Influence of Bed Depth on the Development of Tropical Ornamental Plants in Subsurface Flow Treatment Wetlands for Municipal Wastewater Treatment: A Pilot-Scale Case
Abstract
:1. Introduction
2. Methods
2.1. Site Description
2.2. Description of the Experimental System
2.3. Plant Development
2.4. Environmental Parameters and Pollutant Monitoring
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Vegetative Development
3.2. Heliconia latispatha
3.3. Strelitzia reginae
3.4. Alpinia purpurata
3.5. Behavior of pH, DO, EC and Temperature in HSSF-CWs
3.6. Pollutant Removal
4. Discussion
4.1. Chemical Oxygen Demand
4.2. TSS
4.3. Nitrate
4.4. Ammonium
4.5. Total Nitrogen
4.6. Total Phosphorus
4.7. Total Coliforms and Fecal Coliforms
4.8. Plant Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vymazal, J. The Historical Development of Constructed Wetlands for Wastewater Treatment. Land 2022, 11, 174. [Google Scholar] [CrossRef]
- Herazo, L.C.S.; Zurita, F.; Nani, G.; Del Ángel-Coronel, O.A.; Aguilar, F.A.A. Treatment of swine effluent mixed with domestic wastewater and vegetation development in monoculture and polyculture horizontal subsurface flow wetlands. Ecol. Eng. 2021, 173, 106432. [Google Scholar] [CrossRef]
- Pyakurel, P.; Marasini, R. Policy planning to achieve sustainable development goals for low-income nations. Environ. Dev. 2021, 40, 100673. [Google Scholar] [CrossRef]
- Zitácuaro-Contreras, I.; Vidal-Álvarez, M.; Hernández y Orduña, M.G.; Zamora-Castro, S.A.; Betanzo-Torres, E.A.; Marín-Muñíz, J.L.; Sandoval-Herazo, L.C. Environmental, Economic, and Social Potentialities of Ornamental Vegetation Cultivated in Constructed Wetlands of Mexico. Sustainability 2021, 13, 6267. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Pascual, A.; Álvarez, J.A.; de la Varga, D.; Arias, C.A.; Van Oirschot, D.; Kilian, R.; Soto, M. Horizontal flow aerated constructed wetlands for municipal wastewater treatment: The influence of bed depth. Sci. Total Environ. 2024, 908, 168257. [Google Scholar] [CrossRef] [PubMed]
- Engida, T.; Wu, J.M.; Xu, D.; Wu, Z.B. Review paper on horizontal subsurface flow constructed wetlands: Potential for their use in climate change mitigation and treatment of wastewater. Appl. Ecol. Environ. Res. 2020, 18, 1051–1089. [Google Scholar] [CrossRef]
- De la Varga, D.; Ruiz, I.; Soto, M. Winery wastewater treatment in subsurface constructed wetlands with different bed depths. Water Air Soil Pollut. 2013, 224, 1485. [Google Scholar] [CrossRef]
- Zurita, F.; Vymazal, J. Oportunities and challenges of using constructed wetlands for the treatment of high-strength distillery effluents: A review. Ecol. Eng. 2023, 196, 107097. [Google Scholar] [CrossRef]
- Ren, Y.X.; Zhang, H.; Wang, C.; Yang, Y.Z.; Qin, Z.; Ma, Y. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage. J. Environ. Sci. Health A 2011, 46, 777–782. [Google Scholar] [CrossRef]
- Mburu, C.; Kipkemboi, J.; Kimwaga, R. Impact of substrate type, depth and retention time on organic matter removal in vertical subsurface flow constructed wetland mesocosms for treating slaughterhouse wastewater. Phys. Chem. Earth A/B/C 2019, 114, 102792. [Google Scholar] [CrossRef]
