Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield
Abstract
:1. Introduction
2. Results
2.1. Incubation Study
2.1.1. Sandy Loam Soil from Pretoria
2.1.2. Loam Soil from Pretoria
2.2. Glasshouse Experiment
3. Discussion
3.1. Nitrogen Mineralization of Organic–Inorganic Amendments
3.2. The Effects of Organic–Inorganic Amendments on Plant Growth
4. Materials and Methods
4.1. Incubation Study
- T1 = control (no amendments);
- T2 = 5 g of dry algae per kg of soil (100%DA);
- T3 = 136 g of ground agri-mat per kg of soil (100%GAM);
- T4 = 61 g of ground grass per kg of soil (100%GG);
- T5 = 0.6 g of N using lime–ammonium nitrate (LAN) + 2.5 g of dry algae per kg of soil (50%DA50NF);
- T6 = 50%GAM50NF;
- T7 = 50%GG50NF.
4.2. Glasshouse Experiment
- T1 = control;
- T2 = 2.5 g of dry algae (DA) per kg of soil + 0.6 g of N per kg of soil using LAN (50%DA50NF);
- T3 = 68 g of ground agri-mat (GAM) per kg of soil + 0.6 g of N per kg of soil using LAN (50%GAM50NF);
- T4 = 30.5 g of ground grass (GG) per kilogram of soil + 0.6 g of N per kg of soil using LAN (50%GG50NF);
- T5 = 1.2 g of N per kg of soil using LAN (100NF).
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahorana, P.C.; Biswas, D.R.; Datta, S.C. Mineralization of Nitrogen, Phosphorus and Sulphur in soil as influenced by rock phosphate enriched compost and chemical fertilizers. J. Indian Soc. Soil Sci. 2015, 6, 283–293. [Google Scholar] [CrossRef]
- Soinne, H.; Keskinen, R.; Raty, M.; Kanerva, S.; Turtola, E.; Kaseva, J.; Nuutinen, V.; Simojoki, A.; Salo, T. Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. Eur. J. Soil Sci. 2020, 72, 1479–1512. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Bolan, N.; Donne, S. Fertilizer Value of Nutrient-Enriched Biochar and Response of Canola Crop. J. Soil Sci. Plant Nutr. 2024, 24, 2123–2137. [Google Scholar] [CrossRef]
- Shaaban, M.M. Nutrient status and growth of Maize plants as affected by green microalgae as soil additives. J. Biol. Sci. 2001, 6, 475–479. [Google Scholar] [CrossRef]
- Marti, E.; Caliz, J.; Montserrat, G.; Garau, M.A.; Cruanas, R.; Vila, X.; Sierra, J. Air-drying, cooling and freezing for soil sample storage affects the activity and the microbial communities from Mediterranean soils. Geomicrobiol. J. 2012, 29, 151–160. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; de Nys, R. Algal biochar—Production and properties. Bioresour. Technol. 2010, 102, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.K.; Khaliq, A. Nitrogen mineralization of a loam soil supplemented with organic-inorganic amendments under laboratory incubation. Front. Plant Sci. 2016, 7, 1038. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Sustain. Agric. 2011, 2, 761–786. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Souri, M.K. Effectiveness of chloride compared to 3,4 dimethylpyrazole phosphate on nitrification inhibition in soil. Comm. Soil Sci. Plant Anal. 2010, 41, 1769–1778. [Google Scholar] [CrossRef]
- Pansu, M.; Thuries, L.; Larre-Larrouy, M.C.; Bottner, P. Predicting N transformations from organic inputs in soil in relation to incubation time and biochemical composition. Soil Biol. Biochem. 2003, 35, 353–363. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30. [Google Scholar] [CrossRef]
- Hu, R.; Wang, X.; Pan, Y.; Zhang, Y.; Zhang, H. The response mechanisms of soil N moralization under biological soil crusts to temperature and moisture in temperate desert regions. Eur. J. Soil Biol. 2014, 62, 66–73. [Google Scholar] [CrossRef]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow-release fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Munoz, A.; Lopez-Pineiro, A.; Ramirez, M. Soil quality attributes of conservation management regimes in a semi-arid region of western Spain. Soil Tillage Res. 2007, 95, 255–265. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- Abbasi, M.M.; Hina, M.; Khalique, A.; Khan, S.R. Mineralization of three organic manures used as nitrogen source in all soil incubated under laboratory conditions. Commun. Soil Sci. Plant Anal. 2007, 38, 1691–1711. [Google Scholar] [CrossRef]
