Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress
Abstract
:1. Introduction
- Does proline accumulation under drought and salt stress confer stress tolerance to plants’ transgenic for proline metabolism genes, or is it merely a consequence of plant stress?
- What is the role of osmotic adjustment in improving stress tolerance in plants transgenic for proline metabolism genes?
- Is it proline metabolism or proline itself that confers tolerance to plants under conditions of drought and salt stress?
- Can proline increase tolerance to drought and salinity by acting as an ROS scavenger?
2. Results
2.1. Summary Effects
2.2. Heterogeneity and Moderation Analysis under Drought and Salinity Stress
2.3. Detailed Moderation Effect Analysis
2.3.1. Proline
2.3.2. Plant Height
2.3.3. Seed Weight and Chlorophyll
2.3.4. Root Length and Plant Weight
2.3.5. Peroxidase (POD), Superoxide Dismutase (SOD), Malondialdehyde (MDA), Catalase (CAT), and Ascorbate Peroxidase (APX)
2.3.6. Relative Water Content (RWC)
2.3.7. Stomatal Conductance, Relative Electric Conductance, and Survival
2.4. Heterogeneity and Moderation Analysis under Non Stress Conditions
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Collection
- (a)
- Only transgenic plants of any plant species, including insertional mutants;
- (b)
- Only drought or salinity stress;
- (c)
- Only proline metabolic genes (both anabolic and catabolic);
- (d)
- No exogenous proline treatments;
- (e)
- No mutants or allelic variant;
- (f)
- All the measures are expressed as fresh weight.
5.2. Effect Size and Moderation Analysis
5.3. Meta-Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
P5C | -pyrroline-5-carboxylate |
P5CS | 1-pyrroline-5-carboxylate synthetase |
OAT | Ornithine aminotransferase |
GSA | Glutamate-5-semialdehyde |
P5CR | -pyrroline-5-carboxylate reductase |
ProDH | Proline dehydrogenase |
P5CDH | -pyrroline-5-carboxylate dehydrogenase |
CaMV35S | Cauliflower Mosaic Virus 35S promoter |
ACT | ACT constitutive promoter |
AIPC | ABA inducible promoter complex |
POD | Peroxidase |
SOD | Superoxide dismutase |
CAT | Catalase |
APX | Ascorbate peroxidase |
RWC | Relative water content |
Rec | Relative electric conductivity |
References
- Waqas, M.; Van Der Straeten, D.; Geilfus, C.M. Plants’ cry’for help through acoustic signals. Trends Plant Sci. 2023, 28, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, T.; Shen, G.; Smith, J.; Zhang, H. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. Plants 2024, 13, 1238. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Forlani, G.; Trovato, M.; Funck, D.; Signorelli, S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2019; pp. 73–97. [Google Scholar]
- Trovato, M.; Forlani, G.; Signorelli, S.; Funck, D. Proline metabolism and its functions in development and stress tolerance. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–72. [Google Scholar]
- Signorelli, S. The fermentation analogy: A point of view for understanding the intriguing role of proline accumulation in stressed plants. Front. Plant Sci. 2016, 7, 213126. [Google Scholar] [CrossRef] [PubMed]
- Bhaskara, G.B.; Yang, T.H.; Verslues, P.E. Dynamic proline metabolism: Importance and regulation in water limited environments. Front. Plant Sci. 2015, 6, 147002. [Google Scholar] [CrossRef]
- KAVI KISHOR, P.B.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Bauduin, S.; Latini, M.; Belleggia, I.; Migliore, M.; Biancucci, M.; Mattioli, R.; Francioso, A.; Mosca, L.; Funck, D.; Trovato, M. Interplay between proline metabolism and ROS in the fine tuning of root-meristem size in arabidopsis. Plants 2022, 11, 1512. [Google Scholar] [CrossRef]
