Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels
Abstract
:1. Introduction
2. Results
2.1. Seed Germination of Celery
2.2. KAR1 Content in Celery Seeds
2.3. Effect of Different Soaking Periods of SW, KAR1, and GA3 on the Levels of Auxins
2.4. Effect of Different Soaking Periods of SW, KAR1, and GA3 on the Levels of Cytokinins
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Smoke Compounds and Chemicals
4.3. Experimental Site
4.4. Germination Conditions
4.5. Estimation of KAR1 in Plant Sample
4.6. Estimation of Phytohormones
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002, 5, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Palevitch, D.; Thomas, T.H. Thermodormancy release of celery seed by gibberellins, 6-benzylaminopurine, and ethephon applied in organic solvent to dry seeds. J. Expt. Bot. 1974, 25, 981–986. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; He, L.; Zhu, H.; Huang, Z.; Zhu, M.; Fan, L.; Wu, L.; Yu, L.; Zhu, W.; et al. Transcriptome analyses reveal the role of light in releasing the morphological dormancy of celery seed by integrating plant hormones, sugar metabolism and endosperm weakening. Int. J. Mol. Sci. 2022, 23, 10140. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.V.; Pressman, E. A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta 1979, 144, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Gupta, S.R.; Sharma, N.D. Coumarins from Apium graveolens seeds. Phytochemistry 1979, 18, 1580–1581. [Google Scholar] [CrossRef]
- Garg, S.K.; Gupta, S.R.; Sharma, N.D. Celerin, a new courmarin from Apium graveolens. Planta Med. 1980, 38, 186–188. [Google Scholar] [CrossRef]
- Seymour, J. The New Self-Sufficient Gardener: The Complete Illustrated Guide to Planning, Growing, Storing and Preserving Your Own Garden Produce.; Dorling Kindersley Ltd.: London, UK, 2007; 248p. [Google Scholar]
- Linkies, A.; Leubner-Metzger, G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012, 31, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Plačková, L.; Kulkarni, M.G.; Doležal, K.; Van Staden, J. Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol. 2019, 181, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Hrdlička, J.; Ngoroyemoto, N.; Nemahunguni, N.K.; Gucký, T.; Novák, O.; Kulkarni, M.G.; Doležal, K.; Van Staden, J. Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. J. Plant Growth Regul. 2020, 39, 338–345. [Google Scholar] [CrossRef]
- Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Trengrove, R.D. A compound from smoke that promotes seed germination. Science 2004, 305, 977. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, J.; Jäger, A.K.; Light, M.E.; Burger, B.V. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 2004, 70, 654–659. [Google Scholar] [CrossRef]
- Nelson, D.C.; Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Smith, S.M. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Ann. Rev. Plant Biol. 2012, 63, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Doherty, L.C.; Cohn, M.A. Seed dormancy in rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci. Res. 2000, 10, 415–421. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Light, M.E.; Van Staden, J. Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot. 2011, 77, 972–979. [Google Scholar] [CrossRef]
- Van Staden, J.; Brown, N.A.C.; Jäger, A.K.; Johnson, T.A. Smoke as a germination cue. Plant Species Biol. 2000, 15, 167–178. [Google Scholar] [CrossRef]
- Van Staden, J.; Jäger, A.K.; Strydom, A. Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regul. 1995, 17, 213–218. [Google Scholar] [CrossRef]
- Thomas, T.H.; Van Staden, J. Dormancy break of celery (Apium graveolens L.) seeds by plant-derived smoke extract. Plant Growth Regul. 1995, 17, 195–198. [Google Scholar] [CrossRef]
- Salter, P.J.; Darby, R.J. A technique for osmotically pretreating and germinating quantities of small seeds. Ann. Appl. Biol. 1976, 83, 313–315. [Google Scholar]
- Garg, S.K.; Gupta, S.R.; Sharma, N.D. Apiumetin—A new furanocoumarin from the seed of Apium graveolens. Phytochemistry 1978, 17, 2135–2136. [Google Scholar] [CrossRef]
- Khan, A.A.; Tao, K.L.; Knypl, J.S.; Borkowska, B. Osmoconditioning of seeds: Physiological and biochemical changes. Acta Hortic. 1978, 83, 267–278. [Google Scholar] [CrossRef]
- Cantliffe, D.J.; Elbella, M.; Guedes, A.; Odell, G.B.; Perkins-Veazie, P.; Schultheis, J.R.; Seale, D.N.; Shuler, K.D.; Tanne, J.; Watkins, J.T. Improving stand establishment of direct-seeded vegetables in Florida. Proc. Fla. State Hort. Soc. 1987, 100, 213–216. [Google Scholar]
- Globerson, D.; Feder, Z. The effect of seed priming and fluid drilling on germination emergence and growth of vegetables at unfavorable temperatures. Acta Hortic. 1987, 198, 15–22. [Google Scholar] [CrossRef]
- Heydecker, W.; Coolbear, P. Seed treatments for improved performance-survey and attempted prognosis. Seed Sci. Technol. 1977, 5, 353–425. [Google Scholar]
- Light, M.E.; Daws, M.I.; Van Staden, J. Smoke-derived butenolide: Towards understanding its biological effects. S. Afr. J. Bot. 2009, 75, 1–7. [Google Scholar] [CrossRef]