- Prakash, S.; Nikhil, K. Algae as a soil conditioner. Int. J. Eng. Technol. Res. 2014, 2, 68–70. [Google Scholar]
- Maurya, R.; Chokshi, K.; Ghosh, T.; Trivedi, K.; Pancha, I.; Kubavat, D.; Mishra, S.; Ghosh, A. Lipid extracted microalgae biomass residue as a fertilizer substitute for Zea mays L. Front. Plant Sci. 2016, 6, 1266. [Google Scholar] [CrossRef]
- El-Gamal, M.A.H. Impact of algal addition to manure compost as affected by different moisture levels. Aust. J. Basic Appl. Sci. 2011, 5, 729–737. [Google Scholar]
- Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.; Mudau, F.N.; Onwona-Agyeman, S. Investigation of Infiltration and Runoff Rate on Agri-Mats Using a Laboratory Rainfall Simulation Study. Commun. Soil Sci. Plant Anal. 2023, 54, 1005–1014. [Google Scholar] [CrossRef]
- Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.C.; Mudau, F.N. Innovative pro-smallholder farmers’ permanent mulch for better soil quality and food security under conservation agriculture. Agronomy 2020, 10, 605. [Google Scholar] [CrossRef]
- Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.; Onwona-Agyeman, S. Agri-mat and grass mulch effect on crop biomass yield in sandy loam and loam soils. Land Degrad. Dev. 2024, 35, 2884–2896. [Google Scholar] [CrossRef]
- Bechtold, J.S.; Naiman, R.J. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savana. Soil Biol. Biochem. 2006, 38, 1325–1333. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Brussard, L. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol. Biochem. 1993, 25, 47–55. [Google Scholar] [CrossRef]
- Matus, F.J.; Lusk, C.H.; Maire, C.R. Effects of soil texture, Carbon inputs rates, and litter quality on free organic matter and nitrogen mineralization in Chilean Rain Forest and Agricultural soils. Commun. Soil Sci. Plant Anal. 2007, 39, 187–201. [Google Scholar] [CrossRef]
- Ndung’u, M.; Ngatia, L.W.; Onwonga, R.N.; Mucheru-Muna, M.W.; Fu, R.; Moriasi, D.N.; Ngetich, K.F. The influence of organic and inorganic nutrients inputs on soil organic carbon functional groups content and maize yields. Heliyon 2021, 7, e07881. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Li, M.; Mgelwa, A.S.; Hu, Y. Divergent mineralization of exogenous organic substrates and their priming effects depending on soil types. Biol. Fertil. Soils 2023, 59, 87–101. [Google Scholar] [CrossRef]
- Singh, M.; Sarkar, B.; Bolan, N.S.; Ok, Y.S.; Churchman, G.J. Decomposition of soil organic matter as affected by clay types, pedogenic oxides and plant residue addition rates. J. Hazard. Mater. 2019, 374, 11–19. [Google Scholar] [CrossRef]
- Probert, M.E.; Delve, R.J.; Kimani, S.K.; Dimes, J.P. Modelling nitrogen mineralization from manures: Representing quality aspects by varying C: N ratio of sub-pools. Soil Biol. Biochem. 2005, 37, 279–287. [Google Scholar] [CrossRef]
- Ge, S.; Xu, H.; Ji, M.; Jiang, Y. Characteristics of soil organic carbon, total nitrogen, and C/N ratio in Chinese apple orchards. Open J. Soil Sci. 2013, 3, 213–217. [Google Scholar] [CrossRef]
- Malobane, M.E. Using the Organic Carbon Fractions of the Van Soest Method to Determine Compounds Responsible for C and N Mineralization from Sludge Amended Soils. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2015. [Google Scholar]
