O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L.
Abstract
:1. Introduction
2. Results
2.1. Identification of BnaC09.OGT and Phylogenetic Analysis
2.2. Subcellular Localization of BnaC09.OGT
2.3. Tissue-Specific Expression Analysis of BnaC09.OGT
2.4. Analysis of the Expression Pattern of the BnaC09.OGT Gene under Osmotic Stress and Exogenous Hormone Treatments
2.5. Construction and Identification of Transformants
2.6. Characterization of BnaC09.OGT Transformants with Osmotic Stress
2.7. Physiological Responses to Osmotic Stress
2.8. Fatty Acid Component of Transformants under Osmotic Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. BnaC09.OGT Clone and Phylogenetic Analysis
4.3. Subcellular Localization
4.4. Tissue-Specific Expression of BnaC09.OGT
4.5. Analysis of the Expression Pattern of the BnaC09.OGT Gene under Osmotic Stress and Various Exogenous Hormone Treatments
4.6. Construction and Identification of Transformants
4.7. Characterization and Physiological Responses to Osmotic Stress of BnaC09.OGT Transformants
4.8. Fatty Acid Component Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhou, L.; Li, Y.; Zhang, D.; Gao, Y. Plant NIGT1/HRS1/HHO transcription factors: Key regulators with multiple roles in plant growth, development, and stress responses. Int. J. Mol. Sci. 2021, 22, 8685. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014, 64, 60–73. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lin, Z.; Tao, Q.; Liang, M.; Zhao, G.; Yin, X.; Fu, R. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L. PLoS ONE 2014, 9, e111354. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate change and drought: A risk assessment of crop-yield impacts. Clim. Res. 2009, 39, 31–46. [Google Scholar] [CrossRef]
- Hatzig, S.V.; Nuppenau, J.N.; Snowdon, R.J.; Schießl, S.V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biol. 2018, 18, 297. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D.; Dräger, G.; Ichinose, K.; Rohr, J.; Bechthold, A. The C-Glycosyltransferase UrdGT2 is unselective toward d- and l-configured nucleotide-bound rhodinoses. J. Am. Chem. Soc. 2003, 125, 4678–4679. [Google Scholar] [CrossRef]
- Xu, X.; Xia, M.; Han, Y.; Tan, H.; Chen, Y.; Song, X.; Yuan, S.; Zhang, Y.; Su, P.; Huang, L. Highly promiscuous flavonoid Di-O-glycosyltransferases from Carthamus tinctorius L. Molecules 2024, 29, 604. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.; Bai, T.; Liu, S.; Du, Q.; Xia, W.; Liu, Y.; Wang, X.; Chen, X. Optimizing trilobatin production via screening and modification of glycosyltransferases. Molecules 2024, 29, 643. [Google Scholar] [CrossRef]
- Ko, J.H.; Kim, B.G.; Hur, H.G.; Lim, Y.; Ahn, J.H. Molecular cloning, expression and characterization of a glycosyltransferase from rice. Plant Cell Rep. 2006, 25, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T.; Jones, P. Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends Plant Sci. 2000, 5, 380–386. [Google Scholar] [CrossRef]
- Jing, L.; Arcady, M. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 2003, 12, 1418–1431. [Google Scholar]
- Hughes, J.; Hughes, M.A. Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq. 1994, 5, 41–49. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, Y.J.; Zhang, F.J.; Zhang, G.Z.; Jiang, X.Y.; Yu, H.M.; Hou, B.K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2017, 89, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Z.; Jin, S.H.; Jiang, X.Y.; Dong, R.R.; Li, P.; Li, Y.J.; Hou, B.K. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana. Plant Mol. Biol. 2016, 90, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.-Q.; Sun, Y.; Guo, T.; Shi, C.-L.; Zhang, Y.-M.; Kan, Y.; Xiang, Y.-H.; Zhang, H.; Yang, Y.-B.; Li, Y.-C.; et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat. Commun. 2020, 11, 2629. [Google Scholar] [CrossRef]
- Fletcher, C.M.; Coyne, M.J.; Villa, O.F.; Chatzidaki-Livanis, M.; Comstock, L.E. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 2009, 137, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef]