- Zurita, F.; Belmont, M.A.; De Anda, J.; White, J.R. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci. Technol. 2011, 63, 654–659. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E.; Gallegos-Pérez, M.P.; Amaya-Tejeda, S.I. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 2020, 147, 105658. [Google Scholar] [CrossRef]
- Fernández-Echeverria, E.; Herazo, L.S.; Zurita, F.; Betanzo-Torres, E.; Sandoval-Herazo, M. Development of Heliconia latispatha in constructed wetlands, for the treatment of swine/domestic wastewater in tropical climates, with PET as a substitute for the filter medium. Rev. Mex. Ing. Quim. 2022, 21, IA2811. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Gurung, A.; Kumar, R. Bird of Paradise (Strelitzia reginae): A low maintenance, high potential ornamental plant. Ind. Farmer 2020, 7, 37–43. [Google Scholar]
- Méndez-Mendoza, A.S.; Bello-Mendoza, R.; Herrera-López, D.; Mejía-González, G.; Calixto-Romo, A. Performance of constructed wetlands with ornamental plants in the treatment of domestic wastewater under the tropical climate of South Mexico. Water Pract. Technol. 2015, 10, 110–123. [Google Scholar] [CrossRef]
- Leiva, A.M.; Núñez, R.; Gómez, G.; López, D.; Vidal, G. Performance of ornamental plants in monoculture and polyculture horizontal subsurface flow constructed wetlands for treating wastewater. Ecol. Eng. 2018, 120, 116–125. [Google Scholar] [CrossRef]
- Del Toro Farías, A.; Zurita Martínez, F. Changes in the nitrification-denitrification capacity of pilot-scale partially saturated vertical flow wetlands (with corncob in the free-drainage zone) after two years of operation. Int. J. Phytoremediat. 2021, 23, 829–836. [Google Scholar] [CrossRef]
- Song, H.L.; Nakano, K.; Taniguchi, T.; Nomura, M.; Nishimura, O. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresour. Technol. 2009, 100, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.; Pervez, A.; Khattak, B.N.; Ahmad, R. Constructed wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes. CLEAN–Soil Air Water 2017, 45. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water 2018, 10, 678. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Xu, J.; Sheng, L. Study on clogging mechanisms of constructed wetlands from the perspective of wastewater electrical conductivity change under different substrate conditions. J. Environ. Manag. 2021, 292, 112813. [Google Scholar] [CrossRef]
- Rössel-Kipping, E.D.; Gaytan-Saldaña, N.A.; Ortiz-Laurel, H.; Cisneros-Pérez, R.; Cisneros-Almaza, R. Evaluation of the functionality of a constructed wetland system under semidesert and saline conditions. Agro Prod. 2020, 13, 115–121. [Google Scholar] [CrossRef]
- Sandoval, L.; Marín-Muñíz, J.L.; Adame-García, J.; Fernández-Lambert, G.; Zurita, F. Effect of Spathiphyllum blandum on the removal of ibuprofen and conventional pollutants from polluted river water, in fully saturated constructed wetlands at mesocosm level. J. Water Health 2020, 18, 224–228. [Google Scholar] [CrossRef]
- Almeida, A.; Carvalho, F.; Imaginário, M.J.; Castanheira, I.; Prazeres, A.R.; Ribeiro, C. Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: Effect of hydraulic load. Ecol. Eng. 2017, 99, 535–542. [Google Scholar] [CrossRef]
- Fu, G.; Wu, J.; Han, J.; Zhao, L.; Chan, G.; Leong, K. Effects of substrate type on denitrification efficiency and microbial community structure in constructed wetlands. Bioresour. Technol. 2020, 307, 123222. [Google Scholar] [CrossRef]
