Comparative Study of Different Walnut (Juglans regia L.) Varieties Based on Their Nutritional Values
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenols
2.2. Fatty Acids
2.3. Minerals
3. Materials and Methods
3.1. Plant Materials
Properties of Walnut Varieties
3.2. Methods
3.2.1. Polyphenol Analysis
3.2.2. Fatty Acid Profile
3.2.3. Mineral Composition
3.2.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guasch-Ferré, M.; Willett, W.C. The mediterran diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Bernard, A.; Lheureux, F.; Dirlewanger, E. Walnut: Past and future of genetic improvement. Tree Genet Genomes 2018, 14, 1. [Google Scholar] [CrossRef]
- Hassani, D.; Sarikhani, S.; Dastjerdi, R.; Mahmoudi, R.; Soleimani, A.; Vahdati, K. Situation and recent trends on cultivation and breeding of Persian walnut in Iran. Sci. Hortic. 2020, 270, 109369. [Google Scholar] [CrossRef]
- Inobatov, A. Opportunities for the development of the walnut market within the framework of farm activities. Sci. Innov. 2024, 3, 37–44. [Google Scholar]
- Fallah, M.; Rasouli, M.; Hassani, D.; Lawson, S.S.; Sarikhani, S.; Vahdati, K. Tracing Superior Late-Leafing Genotypes of Persian Walnut for Managing Late-Spring Frost in Walnut Orchards. Horticulturae 2022, 8, 1003. [Google Scholar] [CrossRef]
- Khadivi, A.; Montazeran, A.; Yadegari, P. Superior spring frost resistant walnut (Juglans regia L.) genotypes identified among mature seedling origin trees. Sci. Hortic. 2019, 253, 147–153. [Google Scholar] [CrossRef]
- Adkison, C.; Richmond, K.; Lingga, N.; Bikoba, V.; Mitcham, E. Optimizing Walnut Storage Conditions: Effects of Relative Humidity, Temperature, and Shelling on Quality after Storage. HortScience 2021, 56, 1244–1250. [Google Scholar] [CrossRef]
- Fan, N.; Fusco, J.L.; Rosenberg, D.W. Antioxidant and Anti-Inflammatory Properties of Walnut Constituents: Focus on Personalized Cancer Prevention and the Microbiome. Antioxidants 2023, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Gunduc, N.; El, S. Assessing antioxidant activities of phenolic compounds of common Turkish food and drinks on In vitro low-density lipoprotein oxidation. J. Food Sci. 2003, 68, 2591–2595. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef]
- Aneklaphakij, C.; Saigo, T.; Watanabe, M.; Naake, T.; Fernie, A.R.; Bunsupa, S.; Satitpatipan, V.; Tohge, T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. Front. Plant Sci. 2021, 12, 642581. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, E.; Burgut, A.; Ozcan, H.; Ozcan, A.; Sutyemez, M.; Kafkas, S.; Türemis, N. Fatty acid, total phenol and tocopherol profiles of some walnut cultivars: A comparative study. Food Nutr. Sci. 2017, 8, 1074–1084. [Google Scholar] [CrossRef]
- Fukasawa, R.; Miyazawa, T.; Abe, C.; Bhaswant, M.; Toda, M. Quantification and Comparison of Nutritional Components in Oni Walnut (Juglans ailanthifolia Carr.), Hime Walnut (Juglans subcordiformis Dode.), and Cultivars. Horticulturae 2023, 9, 1221. [Google Scholar] [CrossRef]
- Goodarzi, H.; Hassani, D.; Pourhosseini, L.; Kalantari, S.; Lashgari, A. Total lipid and fatty acids components of some Persian walnut (Juglans regia) cultivars. Sci. Hortic. 2023, 321, 112252. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S.; Botu, M.; Nour, V. Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits 2016, 71, 173–184. [Google Scholar] [CrossRef]
- Iordănescu, O.A.; Radulov, I.; Buhan, I.P.; Cocan, I.; Berbecea, A.A.; Popescu, I.; Posta, D.S.; Camen, D.; Lalescu, D. Physical, Nutritional and Functional Properties of Walnuts Genotypes (Juglans regia L.) from Romania. Agronomy 2021, 11, 1092. [Google Scholar] [CrossRef]
- Wu, S.; Ni, Z.; Wang, R.; Zhao, B.; Han, Y.; Zheng, Y.; Liu, F.; Gong, Y.; Tang, F.; Liu, Y. The effects of cultivar and climate zone on phytochemical components of walnut (Juglans regia L.). Food Energy Secur. 2020, 9, e196. [Google Scholar] [CrossRef]
- Acevedo-Juárez, S.; Guajardo-Flores, D.; Heredia-Olea, E.; Antunes-Ricardo, M. Bioactive peptides from nuts: A review. Int. J. Food Sci. Technol. 2022, 57, 2226–2234. [Google Scholar] [CrossRef]