- Gao, G.; Li, C.; Fan, W.; Zhang, M.; Li, X.; Chen, W.; Li, W.; Liang, R.; Li, Z.; Zhu, X. Brilliant glycans and glycosylation: Seq and ye shall find. Int. J. Biol. Macromol. 2021, 189, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.B.; Nie, Y.; Yang, X. Regulation of protein degradation by O-GlcNAcylation: Crosstalk with ubiquitination. Mol. Cell Proteomics 2013, 12, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ongusaha, P.P.; Miles, P.D.; Havstad, J.C.; Zhang, F.; So, W.V.; Kudlow, J.E.; Michell, R.H.; Olefsky, J.M.; Field, S.J.; et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008, 451, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zhang, Y.; Li, J.; Zhu, Z.; Chang, J.; Bakari, A.; Chen, S.; Zheng, K.; Cao, S. Analysis of the UDP-Glucosyltransferase (UGT) gene family and its functional involvement in drought and salt stress tolerance in Phoebe bournei. Plants 2024, 13, 722. [Google Scholar] [CrossRef] [PubMed]
- Zentella, R.; Hu, J.; Hsieh, W.-P.; Matsumoto, P.A.; Dawdy, A.; Barnhill, B.; Oldenhof, H.; Hartweck, L.M.; Maitra, S.; Thomas, S.G.; et al. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev. 2016, 30, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, S.; Ding, F. Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants 2020, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yan, J.-P.; Li, D.-K.; Luo, Q.; Yan, Q.; Liu, Z.-B.; Ye, L.-M.; Wang, J.-M.; Li, X.-F.; Yang, Y. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiol. 2015, 167, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Song, Y.; Xue, X.; Xue, R.; Jiang, H.; Zhou, Y.; Qi, X.; Wang, Y. Differential transcription profiling reveals the MicroRNAs involved in alleviating damage to photosynthesis under drought stress during the grain filling stage in Wheat. Int. J. Mol. Sci. 2024, 25, 5518. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Feng, G.; Yang, Z.; Wu, J.; Liu, B.; Xu, X.; Nie, G.; Huang, L.; Zhang, X. Genome-wide characterization of the Aux/IAA gene family in Orchardgrass and a functional analysis of DgIAA21 in responding to drought stress. Int. J. Mol. Sci. 2023, 24, 16184. [Google Scholar] [CrossRef]
- Lyublinskaya, O.G.; Pugovkina, N.A.; Borisov, Y.G.; Zenin, V.V.; Nikolsky, N.N. How to assess reactive Oxygen Species (ROS) concentration instead of ROS level in the cell and why the quantitative redox biology approach is useful for the analysis of ROS homeostasis in embryonic stem cells: Overcoming misconceptions. Free Radic. Biol. Med. 2015, 87, S16. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.-K.; Yoon, I.-S.; Kim, K.-H.; Kwon, T.-R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Liu, Y.; Bai, Y.; Liang, M.; Zhang, X.; Chen, Z. Characterization and functional analysis of AhGPAT9 gene involved in lipid synthesis in peanut (Arachis hypogaea L.). Front. Plant Sci. 2023, 14, 1144306. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, J.; Zhang, B.; Li, Q.; Liu, C.; Huang, Q.; Cui, P. The functional divergence of homologous GPAT9 genes contributes to the erucic acid content of Brassica napus seeds. BMC Plant Biol. 2024, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Farooq, N.; Nawaz, M.A.; Mukhtar, Z.; Ali, I.; Hundleby, P.; Ahmad, N. Investigating the in vitro regeneration potential of commercial cultivars of Brassica. Plants 2019, 8, 558. [Google Scholar] [CrossRef]
Lines | Before Treatment | 14 Days after Treatment |
---|---|---|
WT | 4.0 ± 0.6 | 5.2 ± 0.7 |
BnaC09.OGT-OE1 | 4.2 ± 0.7 | 6.0 ± 0.6 * |
BnaC09.OGT-OE10 | 4.0 ± 0.6 | 6.5 ± 0.9 **** |
BnaC09.OGT-OE14 | 3.8 ± 0.6 | 6.3 ± 0.7 *** |
BnaC09.OGT-KO1 | 3.9 ± 0.3 | 4.8 ± 0.6 |
BnaC09.OGT-KO2 | 3.8 ± 0.4 | 4.9 ± 0.5 |
Lines | Before Treatment | 7 Days after Treatment |
---|---|---|
WT | 79.6 ± 0.5 a | 77.3 ± 0.3 b |
BnaC09.OGT-OE1 | 79.7 ± 1.3 a | 82.2 ± 0.5 a |
BnaC09.OGT-OE10 | 79.3 ± 0.7 a | 81.5 ± 1.1 a |
BnaC09.OGT-OE14 | 77.4 ± 1.0 a | 81.9 ± 2.6 a |
BnaC09.OGT-KO1 | 79.6 ± 0.5 a | 71.2 ± 3.1 c |
BnaC09.OGT-KO2 | 79.2 ± 0.5 a | 74.4 ± 0.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Q.; Peng, S.; He, L.; Lin, R.; Zhang, J.; Cui, P.; Liu, H. O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L. Plants 2024, 13, 1964. https://doi.org/10.3390/plants13141964
Liu C, Li Q, Peng S, He L, Lin R, Zhang J, Cui P, Liu H. O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L. Plants. 2024; 13(14):1964. https://doi.org/10.3390/plants13141964
Chicago/Turabian StyleLiu, Cui, Qingyang Li, Shan Peng, Li He, Ruihua Lin, Jiahui Zhang, Peng Cui, and Hongbo Liu. 2024. "O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L." Plants 13, no. 14: 1964. https://doi.org/10.3390/plants13141964
APA StyleLiu, C., Li, Q., Peng, S., He, L., Lin, R., Zhang, J., Cui, P., & Liu, H. (2024). O-Glycosyltransferase Gene BnaC09.OGT Involved in Regulation of Unsaturated Fatty Acid Biosynthesis for Enhancing Osmotic Stress Tolerance in Brassica napus L. Plants, 13(14), 1964. https://doi.org/10.3390/plants13141964