushrooms against root-knot nematode (Meloidogyne incognita). J. Entomol. Zool. Stud. 2021, 9, 528–534. [Google Scholar]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural Sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.J.; Li, J.Y.; Wang, C.; Chen, S.L.; Yan, S.Z. Effects of the endophytic bacteria Bacillus cereus BCM2 on tomato root exudates and Meloidogyne incognita infection. Plant Dis. 2019, 103, 1551–1558. [Google Scholar] [CrossRef]
- Paez-León, S.Y.; Carrillo-Morales, M.; Gómez-Rodríguez, O.; López-Guillén, G.; Castañeda-Ramírez, G.S.; Hernández-Nuñéz, E.; Wong-Villarreal, A.; Aguilar-Marcelino, L. Nematicidal activity of leaf extract of Moringa oleifera Lam. against Haemonchus contortus and Nacobbus aberrans. J. Helminthol. 2022, 96, e13. [Google Scholar] [CrossRef]
- Gülmez, Ö.; Özdal, M.; Algur, Ö.F.; Yılmaz, B. Determination of chemical constituents and bioactive properties of alcohol extracts of Pleurotus sajor-caju and Pleurotus ostreatus. Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg. 2021, 11, 1734–1741. [Google Scholar] [CrossRef]
- Keshamma, E. Determination of bioactive compounds in edible mushroom Pleurotus eryngii. Int. J. Eng. Technol. Manag. Sci. 2022, 6, 830–834. [Google Scholar] [CrossRef]
- Tan, F.; Cheng, J.; Zhang, Y.; Jiang, X.; Liu, Y. Genomics Analysis and Degradation Characteristics of Lignin by Streptomyces Thermocarboxydus Strain DF3-3. Biotechnol. Biofuels Bioprod. 2022, 15, 78. [Google Scholar] [CrossRef]
- Fujita, R.; Yokono, M.; Ube, N.; Okuda, Y.; Ushijima, S.; Fukushima-sakuno, E.; Ueno, K.; Osaki-oka, K.; Ishihara, A. Suppression of Alternaria brassicicola infection by volatile compounds from spent mushroom substrates. J. Biosci. Bioeng. 2021, 132, 25–32. [Google Scholar] [CrossRef]
- Zai-qian, W. Nematicidal Activity of 2,4-Di-Tert-Butylphenol against Caenorhabditis Elegans. Environ. Sci. Biol. 2014, 132, 25–32. [Google Scholar]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Degenkolb, T.; Vilcinskas, A. Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi as Alternatives for Biological Control. Part I: Metabolites from Nematophagous Basidiomycetes and Non-Nematophagous Fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, X.; Huang, C.; Lu, Q.; Li, B.; Yao, Y. Reduced Meloidogyne incognita infection of tomato in the presence of castor and the involvement of fatty acids. Sci. Hortic. 2018, 237, 169–175. [Google Scholar] [CrossRef]
- Faizi, S.; Fayyaz, S.; Bano, S.; Yawar Iqbal, E.; Lubna, L.; Siddiqi, H.; Naz, A. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. J. Agric. Food Chem. 2011, 59, 9080–9093. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.L.; Becker, C.; Boughton, B.A.; Silva, T.S.; Oldach, K.; Firmino, A.A.P.; Callahan, D.L.; Sheedy, J.; Silveira, E.R.; Carneiro, R.M.D.G.; et al. Prospection and identification of nematotoxic compounds from canavalia ensiformis seeds effective in the control of the root knot nematode Meloidogyne incognita. Biotechnol. Res. Innov. 2017, 1, 87–100. [Google Scholar] [CrossRef]
- Velasco-Azorsa, R.; Cruz-Santiago, H.; Cid del Prado-Vera, I.; Ramirez-Mares, M.V.; del Rocío Gutiérrez-Ortiz, M.; Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Lira-de León, K.I.; Hernández-Carlos, B. Chemical characterization of plant extracts and evaluation of their nematicidal and phytotoxic potential. Molecules 2021, 26, 2216. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Ntalli, N.G. Botanical nematicides, recent findings. ACS Symp. Ser. 2014, 1172, 145–157. [Google Scholar]
- Cha, D.J.; Kim, J.; Kim, D.S. Nematicidal activities of three naphthoquinones against the pine wood nematode, Bursaphelenchus xylophilus. Molecules 2019, 24, 3634. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-x.; Song, B.-a. an Natural Nematicidal Active Compounds: Recent Research Progress and Outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Tucuch-Pérez, M.A.; Arredondo-Valdés, R.; Hernández-Castillo, F.D.; Ochoa-Fuentes, Y.M.; Laredo-Alcalá, E.I.; Anguiano-Cabello, J.C. Phytochemical Compounds from Desert Plants to Management of Plant-Parasitic Nematodes. In Aromatic and Medicinal Plants of Drylands and Deserts|Ecology, Ethnobiology and Potential Uses; CRC Press: Boca Raton, FL, USA, 2023; pp. 167–176. [Google Scholar]
- Wille, C.N.; Gomes, C.B.; Minotto, E.; Nascimento, J.S. Potential of aqueous extracts of basidiomycetes to control root-knot nematodes on lettuce. Hortic. Bras. 2019, 37, 54–59. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sprawka, I.; Sytykiewicz, H. Aphicidal activity of selected asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 2018, 145, 84–92. [Google Scholar] [CrossRef]
- Marques, J.; Dhiogo, F.; Carreira, N.; Ribeiro, F.; Filippe, B.; Freitas, E. De First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech 2019, 9, 1–6. [Google Scholar]