- Neale, E.P.; Guan, V.; Tapsell, L.C.; Probst, Y.C. Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 641–653. [Google Scholar] [CrossRef]
- Malmir, H.; Larijani, B.; Esmaillzadeh, A. The effect of walnut consumption on cardiometabolic profiles of individuals with abnormal glucose homoeostasis: A systematic review and meta-analysis of clinical trials. Br. J. Nutr. 2022, 128, 1037–1049. [Google Scholar] [CrossRef]
- Pebriani, R.; Jafar, N.; Wahiduddin, W.; Hidayanti, H.; Burhanuddin, B.; Salamah, U. The Effect of Extract of Canarian Nuts on Reduction of Total Cholesterol Levels of Hyperglicemic Rat. Int. J. Papier Adv. Sci. Rev. 2020, 2, 19–29. [Google Scholar] [CrossRef]
- Mirzababaei, A.; Daneshvar, M.; Abaj, F.; Daneshzad, E.; Hosseininasab, D.; Clark, C.C.T.; Mirzaei, K. The Effect of Walnut (Juglans regia) Leaf Extract on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Clin. Nutr. Res. 2022, 11, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Nagel, J.M.; Brinkoetter, M.; Magkos, F.; Liu, X.; Chamberland, J.P.; Shah, S.; Zhou, J.; Blackburn, G.; Mantzoros, C.S. Dietary walnuts inhibit colorectal cancer growth in mice by suppressing angiogenesis. Nutrition 2012, 28, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.J.; Zhang, Y.G.; Chen, S.X.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Exploration of walnut components and their association with health effects. Crit. Rev. Food Sci. Nutr. 2022, 62, 5113–5129. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Adarmanabadi, S.M.H.; Karami Gilavand, H.; Taherkhani, A.; Sadat Rafiei, S.K.; Shahrokhi, M.; Faaliat, S.; Biabani, M.; Abil, E.; Ansari, A.; Sheikh, Z.; et al. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci. Rep. 2023, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Chauhan, V. Beneficial Effects of Walnuts on Cognition and Brain Health. Nutrients 2020, 12, 550. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service, FAO. Domestic Consumption of Walnuts Worldwide from 2013/2014 to 2022/2023 (in 1000 Metric Tons). Statista. Statista Inc. 2022. Available online: https://www.statista.com/statistics/1031109/walnuts-consumption-worldwide/ (accessed on 15 May 2024).
- FAO, USDA Foreign Agricultural Service. Walnut Production Worldwide in 2022/23, by Country (in 1000 Metric Tons). Statista. Statista Inc. 2023. Available online: https://www.statista.com/statistics/675974/walnut-production-worldwide-by-country/ (accessed on 15 May 2024).
- National Food Chain Safety Office. National List of Varieties, 2022, 16. Available online: https://portal.nebih.gov.hu/documents/10182/81819/NFJ_sz%C5%91l%C5%91-gy%C3%BCm%C3%B6lcs_2022_v_1.pdf/4e13dff8-5eaf-7cd6-6f0f-48f31c5ce802?t=1661242747799 (accessed on 15 May 2024).
- Trandafir, I.; Cosmulescu, S. Total Phenolic Content, Antioxidant Capacity and Individual Phenolic Compounds of Defatted Kernel from Different Cultivars of Walnut. Erwerbs-Obstbau 2020, 62, 309–314. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and Fatty Acid Profile, and Protein Content of Different Walnut Cultivars and Genotypes (Juglans regia L.) Grown in the USA. Int. J. Fruit Sci. 2020, 20, S1711–S1720. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Zhang, Y.; Xu, L.; Liu, Y.; Yu, L.; Ma, F.; Wang, X.; Gong, Z.; Zhang, L.; et al. Chemical composition of walnuts from three regions in China. Oil Crop Sci. 2023, 8, 56–60. [Google Scholar] [CrossRef]
- Bouabdallah, I.; Bouali, I.; Martinez-Force, E.; Albouchi, A.; Perez Camino, M.C.; Boukhchina, S. Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Nat. Prod. Res. 2014, 28, 1826–1833. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Hernández-Hierro, J.M.; Garcia, R.; Barroso, J.M.; Heredia, F.J.; Rato, A.E. Assessment of Total Fat and Fatty Acids in Walnuts Using Near-Infrared Hyperspectral Imaging. Front. Plant Sci. 2021, 12, 729880. [Google Scholar] [CrossRef] [PubMed]
