Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil
Abstract
:1. Introduction
2. Results
2.1. Productivity
2.2. Leaf Anatomy and Microscopy
2.3. Photosynthetic Pigments
2.4. Oxidative Stress
2.5. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Soil and Compost
4.2. Plant Material, Experimental Set-Up, and Culture Conditions
4.3. Plant Anatomy—Microscopy
4.4. Photosynthetic Pigments
4.5. Oxidative Stress (H2O2 and MDA)
4.6. Isolation of Bacteria
4.7. In Vitro Antimicrobial Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Gonzalez-Herrera, R.; Martinez-Santibañez, E.; Pacheco-Avila, J.; Cabrera-Sansores, A. Leaching and dilution of fertilizers in the Yucatan karstic aquifer. Environ. Earth Sci. 2014, 72, 2879–2886. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Hefzy, M.; Zahran, M.M.A.A.; Efs, R. Response of lettuce (Lactuca sativa L.) plants to application of compost levels under various irrigation regimes. Middle East J. 2019, 8, 662–674. [Google Scholar]
- Commission Decision (EU) 2022/1244 of 13 July 2022 Establishing the EU Ecolabel Criteria for Growing Media and Soil Improvers (Notified under Document C(2022) 4758) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/dec/2022/1244/oj (accessed on 18 February 2023).
- Berbara, R.L.L.; García, A.C. Humic substances and plant defense metabolism. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NU, USA, 2014; Volume 1, pp. 297–319. [Google Scholar] [CrossRef]
- Andreev, N.; Ronteltap, M.; Boincean, B.; Lens, P. The effect of a terra preta-like soil improver on the germination and growth of radish and parsley. In Proceedings of the 1st International Conference on Terra Preta Sanitation, Hamburg, Germany, 28–29 August 2013; ISBN 978-3-00-046586-4. [Google Scholar]
- Calvo, P.; Nelson, L.M.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Hernández, T.; García, C. Soil restoration using composted plant residues: Effect on soil properties. Soil Tillage Res. 2009, 45, 109–117. [Google Scholar] [CrossRef]
- Bolduan, R.; Deller, B.; Kluge, R.; Mokry, M.; Flaig, H. Influence of mid-term application of composts on chemical, physical and biological soil properties of agricultural soils in field trials of practical importance. In Compost and Digestate Sustainability, Benefits, Impacts for the Environment and for Plant Production, Proceedings of the International Congress CODIS 2008, Solothurn, Switzerland, 27–29 February 2008; Research Institute of Organic Agriculture FiBL: Frick, Switzerland, 2008. [Google Scholar]
- Plaza, C.; Hernandez, D.; García-Gíl, J.C.; Polo, A. Microbial activity in pigslurry amended soils under semiarid conditions. Soil. Biol. Biochem 2004, 36, 1577–1585. [Google Scholar] [CrossRef]
- Favoino, E.; Hogg, D. Effects of composted organic waste on ecosystems—A specific angle: The potential contribution of biowaste to tackle Climate Change and references to the Soil Policy. In Compost and Digestate Sustainability, Benefits, Impacts for the Environment and for Plant Production, Proceedings of the International Congress CODIS 2008, Solothurn, Switzerland, 27–29 February 2008; Research Institute of Organic Agriculture FiBL: Frick, Switzerland, 2008. [Google Scholar]
- Bakker, P.A.H.M.; Berendsen, R.L.; Doornbos, R.F.; Wintermans, P.C.A.; Pieterse, C.M.J. The rhizosphere revisited: Root microbiomics. Front. Plant Sci. 2013, 4, 165. [Google Scholar] [CrossRef]
- Tyc, O.; Song, C.; Dickschat, J.S.; Vos, M.; Garbeva, P. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends Microbiol. 2017, 25, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Jia, S.; He, X.; Zhang, X.; Ye, L. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Chemosphere 2017, 188, 455–464. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Kałuza-Haładyn, A.; Sowinski, J.; Adamczewska-Sowinska, K. Effect of Differently Matured Compost Produced from Willow (Salix viminalis L.) on Growth and Development of Lettuce (Lactuca sativa L.). Biol. Life Sci. Forum 2021, 3, 7. [Google Scholar] [CrossRef]
- Eden, M.; Gerke, H.H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef]