- Ahlawat, O.P.; Sing, R. Spent Substrate from Mushroom Industry, a Potential Dye Decolorizing Agent. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, WSMBMP-INRA, Arcachon, France, 4–7 October 2011; pp. 366–376. [Google Scholar]
- Armas-Tizapantzi, A.; Mata, G.; Hernández-Cuevas, L.V.; Montiel-González, A.M. Estructuras tipo toxocistos en Pleurotus ostreatus y P. Pulmonarius. Sci. Fungorum 2019, 49, e1250. [Google Scholar] [CrossRef]
- de Freitas Soares, F.E.; Sufiate, B.L.; de Queiroz, J.H. Nematophagous Fungi: Far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 2018, 52, 1–8. [Google Scholar]
- Lee, C.H.; Lee, Y.Y.; Chang, Y.C.; Pon, W.L.; Lee, S.P.; Wali, N.; Nakazawa, T.; Honda, Y.; Shie, J.J.; Hsueh, Y.P. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci. Adv. 2023, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tagkouli, D.; Bekiaris, G.; Pantazi, S.; Anastasopoulou, M.E.; Koutrotsios, G.; Mallouchos, A.; Zervakis, G.I.; Kalogeropoulos, N. Volatile profiling of Pleurotus eryngii and Pleurotus ostreatus cultivated on agricultural and agro-industrial by-products. Foods 2021, 10, 1287. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2019, 99, 1691–1699. [Google Scholar] [CrossRef]
- Veronico, P.; Sasanelli, N.; Troccoli, A.; Myrta, A.; Midthassel, A.; Butt, T. Evaluation of fungal volatile organic compounds for control the plant parasitic nematode Meloidogyne incognita. Plants 2023, 12, 1935. [Google Scholar] [CrossRef]
- Herbert-Doctor, L.A.; Saavedra-Aguilar, M.; Villarreal, M.L.; Cardoso-Taketa, A.; Vite-Vallejo, O. insecticidal and nematicidal effects of Agave tequilana juice against Bemisia tabaci and Panagrellus redivivus. Southwest. Entomol. 2016, 41, 27–40. [Google Scholar] [CrossRef]
- Pino-otín, M.R.; Val, J.; Ballestero, D.; Navarro, E.; Sánchez, E.; Mainar, A.M. Impact of Artemisia absinthium hydrolate extracts with nematicidal activity on non-target soil organisms of different trophic levels. Ecotoxicol. Environ. Saf. 2019, 180, 565–574. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Ballestero, D.; Navarro, E.; González-Coloma, A.; Val, J.; Mainar, A.M. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms. Chemosphere 2019, 216, 131–146. [Google Scholar] [CrossRef]
- Bua-art, S.; Saksirirat, W.; Kanokmedhakul, S.; Hiransalee, A.; Lekphrom, R. Extraction of bioactive compounds from luminescent mushroom (Neonothopanus nambi) and its effect on root-knot nematode (Meloidogyne incognita). KKU Res. J. 2010, 15, 727–737. [Google Scholar]
- Oka, Y. From Old-Generation to Next-Generation Nematicides. Agronomy 2020, 10, 1387. [Google Scholar] [CrossRef]
- Srinivasan, J.; Dillman, A.R.; Macchietto, M.G.; Heikkinen, L.; Lakso, M.; Fracchia, K.M.; Antoshechkin, I.; Mortazavi, A.; Wong, G.; Sternberg, P.W. The draft genome and Transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. Genetics 2013, 193, 1279–1295. [Google Scholar] [CrossRef]
- Chen, S.Y.; Dickson, D.W. A Technique for determining live second-stage juveniles of Heterodera glycines. J. Nematol. 2000, 32, 117–121. [Google Scholar]
- Xiang, N.; Lawrence, K.S. Optimization of in vitro techniques for distinguishing between live and dead second stage juveniles of Heterodera glycines and Meloidogyne incognita. PLoS ONE 2016, 11, e0154818. [Google Scholar] [CrossRef]
- Tarini, G.; Melo, A.S.; Fontana, L.F.; da Silva, E.; Bolanho, B.C.; Moreno, B.P.; Sarragiotto, M.H.; Dias-Arieira, C.R. Aqueous extracts of Crambe Abyssinica seed cake: Chemical composition and potential for nematode control. Ind. Crops Prod. 2020, 156, 112860. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, J.-A.; Wong-Villarreal, A.; Aguilar-Marcelino, L.; Yañez-Ocampo, G.; Hernández-Nuñéz, E.; Caspeta-Mandujano, J.M.; García-Flores, A.; Cruz-Arévalo, J.; Vargas-Uriostegui, P.; Gomez-Rodríguez, O. In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae. Braz. J. Microbiol. 2023, 54, 1127–1136. [Google Scholar] [CrossRef]
- Nakamura, M.; Ra, J.; Jee, Y.; Kim, J. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Anal. 2016, 25, 316–326. [Google Scholar] [CrossRef]
- Babaali, D.; Roeb, J.; Hammache, M.; Hallmann, J. Nematicidal potential of aqueous and ethanol extracts gained from Datura Stramonium, D. innoxia and D. tatula on Meloidogyne incognita. J. Plant Dis. Prot. 2017, 124, 339–348. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, M.; Medina-Medrano, J.R.; Cortez-Madrigal, H.; Angoa-Pérez, M.V.; Muñoz-Ruíz, C.V.; Villar-Luna, E. Nematicidal activity of wild plant extracts against second-stage juveniles of Nacobbus aberrans. Nematropica 2018, 48, 136–144. [Google Scholar]
- R Core Team. R: The R Project for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 3 February 2021).