- Shahbaz, M.; Kuzyakov, Y.; Heitkamp, F. Decrease of soil organic stabilization with increasing inputs: Mechanisms and controls. Geoderma 2017, 304, 76–82. [Google Scholar] [CrossRef]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Ogundijo, D.S.; Adetunji, M.T.; Azeez, J.O.; Arowolo, T.A. Effect of organic and inorganic fertilizers on soil organic carbon, Ph, Ammonium-nitrogen, Nitrate-nitrogen and some exchangeable cations. Int. J. Environ. Sci. 2014, 3, 243–249. [Google Scholar]
- Shahid, S.; Al-Shankiti, A. Sustainable food production in marginal lands—Case of GDLA member countries. Int. Soil Water Conserv. Res. 2013, 1, 24–38. [Google Scholar] [CrossRef]
- Onwona-Agyeman, S.; Fuke, M.; Kabawata, Y.; Yamada, M.; Tanahashi, M. Compressed biomass as mulching in No-till farming. J. Arid. Land Stud. 2015, 25, 253–256. [Google Scholar]
- Onwona-Agyeman, S.; Nakamura, S.; Kabawata, Y.; Yamad, M.; Sabi, E.B.; Tanahashi, M. Utilization of forestry residues in erosion control and soil moisture conservation. J. Arid. Land Stud. 2012, 2, 279–282. [Google Scholar]
- Obalum, S.E.; Chibuike, G.U. Air drying effect on soil reaction and phosphorus extractability from upland-lowland tropical soils as related to other colloidal stability. Appl. Ecol. Environ. Res. 2016, 15, 525–540. [Google Scholar] [CrossRef]
Sand | Silt | Clay | ||||||
---|---|---|---|---|---|---|---|---|
Sampling Site | Very Coarse (mm) 2–1 | Coarse (mm) 1–0.5 | Medium (mm) 0.5–0.25 | Fine (mm) 0.25–0.1 | Very Fine (mm) 0.1–0.05 | Coarse (mm) 0.05–0.02 | Fine (mm) 0.02–0.002 | Clay (mm) <0.002 |
Sandy loam soil | 4.00% | 2.00% | 17.20% | 37.50% | 15.60% | 5.60% | 8.70% | 9.40% |
Loam soil | 3.90% | 3.00% | 9.70% | 10.20% | 11.00% | 12.00% | 25.90% | 24.30% |
Treatment | Tot C (%) | Tot N (%) | C–N Ratio | Ca (mg kg−1) | Mg (mg kg−1) | P (mg kg−1) | K (mg kg−1) |
Algae | 45.00 | 6.80 | 6.6 | 14,000.19 | 8730.00 | 1037.00 | 5000.66 |
Agri-mat | 46.00 | 0.25 | 184.0 | 2000.73 | 228.00 | 309.00 | 1000.58 |
Grass | 42.40 | 0.56 | 75.7 | 1000.92 | 1920.70 | 687.00 | 1000.87 |
Treatment | Fe (mg kg−1) | Al (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | B (mg kg−1) | Na (mg kg−1) | |
Algae | 6270.00 | 1604.00 | 867.00 | 483.00 | 56.50 | 103.00 | |
Agri-mat | 830.00 | 458.00 | 30.30 | 234.00 | 5.10 | 116.00 | |
Grass | 8695.00 | 3635.00 | 240.10 | 54.60 | 5.86 | 277.00 |
Soil Properties | Pretoria | Durban |
---|---|---|
Physical characterization | ||
Textural class | Sandy loam soil | Loam soil |
Bulk density (mg kg−1) | 1530 | 1400 |
Chemical characterization | ||
pH in H2O (1:2.5) | 6.20 | 6.50 |
Available P (mg kg−1) | 3.11 | 19.97 |
Total N (%) | 0.064 | 0.20 |
Total C (%) | 0.59 | 2.30 |
C–N ratio | 9.22 | 11.50 |
Exchangeable bases | ||
Ca (meq 100 g−1) | 220.00 | 436.00 |
Mg (meq 100 g−1) | 156.70 | 301.00 |
K (meq 100 g−1) | 73.40 | 212.70 |
Na (meq 100 g−1) | 74.00 | 84.40 |
CEC (meq 100 g−1) | 12.00 | 46.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.C.; Mudau, F.N. Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield. Plants 2024, 13, 1974. https://doi.org/10.3390/plants13141974
Mgolozeli S, Nciizah AD, Wakindiki IIC, Mudau FN. Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield. Plants. 2024; 13(14):1974. https://doi.org/10.3390/plants13141974
Chicago/Turabian StyleMgolozeli, Sibongiseni, Adornis D. Nciizah, Isaiah I. C. Wakindiki, and Fhatuwani N. Mudau. 2024. "Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield" Plants 13, no. 14: 1974. https://doi.org/10.3390/plants13141974
APA StyleMgolozeli, S., Nciizah, A. D., Wakindiki, I. I. C., & Mudau, F. N. (2024). Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield. Plants, 13(14), 1974. https://doi.org/10.3390/plants13141974