- Rampuria, A.; Gupta, A.B.; Brighu, U. Nitrogen transformation processes and mass balance in deep constructed wetlands treating sewage, exploring the anammox contribution. Bioresour. Technol. 2020, 314, 123737. [Google Scholar] [CrossRef]
- Cabred, S.; Ramos, V.G.; Busalmen, J.E.; Busalmen, J.P.; Bonanni, S. Reduced depth stacked constructed wetlands for enhanced urban wastewater treatment. Chem. Eng. J. 2019, 372, 708–714. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. Environ. Sci. Pollut. Res. 2018, 25, 5318–5335. [Google Scholar] [CrossRef] [PubMed]
- Viveros, J.A.F.; Martínez-Reséndiz, G.; Zurita, F.; Marín-Muñiz, J.L.; Méndez, M.C.L.; Zamora, S.; Sandoval Herazo, L.C. Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha. Water 2022, 14, 3860. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, W.; Wang, H.; Zhao, D.; Ding, H. Nitrogen and Phosphorus Removal Efficiency and Denitrification Kinetics of Different Substrates in Constructed Wetland. Water 2022, 14, 1757. [Google Scholar] [CrossRef]
- Zurita, F.; Carreón-Álvarez, A. Performance of three pilot-scale hybrid constructed wetlands for total coliforms and Escherichia coli removal from primary effluent–a 2-year study in a subtropical climate. J. Water Health 2015, 13, 446–458. [Google Scholar] [CrossRef]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; van Afferden, M.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
- Khatiwada, N.R.; Polprasert, C. Kinetics of Fecal Coliform Removal in Constructed Wetlands. Water Sci. Technol. 1999, 40, 109–116. [Google Scholar] [CrossRef]
- Lara-Acosta, M.; Lango-Reynoso, F.; del Refugio Castañeda-Chávez, M. Use of tropical macrophytes in wastewater treatment. Agro Prod. 2022, XI, 131–140. [Google Scholar] [CrossRef]
- Sandoval-Herazo, L.C.; Alavarado-Lassman, A.; Nani, G.; Nakase-Rodríguez, C. Influence of light intensity on growth and flowering ornamental plants in constructed wetlands. REB&S 2020, 2, 27–36. [Google Scholar]
Month | 60 cm | 40 cm | ||||
---|---|---|---|---|---|---|
Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | |
12 | 65 | 54 | 0 | 48 | 92 | 0 |
24 | 75 | 41 | 0 | 51 | 65 | 0 |
Total | 140 | 95 | 0 | 99 | 157 | 0 |
Parameter | 60 cm | 40 cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | |||||||
pH | ||||||||||||
Input | 7.8 ± 0.2 | |||||||||||
Output | 6.8 ± 0.1 | 6.8 ± 0.2 | 6.9 ± 0.1 | 7.1 ± 0.1 | 7.2 ± 0.1 | 7.1 ± 0.2 | ||||||
DO (mg/L) | ||||||||||||
Input | 1.8 ± 0.3 | |||||||||||
Output | 3.5 ± 0.2 | 2.2 ± 0.3 | 3.1 ± 0.2 | 4.3 ± 0.2 | 2.9 ± 0.3 | 3.9 ± 0.3 | ||||||
EC (µs/cm) | ||||||||||||
Input | 1002.6 ± 82.9 | |||||||||||
Output | 1034.7 ± 94.4 | 1103.2 ± 78.7 | 1192.7 ± 106.5 | 1206.6 ± 67.8 | 1319.08 ± 99.2 | 1283.4 ± 58.2 | ||||||
Temperature (°C) | ||||||||||||
Input | 25.4 ± 3.7 | |||||||||||
Output | 18.4 ± 0.5 | 18.2 ± 0.9 | 18.6 ± 0.3 | 19.3 ± 0.5 | 19.1 ± 0.2 | 19.4 ± 0.2 |
Saturation | 60 cm | 40 cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | Heliconia latispatha | Alpinia purpurata | Strelitzia reginae | ||||||
COD (mg/L) | ||||||||||||
Influent | 175.3 ± 1.4 | |||||||||||
Effluent | 10.5 ± 8.1 | 10.6 ± 4.1 | 10.5 ± 2.2 | 32.0 ± 7.9 | 24.7 ± 1.6 | 26.7 ± 3.6 | ||||||
Removal (%) | 94.0 ± 7.4 | 93.9 ± 8.1 | 94.0 ± 8.4 | 81.7 ± 4.6 | 85.9 ± 17.9 | 84.8 ± 24.4 | ||||||