- Agyarko, K.; Abunyewa, A.A.; Asiedu, E.K.; Heva, E. Dissolution of rock phosphate in animal manure soil amendment and lettuce growth. Eurasia J. Soil Sci. 2016, 5, 84–88. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; de Jesus Pires, K.C.; Schneider, I.A.H.; Silva, L.F.O.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Piwowar, A.; Harasym, J. The importance and prospects of the use of algae in agribusiness. Sustainability 2020, 12, 5669. [Google Scholar] [CrossRef]
- Renaud, M.; Chelinho, S.; Alvarenga, P.; Mourinha, C.; Palma, P.; Sousa, J.P.; Natal-da-Luz, T. Organic wastes as soil amendments—Effects assessment towards soil invertebrates. J. Hazard. Mater. 2017, 330, 149–156. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.J.; Dalmazo, G.O.; Morselli, T.B.G.A.; de Oliveira, V.F.S.; Corrệa, L.B.; Nora, L.; Corrêa, E.K. Composted slaughterhouse sludge as a substitute for chemical fertilizers in the cultures of lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.). Food Sci. Technol. 2018, 38, 91–97. [Google Scholar] [CrossRef]
- Dar, S.U.; Wu, Z.; Zhang, L.; Yu, P.; Qin, Y.; Shen, Y.; Zou, Y.; Poh, L.; Eichen, Y.; Achmon, Y. On the quest for novel bio-degradable plastics for agricultural field mulching. Front. Bioeng. Biotechnol. 2022, 10, 922974. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Zhang, X.; Wei, H.; Cui, L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006, 56, 274–285. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2009, 11, 861–905. [Google Scholar] [CrossRef] [PubMed]
- Bianco, R.L.; Rieger, M.; Sung, S.-J.S. Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 2000, 108, 71–78. [Google Scholar] [CrossRef]
- Stefi, A.L.; Vassilacopoulou, D.; Christodoulakis, N.S. Environmentally stressed summer leaves of the seasonally dimorphic Phlomisfruticosa and the relief through the L-Dopa decarboxylase (DDC). Flora 2019, 251, 11–19. [Google Scholar] [CrossRef]
- Stefi, A.L.; Mitsigiorgi, K.; Vassilacopoulou, D.; Christodoulakis, N.S. Response of young Nerium oleander plants to long-term non-ionizing radiation. Planta 2020, 251, 108. [Google Scholar] [CrossRef]
- Klimas, E.; Szymańska-Pulikowska, A.; Górka, B.; Wieczorek, P. Presence of plant hormones in composts made from organic fraction of municipal solid waste. J. Elem. 2016, 21, 1043–1053. [Google Scholar] [CrossRef]
- Pérez-Madruga, Y.; López-Padrón, I.; Reyes-Guerrero, Y. Algae as a natural alternative for the production of different crops. Cultiv. Trop. 2020, 41, 2. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Paxton, R.B. Yield and quality of lettuce, pumpkin, and watermelon varieties grown under five soil management practices. Int. J. Appl. Agric. Sci. 2021, 7, 57–65. [Google Scholar] [CrossRef]
- Zou, Y.; Qiu, B.; Lin, F.; Wu, W.; Guo, R.; Xing, J.; Zhao, Z.; Shpigelman, A.; Achmon, Y. Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.). Front. Sustain. Food Syst. 2023, 7, 1174528. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Li, J.; Sun, H.; Xu, Z. Remediation of alkaline soil with heavy metal contamination using tourmaline as a novel amendment. J. Environ. Chem. Eng. 2014, 2, 1281–1286. [Google Scholar] [CrossRef]
- Lakshmipathi, R.N.; Subramanyam, B.; Narotham Prasad, B.D. Microorganisms, organic matter recycling and plant health. In Plant Health Under Biotic Stress. Volume 1: Organic Strategies; Ansari, R.A., Mahmood, I., Eds.; Springer Nature: Singapore, 2019; pp. 59–72. [Google Scholar]
- Li, F.; Men, S.; Zhang, S.; Huang, J.; Puyang, X.; Wu, Z.; Huang, Z. Responses of low-quality soil microbial community structure and activities to application of a mixed material of humic acid, biochar, and super absorbent polymer. J. Microbiol. Biotechnol. 2020, 30, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, J.; Ketoja, E.; Seppänen, L.; Sari Luostarinen, S.; Fritze, H.; Pennanen, T.; Peltoniemi, K.; Velmala, S.; Hanajik, P.; Regina, K. Chemical composition controls the decomposition of organic amendments and influences the microbial community structure in agricultural soils. Carbon Manag. 2021, 12, 359–376. [Google Scholar] [CrossRef]