- Casanova-Sáez, R.; Mateo-Bonmatí, E.; Ljung, K. Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. 2021, 13, a039867. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Perez, M.; Steinbrecher, T.; Gawthrop, F.; Pavlovic, I.; Novák, O.; Tarkowska, D.; Strnad, M.; Marone, F.; Nakabayashi, K.; et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae). Plant J. 2021, 108, 1020–1036. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Zheng, C.; Ge, W.; Gao, Y.; Pan, X.; Ye, X.; Wu, X.; Sun, Y. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. Front. Plant Sci. 2024, 14, 1322986. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.M.; Sarkar, S.F.; Bonetta, D.; McCourt, P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003, 34, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ramaih, S.; Guedira, M.; Paulsen, G.M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct. Plant Biol. 2003, 30, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, Y.S.; Kim, S.G.; Jung, J.H.; Woo, J.C.; Park, C.M. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 2003, 156, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.D.; Zhang, H.; Zhao, Y.; Feng, Z.Y.; Li, Q.; Yang, H.-Q.; Luan, S.; Li, J.M.; He, Z.-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef]
- Shuai, H.; Meng, Y.; Luo, X.; Chen, F.; Zhou, W.; Dai, Y.; Qi, Y.; Du, J.; Yang, F.; Liu, J.; et al. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci. Rep. 2017, 3, 12620. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Li, W.; Zhang, S.; Mi, Q.; Luo, W.; Zhao, Y.; Qin, X.; Li, W.; Pu, S.; Xu, F. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla. BMC Plant Biol. 2023, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.Y.; Skoog, F.; Playtis, A.J.; Leonard, N.J. Cytokinins: Synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol. 1972, 50, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Gajdošová, S.; Spíchal, L.; Kamínek, M.; Hoyerová, K.; Novák, O.; Dobrev, P.I.; Galuszka, P.; Klíma, P.; Gaudinová, A.; Žižková, E.; et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Expt. Bot. 2011, 6662, 2827–2840. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Brütting, C.; Meza-Canales, I.D.; Großkinsky, D.K.; Vankova, R.; Baldwin, I.T.; Meldau, S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Expt. Bot. 2015, 66, 4873–4884. [Google Scholar] [CrossRef] [PubMed]
- Goggin, D.E.; Emery, R.J.N.; Powles, S.B.; Steadman, K.J. Initial characterisation of low and high seed dormancy populations of Lolium rigidum produced by repeated selection. J. Plant Physiol. 2010, 167, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Biddington, N.L.; Thomas, T.H. Thermodormancy in celery seeds and its removal by cytokinins and gibberellins. Physiol Plant. 1978, 42, 401–405. [Google Scholar] [CrossRef]
- Khan, A.A. Primary, preventive and permissive roles of hormones in plant systems. Bot. Rev. 1975, 41, 391–420. [Google Scholar] [CrossRef]
- Biddington, N.L.; Thomas, T.H. Influence of different cytokinins on germination of lettuce (Lactuca sativa) and celery (Apium graveolens) seeds. Physiol Plant. 1976, 37, 12–16. [Google Scholar] [CrossRef]
- Miller, C.O. A kinetin-like compound in maize. Proc. Natl. Acad. Sci. USA. 1961, 47, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Hrdlička, J.; Gucký, T.; van Staden, J.; Novák, O.; Doležal, K. A stable isotope dilution method for a highly accurate analysis of karrikins. Plant Methods 2021, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Svačinová, J.; Novák, O.; Plǎcková, L.; Lenobel, R.; Holík, J.; Strnad, M.; Doležal, K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods 2012, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Novák, O.; Hauserová, E.; Amakorová, P.; Doležal, K.; Strnad, M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 2008, 69, 2214–2224. [Google Scholar] [CrossRef] [PubMed]
- Pěnčík, A.; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, A.; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Expt. Bot. 2018, 9, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, P.W. Procedure VSEARCH. In Biometris GenStat Procedure Library Manual; Goedhart, P.W., Thissen, J.T.N.M., Eds.; Biometris: Wageningen, The Netherlands, 2014; pp. 181–184. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Hrdlička, J.; Kulkarni, M.; Doležalova, I.; Pěnčík, A.; Van Staden, J.; Novák, O.; Doležal, K. Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels. Plants 2024, 13, 2096. https://doi.org/10.3390/plants13152096
Gupta S, Hrdlička J, Kulkarni M, Doležalova I, Pěnčík A, Van Staden J, Novák O, Doležal K. Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels. Plants. 2024; 13(15):2096. https://doi.org/10.3390/plants13152096
Chicago/Turabian StyleGupta, Shubhpriya, Jakub Hrdlička, Manoj Kulkarni, Ivana Doležalova, Aleš Pěnčík, Johannes Van Staden, Ondřej Novák, and Karel Doležal. 2024. "Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels" Plants 13, no. 15: 2096. https://doi.org/10.3390/plants13152096
APA StyleGupta, S., Hrdlička, J., Kulkarni, M., Doležalova, I., Pěnčík, A., Van Staden, J., Novák, O., & Doležal, K. (2024). Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels. Plants, 13(15), 2096. https://doi.org/10.3390/plants13152096