- Hunter, J.E.; Schmidt, F.L. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings; Sage: Newcastle upon Tyne, UK, 2004. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Controlling the risk of spurious findings from meta-regression. Stat. Med. 2004, 23, 1663–1682. [Google Scholar] [CrossRef]
- Mansour, M.M.F.; Ali, E.F. Evaluation of proline functions in saline conditions. Phytochemistry 2017, 140, 52–68. [Google Scholar] [CrossRef]
- Spormann, S.; Nadais, P.; Sousa, F.; Pinto, M.; Martins, M.; Sousa, B.; Fidalgo, F.; Soares, C. Accumulation of proline in plants under contaminated soils—Are we on the same page? Antioxidants 2023, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998, 21, 535–553. [Google Scholar] [CrossRef]
- Atta, N.; Shahbaz, M.; Farhat, F.; Maqsood, M.F.; Zulfiqar, U.; Naz, N.; Ahmed, M.M.; Hassan, N.U.; Mujahid, N.; Mustafa, A.E.Z.M.; et al. Proline-mediated redox regulation in wheat for mitigating nickel-induced stress and soil decontamination. Sci. Rep. 2024, 14, 456. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Rehman, A.U.; Bashir, F.; Ayaydin, F.; Kóta, Z.; Páli, T.; Vass, I. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol. Plant. 2021, 172, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Hare, P.; Cress, W. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997, 21, 79–102. [Google Scholar] [CrossRef]
- Fabro, G.; Kovács, I.; Pavet, V.; Szabados, L.; Alvarez, M.E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol.-Plant-Microbe Interact. 2004, 17, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Marchese, D.; D’Angeli, S.; Altamura, M.M.; Costantino, P.; Trovato, M. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol. Biol. 2008, 66, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Verslues, P.E.; Sharma, S. Proline metabolism and its implications for plant-environment interaction. In The Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2010; Volume 8. [Google Scholar]
- Zhang, L.; Becker, D.F. Connecting proline metabolism and signaling pathways in plant senescence. Front. Plant Sci. 2015, 6, 552. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Trovato, M. Proline affects flowering time in Arabidopsis by modulating FLC expression: A clue of epigenetic regulation? Plants 2022, 11, 2348. [Google Scholar] [CrossRef]
- Nanjo, T.; Kobayashi, M.; Yoshiba, Y.; Sanada, Y.; Wada, K.; Tsukaya, H.; Kakubari, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 1999, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Samach, A.; Onouchi, H.; Gold, S.E.; Ditta, G.S.; Schwarz-Sommer, Z.; Yanofsky, M.F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Székelyg, G.; Ábrahám, E.; Cseplo, A.; Rigó, G.; Zsigmond, L.; Csiszar, J.; Ayaydin, F.; Strizhov, N.; Jasik, J.; Schmelzer, E.; et al. DuplicatedP5CSgenes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008, 53, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Falasca, G.; Sabatini, S.; Altamura, M.M.; Costantino, P.; Trovato, M. The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol. Plant. 2009, 137, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Funck, D.; Winter, G.; Baumgarten, L.; Forlani, G. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol. 2012, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Biancucci, M.; Lonoce, C.; Costantino, P.; Trovato, M. Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol. 2012, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Biancucci, M.; El Shall, A.; Mosca, L.; Costantino, P.; Funck, D.; Trovato, M. Proline synthesis in developing microspores is required for pollen development and fertility. BMC Plant Biol. 2018, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Biancucci, M.; Mattioli, R.; Moubayidin, L.; Sabatini, S.; Costantino, P.; Trovato, M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC Plant Biol. 2015, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Brini, F.; Mseddi, K.; Rhizopoulou, S.; Jones, M.A. A holistic and sustainable approach linked to drought tolerance of Mediterranean crops. Front. Plant Sci. 2023, 14, 1167376. [Google Scholar] [CrossRef]
- Ikram, M.; Rauf, A.; Rao, M.J.; Maqsood, M.F.K.; Bakhsh, M.Z.M.; Ullah, M.; Batool, M.; Mehran, M.; Tahira, M. CRISPR-Cas9 based molecular breeding in crop plants: A review. Mol. Biol. Rep. 2024, 51, 227. [Google Scholar] [CrossRef]
- Iqbal, H.; Yaning, C.; Waqas, M.; Raza, S.T.; Shareef, M.; Ahmad, Z. Salinity and exogenous H2O2 improve gas exchange, osmoregulation, and antioxidant metabolism in quinoa under drought stress. Physiol. Plant. 2023, 175, e14057. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, K.B.; Abdelly, C.; Savouré, A. How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 2014, 80, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Alia; Mohanty, P.; Matysik, J. Effect of proline on the production of singlet oxygen. Amino Acids 2001, 21, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Villamor, J.G.; Verslues, P.E. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol. 2011, 157, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Franzisky, B.L.; Sölter, J.; Xue, C.; Harter, K.; Stahl, M.; Geilfus, C.M. In planta exploitation of leaf apoplastic compounds: A window of opportunity for spatiotemporal studies of apoplastic metabolites, hormones and physiology. Biorxiv 2023. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A meta-analysis of the impacts of genetically modified crops. PloS ONE 2014, 9, e111629. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Veresoglou, S.D.; Leifheit, E.F.; Rillig, M.C. Arbuscular mycorrhizal influence on zinc nutrition in crop plants—A meta-analysis. Soil Biol. Biochem. 2014, 69, 123–131. [Google Scholar] [CrossRef]
- Lehmann, A.; Rillig, M.C. Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi? Soil Biol. Biochem. 2015, 88, 298–302. [Google Scholar] [CrossRef]
- Wujeska, A.; Bossinger, G.; Tausz, M. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: A meta-analysis. Tree Physiol. 2013, 33, 1018–1029. [Google Scholar] [CrossRef]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econom. J. Econom. Soc. 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Williams, R.L. A note on robust variance estimation for cluster-correlated data. Biometrics 2000, 56, 645–646. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Han, Z.; Shang, X.; Shao, L.; Wang, Y.; Zhu, X.; Fang, W.; Ma, Y. Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress. PeerJ 2021, 9, e11268. [Google Scholar] [CrossRef]
- Guo, Y.; Ping, W.; Chen, J.; Zhu, L.; Zhao, Y.; Guo, J.; Huang, Y. Meta-analysis of the effects of overexpression of WRKY transcription factors on plant responses to drought stress. BMC Genet. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ma, Y.; Zheng, D.; Wisniewski, M.; Cheng, Z.M. Meta-analysis of the effect of overexpression of dehydration-responsive element binding family genes on temperature stress tolerance and related responses. Front. Plant Sci. 2018, 9, 365405. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Cochran, W.G. The combination of estimates from different experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Viechtbauer, W.; Cheung, M.W.L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 2010, 1, 112–125. [Google Scholar] [CrossRef] [PubMed]