TSS (mg/L) | ||||||||||||
Influent | 110.83 ± 4.62 | |||||||||||
Effluent | 20.84 ± 5.3 | 24.94 ± 6.3 | 24.38 ± 4.5 | 32.82 ± 4.8 | 31.25 ± 9.7 | 30.48 ± 4.1 | ||||||
Removal (%) | 81.2 ± 4.7 | 77.5 ± 6.3 | 78 ± 7.1 | 70.39 ± 4.2 | 71.8 ± 8.3 | 72.5 ± 9.2 | ||||||
N-NO3 (mg/L) | ||||||||||||
Influent | 14.1 ± 0.2 | |||||||||||
Effluent | 4.3 ± 0.1 | 2.9 ± 0.1 | 1.0 ± 0.1 | 6.1 ± 0.2 | 4.7 ± 0.2 | 1.0 ± 0.1 | ||||||
Removal (%) | 69.2 ± 0.7 | 78.7% ± 0.6 | 92.6 ± 0.3 | 57.3 ± 1.3 | 66.3 ± 1.2 | 92.3 ± 0.3 | ||||||
N-NH4 (mg/L) | ||||||||||||
Influent | 9.33 ± 0.066 | |||||||||||
Effluent | 2.8 ± 0.1 | 3.6 ± 0.1 | 4.4 ± 0.2 | 0.9 ± 0.1 | 1.4 ± 0.1 | 1.9 ± 0.2 | ||||||
Removal (%) | 69.7 ± 0.4 | 60.9 ± 0.4 | 53.3 ± 0.3 | 90.3 ± 0.2 | 85.1 ± 0.2 | 80.1 ± 0.2 | ||||||
TN (mg/L) | ||||||||||||
Influent | 56.5 ± 0.1 | |||||||||||
Effluent | 15.9 ± 0.8 | 13.4 ± 0.3 | 11.6 ± 0.4 | 10.8 ± 0.5 | 10.5 ± 0.5 | 7.8 ± 0.3 | ||||||
Removal (%) | 71.9 ± 1.4 | 76.3 ± 0.5 | 79.4 ± 0.7 | 81.0 ± 0.9 | 81.4 ± 0.8 | 86.3 ± 0.6 | ||||||
TP (mg/L) | ||||||||||||
Influent | 10.3 ± 0.2 | |||||||||||
Effluent | 3.6 ± 0.1 | 4.5 ± 0.2 | 5.5 ± 0.1 | 2.7 ± 0.1 | 3.4 ± 0.1 | 4.6 ± 0.2 | ||||||
Removal (%) | 64.7 ± 1.2 | 55.6 ± 1.5 | 46.5 ± 1.4 | 73.1 ± 1.1 | 65.9 ± 0.9 | 55.4 ± 1.2 | ||||||
TCs (MPN/100) mL | ||||||||||||
Influent | 6394.3 ± 62.5 | |||||||||||
Effluent | 2686.6 ± 8.2 | 2698.7 ± 7.8 | 3404.9 ± 16.3 | 2515.6 ± 8.7 | 2816.4 ± 9.4 | 3323.6 ± 26.7 | ||||||
Removal (%) | 57.9 ± 0.3 | 57.7 ± 0.4 | 46.6 ± 0.5 | 60.6 ± 0.3 | 55.8 ± 0.4 | 47.9 ± 0.5 | ||||||
FCs (MPN/100) mL | ||||||||||||
Influent | 3010.73 ± 21.1 | |||||||||||
Effluent | 1340.1 ± 4.5 | 1348.7 ± 4.6 | 1808.6 ± 14.4 | 1265.1 ± 4.2 | 1410.8 ± 4.3 | 1649.2 ± 11.1 | ||||||
Removal (%) | 55.4 ± 0.3 | 55.2 ± 0.4 | 39.9 ± 0.5 | 57.9 ± 0.2 | 53.1% ± 0.4 | 45.2 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nani, G.; Sandoval-Herazo, M.; Martínez-Reséndiz, G.; Marín-Peña, O.; Zurita, F.; Sandoval Herazo, L.C. Influence of Bed Depth on the Development of Tropical Ornamental Plants in Subsurface Flow Treatment Wetlands for Municipal Wastewater Treatment: A Pilot-Scale Case. Plants 2024, 13, 1958. https://doi.org/10.3390/plants13141958
Nani G, Sandoval-Herazo M, Martínez-Reséndiz G, Marín-Peña O, Zurita F, Sandoval Herazo LC. Influence of Bed Depth on the Development of Tropical Ornamental Plants in Subsurface Flow Treatment Wetlands for Municipal Wastewater Treatment: A Pilot-Scale Case. Plants. 2024; 13(14):1958. https://doi.org/10.3390/plants13141958
Chicago/Turabian StyleNani, Graciela, Mayerlin Sandoval-Herazo, Georgina Martínez-Reséndiz, Oscar Marín-Peña, Florentina Zurita, and Luis Carlos Sandoval Herazo. 2024. "Influence of Bed Depth on the Development of Tropical Ornamental Plants in Subsurface Flow Treatment Wetlands for Municipal Wastewater Treatment: A Pilot-Scale Case" Plants 13, no. 14: 1958. https://doi.org/10.3390/plants13141958
APA StyleNani, G., Sandoval-Herazo, M., Martínez-Reséndiz, G., Marín-Peña, O., Zurita, F., & Sandoval Herazo, L. C. (2024). Influence of Bed Depth on the Development of Tropical Ornamental Plants in Subsurface Flow Treatment Wetlands for Municipal Wastewater Treatment: A Pilot-Scale Case. Plants, 13(14), 1958. https://doi.org/10.3390/plants13141958