Treatments | LC50 (CI 95%) | LC90 (CI 95%) | X2 | p-Value |
---|---|---|---|---|
AT2 | 4.11 (3.89–4.32) | 49.8 (42.85–56.73) | 6.90 | 0.141 |
AT5 | 2.73 (2.64–2.82) | 9.83 (9.26–10.4) | 8.05 | 0.089 |
T2 | 1.80 (1.75–1.86) | 6.12 (5.80–6.44) | 6.54 | 0.162 |
T5 | 0.96 (0.91- 1.01) | 5.56 (5.16–5.97) | 6.40 | 0.172 |
Treatments | Mean Mortality (%) ± Sd |
---|---|
AQU | 87.95 a ± 5.26 |
EAC | 62.43 b ± 10.22 |
DM | 46.55 b ± 7.33 |
MET 4% | 1.88 c ± 1.62 |
RT (min) | Compound | MW (gr/mol) | Structure |
---|---|---|---|
7.51 | 1,4:3,6-dianhydro-α-d-glucopyranose | 144.12 | |
9.81 | 5-oxo-l-prolinate methyl ester | 143.14 | |
11.44 | 2,4-Di-tert-butylphenol | 206.32 | |
12.97 | 1H-phenanthro[9,10-c] pyrazole | 218.0 | |
15.92 | hexadecanoic acid methyl ester | 270.45 | |
17.52 | 9,12-octadecadienoic acid (Z,Z) methyl ester | 294.47 | |
19.63 | 5-hydroxy-6,7,8-trimethoxy-2,3-dimethyl-chromone | 280.27 | |
23.36 | 17α(H), 21β(H)-25,30-bisnorhopane | 384.7 |
Treatments | LC50 (CI 95%) | LC90 (CI 95%) | X2 | p-Value |
---|---|---|---|---|
AT2 | 4.83 (4.28–5.38) | 25.12 (19.34–30.92) | 8.88 | 0.064 |
AT5 | 8.56 (7.04–10.09) | 93.15 (49.06–137.24) | 4.30 | 0.366 |
T2 | 1.37 (1.25–1.51) | 3.99 (3.43–4.56) | 4.04 | 0.40 |
T5 | 1.82 (1.64–2.00) | 5.34 (4.56–6.13) | 3.32 | 0.506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Arévalo, J.; Hernández-Velázquez, V.M.; Cardoso-Taketa, A.T.; González-Cortazar, M.; Sánchez-Vázquez, J.E.; Peña-Chora, G.; Villar-Luna, E.; Aguilar-Marcelino, L. Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus. Plants 2024, 13, 1777. https://doi.org/10.3390/plants13131777
Cruz-Arévalo J, Hernández-Velázquez VM, Cardoso-Taketa AT, González-Cortazar M, Sánchez-Vázquez JE, Peña-Chora G, Villar-Luna E, Aguilar-Marcelino L. Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus. Plants. 2024; 13(13):1777. https://doi.org/10.3390/plants13131777
Chicago/Turabian StyleCruz-Arévalo, Julio, Víctor M. Hernández-Velázquez, Alexandre Toshirrico Cardoso-Taketa, Manases González-Cortazar, José E. Sánchez-Vázquez, Guadalupe Peña-Chora, Edgar Villar-Luna, and Liliana Aguilar-Marcelino. 2024. "Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus" Plants 13, no. 13: 1777. https://doi.org/10.3390/plants13131777
APA StyleCruz-Arévalo, J., Hernández-Velázquez, V. M., Cardoso-Taketa, A. T., González-Cortazar, M., Sánchez-Vázquez, J. E., Peña-Chora, G., Villar-Luna, E., & Aguilar-Marcelino, L. (2024). Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans Phytonematode and the Non-Target Species Panagrellus redivivus. Plants, 13(13), 1777. https://doi.org/10.3390/plants13131777