- Azim, K. Organic amendments to alleviate plant biotic stress. In Plant Health Under Biotic Stress. Volume 1: Organic Strategies; Ansari, R.A., Mahmood, I., Eds.; Springer Nature: Singapore, 2019; pp. 59–72. [Google Scholar]
- Hefner, M.; Amery, F.; Denaeghel, H.; Loades, K.; Kristensen, H.L. Composts of diverse green wastes improve the soil biological quality, but do not alleviate drought impact on lettuce (Lactuca sativa L.) growth. Soil Use Manag. 2024, 40, e13016. [Google Scholar] [CrossRef]
- Minasny, B.; Hong, S.Y.; Hartemink, A.E.; Kim, Y.H.; Kang, S.S. Soil pH increase under paddy in South Korea between 2000 and 2012. Agric. Ecosyst. Environ. 2016, 221, 205–213. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, S.I.; Saetre, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol. Biochem. 2000, 32, 1–10. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Blagodatskaya, E.V.; Anderson, T.-H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol. Biochem. 1998, 30, 1269–1274. [Google Scholar] [CrossRef]
- Saito, H.; Kobayashi, H. Bacterial Responses to Alkaline Stress. Sci. Prog. 2003, 86, 271–282. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.P.; Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef]
- Christodoulakis, N.S.; Margaris, N.S. The Growth of Corn (Zea mays) and Sunflower (Helianthus annuus) Plants is Affected by Water and Sludge from a Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 1996, 57, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Tsakou, A.; Roulia, M.; Christodoulakis, N.S. Growth of Cotton plants (Gossypium hirsutum) as Affected by Water and Sludge from a Sewage Treatment Plant. I. Plant Phenology and Development. Bull. Environ. Contam. Toxicol. 2001, 66, 735–742. [Google Scholar] [CrossRef]
- Tsakou, A.; Roulia, M.; Christodoulakis, N.S. Growth of Cotton plants (Gossypium hirsutum) as Affected by Water and Sludge from a Sewage Treatment Plant. II. Seed and Fiber Yield and Heavy Metal Accumulation. Bull. Environ. Contam. Toxicol. 2001, 66, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Tsakou, A.; Roulia, M.; Christodoulakis, N.S. Growth of Flax plants (Linum usitatissimum) as Affected by Water and Sludge from a Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 2002, 68, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tsakou, A.; Roulia, M.; Christodoulakis, N.S. Growth Parameters and Heavy Metal Accumulation in Poplar Tree Cultures (Populus euramericana) Utilizing Water and Sludge from a Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 2003, 71, 330–337. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.-T.; Yang, X.-D.; Zhang, J.-J.; Lin, Z.-A.; Zhao, B.-Q. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J. Integr. Agric. 2015, 14, 2500–2511. [Google Scholar] [CrossRef]
- Powlson, D.S.; Prookes, P.C.; Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982. [Google Scholar] [CrossRef]
- Page, A.L. (Ed.) Methods of Soil Analysis, Part. 2, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Nelson, R.E. Carbonate and gypsum. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982; pp. 181–197. [Google Scholar] [CrossRef]
- Christodoulakis, N.S.; Kogia, D.; Mavroeidi, D.; Fasseas, C. Anatomical and cytochemical investigation on the leaf of Teucrium polium L, a pharmaceutical shrub of the Greek phryganic formations. J. Biol. Res. 2010, 14, 199–209. [Google Scholar]
- Lichtenthaler, H.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1985, 11, 591–592. [Google Scholar] [CrossRef]
- Gechev, T.; Mehterov, N.; Denev, I.; Hille, J. A simple and powerful approach for isolation of Arabidopsis mutants with increased tolerance to H2O2-induced cell death. Methods Enzymol. 2013, 527, 203–220. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant system in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Xu, J.; Duan, X.; Yang, J.; Beeching, J.R.; Zhang, P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol. 2013, 161, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Kanini, S.G.; Katsifas, E.A.; Savvides, A.L.; Karagouni, A.D. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. BioMed Res. Int. 2013, 2013, 387230. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M. Handbook of Microbiological Media, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline; CLSI Document M44-A; CLSI: Wayne, PA, USA, 2004. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed.; CLSI Document M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