Parameter | Q Test | PI | Exp | % Change | |||
---|---|---|---|---|---|---|---|
Proline | 0.3906 | 0.0000 | 99.53% | 0.53/1.92 | 0.6939 | 2.00 | 100% |
Plant height | 0.0234 | 0.0000 | 97.63% | 0.03/0.65 | 0.3445 | 1.44 | 44% |
Seed number | 0.2817 | 0.0000 | 99.33% | 0.60/5.40 | 0.5874 | 1.80 | 80% |
Seed weight | 0.0155 | 0.0000 | 81.21% | 1.02/1.73 | 0.2810 | 1.32 | 32% |
Chlorophyll | 0.0250 | 0.0000 | 83.54% | 1.01/1.91 | 0.3289 | 1.39 | 39% |
Root length | 0.0279 | 0.0000 | 98.74% | 0.15/0.83 | 0.4400 | 1.63 | 63% |
Plant weight | 0.0264 | 0.0000 | 96.37% | 1.32/2.53 | 0.6021 | 1.83 | 83% |
POD activity | 0.0074 | 0.0000 | 92.00% | 1.03/1.49 | 0.2129 | 1.24 | 24% |
SOD activity | 0.0550 | 0.0000 | 98.43% | 0.69/1.78 | 0.1013 | 1.11 | 11% |
MDA activity | 0.0434 | 0.0000 | 92.84% | −0.50/−1.14 | −0.2860 | 0.75 | −25% |
CAT activity | 0.2044 | 0.0000 | 96.39% | 0.58/3.57 | 0.3671 | 1.44 | 44% |
APX activity | 0.0909 | 0.0000 | 92.36% | −0.37/0.84 | 0.2366 | 1.26 | 26% |
RWC | 0.0012 | 0.0000 | 83.68% | 1.00/1.15 | 0.0665 | 1.07 | 7% |
Stomatal conductance | 0.0461 | 0.0000 | 81.12% | 0.01/0.87 | 0.4325 | 1.54 | 54% |
Electric conductivity | 0.0365 | 0.0000 | 97.28% | 0.94/1.00 | −0.1156 | 0.89 | −11% |
Survival | 0.0177 | 0.0000 | 74.90% | 1.76/3.17 | 0.8582 | 2.36 | 136% |
Parameter | Q Test | PI | Exp | % Change | |||
---|---|---|---|---|---|---|---|
Proline | 0.0218 | 0.0000 | 71.60% | 1.25/2.29 | 0.5241 | 1.64 | 64% |
Plant height | 0.0027 | 0.0000 | 68.79% | 0.92/1.16 | 0.0346 | 1.04 | 4% |
Seed number | 0.0063 | 0.0000 | 73.94% | 0.88/1.25 | 0.0457 | 1.05 | 5% |
Seed weight | 0.0038 | 0.0343 | 32.26% | 0.89/1.20 | 0.0348 | 1.04 | 4% |
Chlorophyll | 0.0012 | 0.0025 | 54.37% | 0.95/1.11 | 0.0265 | 1.03 | 3% |
Root length | 0.0019 | 0.0000 | 0.68% | 1.09/1.12 | 0.1032 | 1.11 | 11% |
Plant weight | 0.0005 | 0.0000 | 62.94% | 0.96/1.07 | 0.0124 | 1.01 | 1% |
POD activity | 0.0000 | 0.6647 | 0.00% | 0.99/1.15 | 0.0615 | 1.06 | 6% |
SOD activity | 0.0127 | 0.0000 | 83.16% | −0.24/0.24 | 0.0005 | 1.00 | 0% |
MDA activity | 0.0055 | 0.0000 | 80.07% | 0.84/1.09 | −0.0468 | 0.95 | −5% |
CAT activity | 0.0396 | 0.0000 | 74.29% | −0.29/0.67 | 0.1416 | 1.15 | 15% |
APX activity | 0.0434 | 0.0000 | 84.32% | 0.91/1.34 | 0.0980 | 1.10 | 10% |
RWC | 0.0000 | 0.9893 | 0.00% | 0.97/1.01 | −0.0060 | 0.99 | −1% |
Stomatal conductance | 0.0032 | 0.0204 | 48.52% | 0.91/1.20 | 0.0421 | 1.04 | 4% |
Electric conductivity | 0.0000 | 0.9583 | 0.00% | 0.94/1.00 | −0.0302 | 0.97 | −3% |
Survival | 0.0000 | 1.0000 | 0.00% | 0.94/1.06 | 0.0000 | 1.00 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzetti, M.; Bertolini, E.; Trovato, M. Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. Plants 2024, 13, 1913. https://doi.org/10.3390/plants13141913
Renzetti M, Bertolini E, Trovato M. Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. Plants. 2024; 13(14):1913. https://doi.org/10.3390/plants13141913
Chicago/Turabian StyleRenzetti, Marco, Elisa Bertolini, and Maurizio Trovato. 2024. "Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress" Plants 13, no. 14: 1913. https://doi.org/10.3390/plants13141913
APA StyleRenzetti, M., Bertolini, E., & Trovato, M. (2024). Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. Plants, 13(14), 1913. https://doi.org/10.3390/plants13141913