Inhibition | |||||||
---|---|---|---|---|---|---|---|
Soil Sample | Strains | B. subtilis | S. aureus | P. aeruginosa | E. coli | C. albicans | S. cerevisiae |
Soil | ATHUBA 2566 | ||||||
ATHUBA 2567 | |||||||
ATHUBA 2568 | |||||||
ATHUBA 2569 | |||||||
ATHUBA 2570 | |||||||
Soil + Fertilizer | ATHUBA 2576 | ||||||
ATHUBA 2579 | |||||||
ATHUBA 2581 | |||||||
ATHUBA 2584 | |||||||
ATHUBA 2587 | |||||||
VitaGreen 5% | No bioactive strains | ||||||
VitaGreen 10% | ATHUBA 2616 | ||||||
ATHUBA 2620 | |||||||
VitaGreenPLUS 5% | No bioactive strains | ||||||
VitaGreenPLUS 10% | ATHUBA 2627 | ||||||
ATHUBA 2632 | |||||||
Ginagro 5% | ATHUBA 2670 | ||||||
ATHUBA 2671 | |||||||
ATHUBA 2674 | |||||||
Ginagro 10% | No bioactive strains |
Clay (%) | Sand (%) | Silt (%) | pH | Mg2+ (mg/kg) | K+ (mg/kg) | Na+ (mg/kg) | Ca2+ (mg/kg) | P (mg/kg) | N (%) | Total Organic Carbon (%) | Organic Parts (%) | C.E.C. (meq/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
14.2 | 47.8 | 38 | 5.8 | 197 | 82 | 70 | 1540 | 7 | 0.175 | 2.223 | 4.446 | 16.78 |
Vita Green | Vita Green Plus | Ginagro | |
---|---|---|---|
Composition | Plant waste | Plant and food waste | Cotton ginner plant waste |
Adjustments | Aeration and surface watering | Aeration and surface watering | Aeration and surface watering |
Soil Moisture (%) | 49.6 | 49.5 | 63.49 |
Conductivity (mS/cm) (1/5) | 0.7 | 2.7 | 1.8 |
pH | 7.8 | 7.7 | 8.62 |
Relative Density (g/mL) | 0.34 | 0.42 | 0.32 |
Ash (%) | 32.3 | 33.3 | - |
Organic Parts (%) | 67.7 | 63.7 | 66.8 |
Total Organic Carbon (%) | 39.2 | 36.9 | - |
Total Kjeldahl Nitrogen (%) | 1.8 | 3.2 | 3.6 |
Humic Acids (%) (maturity index) | 5 | 8.2 | 8.5 |
Pathogens (over approved limit) | Negative | Negative | Negative |
Group No. | Treatment | Abbreviation | pH |
---|---|---|---|
1 | Soil | S | 6.23 |
2 | Soil with a commercial fertilizer (Complesal) | S + F | 6.18 |
3 | Soil with 5% w/w Vita Green compost | VG 5% | 7.24 |
4 | Soil with 10% w/w Vita Green compost | VG 10% | 7.45 |
5 | Soil with 5% w/w Vita Green Plus compost | PLUS 5% | 7.04 |
6 | Soil with 10% w/w Vita Green Plus compost | PLUS 10% | 7.23 |
7 | Soil with 5% w/w Ginagro compost | GIN 5% | 7.90 |
8 | Soil with 10% w/w Ginagro compost | GIN 10% | 8.12 |
Indicator Strains | Media | Incubation Temperature | Accession Number |
---|---|---|---|
Bacillus subtilis | Nutrient Agar/Broth | 30 °C | DSM 10 |
Escherichia coli | Nutrient Agar/Broth | 37 °C | NEB dh5a |
Pseudomonas aeruginosa | Nutrient Agar/Broth | 37 °C | DSM 50071 |
Candida albicans | Yeast Extract Agar/Broth | 37 °C | DSM 1386 |
Staphylococcus aureus | Nutrient Agar/Broth | 37 °C | DSM 346 |
Saccharomyces cerevisiae | Yeast Extract Agar/Broth | 30 °C | DSM 1333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsigiorgi, K.; Ntroumpogianni, G.C.; Katsifas, E.A.; Hatzinikolaou, D.G.; Chassapis, K.; Skampa, E.; Stefi, A.L.; Christodoulakis, N.S. Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil. Plants 2024, 13, 1872. https://doi.org/10.3390/plants13131872
Mitsigiorgi K, Ntroumpogianni GC, Katsifas EA, Hatzinikolaou DG, Chassapis K, Skampa E, Stefi AL, Christodoulakis NS. Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil. Plants. 2024; 13(13):1872. https://doi.org/10.3390/plants13131872
Chicago/Turabian StyleMitsigiorgi, Konstantina, Georgia C. Ntroumpogianni, Efstathios A. Katsifas, Dimitris G. Hatzinikolaou, Konstantinos Chassapis, Elisavet Skampa, Aikaterina L. Stefi, and Nikolaos S. Christodoulakis. 2024. "Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil" Plants 13, no. 13: 1872. https://doi.org/10.3390/plants13131872