- WHO World Health Organization. Interim summary of conclusions and dietary recommendations on total fat & fatty acids. From the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition. Ann. Nutr. Metab. 2009, 55, 1–3. [Google Scholar]
- Sarikhani, S.; Vahdati, K.; Ligterink, W. Biochemical Properties of Superior Persian Walnut Genotypes Originated from Southwest of Iran. Int. J. Hortic. Sci. Technol. 2021, 8, 13–24. [Google Scholar] [CrossRef]
- Zec, M.M.; Krga, I.; Takić, M.; Debeljak-Martačić, J.; Korićanac, G.; Ranković, S.; Popović, T.; Pantelić, M.; Glibetic, M. Walnut consumption induces tissue-specific omega-6/omega-3 decrease in high-fructose-fed Wistar rats. ACS Omega 2020, 5, 28136–28145. [Google Scholar] [CrossRef]
- Máté, M.; Selimaj, G.; Simon, G.; Szalóki-Dorkó, L.; Ficzek, G. Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed. Plants 2022, 11, 3412. [Google Scholar] [CrossRef]
- Khayata, W.; Sarkis, N.; Ali, A.M. Studying omega-3 and omega-6 content of native walnut and storage effect on it. Int. J. Pharm. Sci. Res. 2013, 4, 2963–2966. [Google Scholar] [CrossRef]
- Rodler, I. (Ed.) Új Tápanyagtáblázat [New Tables of Nutritional Values]; Medicina Könyvkiadó Rt: Budapest, Hungary, 2005; pp. 62–63. [Google Scholar]
- Szentiványi, P. Diónemesítés és Fajtakutatás (Walnut Breeding and Cultivar Research); Szentiványi, P., Kállay, T., Eds.; Dió (Walnut). Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 60–65. [Google Scholar]
- Ramos, E.D. (Ed.) Walnut Production Manual; University of California: Oakland, CA, USA, 1998; pp. 84–89. [Google Scholar]
- Aletà, N.; Rovira, M.; Ninot, A.; Vilanova, A. ‘Chandler’ walnut trees trained in three kinds of central leader: Structured, semi-structured and free-results at the age of six. Acta Hortic. 2005, 705, 479–485. [Google Scholar] [CrossRef]
- Connell, J.H.; Olson, W.H.; Limberg, J.; Metcalf, S.G. Effects of various roots on ‘Chandler’ walnut catkin and pistillate bloom, tree growth, yield, and nut quality. Acta Hortic. 2010, 861, 237–244. [Google Scholar] [CrossRef]
- Bujdosó, G.; Fjodorova, L. Ukrán és magyar diófajták érzékszervi bírálata. (Organoleptic testing of Hungarian and Ukrainian bred walnut varieties). Kertészet Szőlészet 2008, 9, 12–13. [Google Scholar]
- Bujdosó, G.; Végvári, G.; Hajnal, V.; Ficzek, G.; Tóth, M. Phenolic Profile of the Kernel of Selected Persian Walnut (Juglans regia L.) Cultivars. Not. Bot. Horti Agrobo. 2014, 42, 24–29. [Google Scholar] [CrossRef]
- Tormási, J.; Abrankó, L. Assessment of Fatty Acid-Specific Lipolysis by In Vitro Digestion and GC-FID. Nutrients 2021, 13, 3889. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966-2:2017 (En); Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: London, UK, 2017.
- MSZ:EN 13805:2002; Foodstuffs. Determination of Trace Elements. Pressure Digestion. Deutsches Institut für Normung (DIN): Berlin, Germany, 2002.
- EPA Method 6010C (SW-846); Inductively Coupled Plasma-Atomic Emission Spectrometry; Revision 3. EPA: Washington, DC, USA, 2007.
Walnut Samples | ||||||||
---|---|---|---|---|---|---|---|---|
m/m% | M10B | M10P | A117B | A117P | Chernivets’ky 1 | American Chandler | Chilien Chandler | Brazilian Chandler |
C16:0 | 6.1 ± 0.02 e | 6.5 ± 0.00 f | 5.6 ± 0.01 b | 5.7 ± 0.01 bc | 5.9 ± 0.01 d | 5.4 ± 0.01 ab | 5.6 ± 0.01 b | 5.5 ± 0.08 b |
C18:0 | 2.0 ± 0.05 ad | 2.3 ± 0.02 cd | 2.3 ± 0.01 ab | 2.3 ± 0.02 cd | 2.4 ± 0.03 e | 2.1 ± 0.05 a | 2.0 ± 0.01 a | 2.2 ± 0.01 bc |
* C20:0 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.05 ± 0.01 | 0.1 ± 0.02 | 0.05 ± 0.01 | 0.1 ± 0.01 |
C16:1n-7c | 0.1 ± 0.00 c | 0.1 ± 0.03 c | 0.04 ± 0.01 b | 0.04 ± 0.01 ab | 0.03 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.01 a | 0.03 ± 0.00 a |
C18:1n-9c | 21.6 ± 0.03 f | 20.0 ± 0.04 e | 22.8 ± 0.07 g | 22.7 ± 0.02 g | 15.3 ± 0.02 a | 12.2 ± 0.01 a | 14.1 ± 0.02 b | 13.3 ± 0.11 ab |
* C20:1n-9c | 0.2 ± 0.02 | 0.2 ± 0.01 | 0.2 ± 0.01 | 0.2 ± 0.01 | 0.1 ± 0.02 | 0.2 ± 0.03 | 0.2 ± 0.04 | 0.2 ± 0.02 |
C18:2n-6c | 58.5 ± 0.1 b | 59.5 ±0.1 c | 56.8 ±0.1 a | 58.4 ± 0.0 ab | 63.8 ± 0.1 f | 62.3 ± 0.13 eg | 62.1 ± 0.1 eg | 60.8 ± 0.32 ag |
C18:3n-3c | 11.4 ± 0.01 bg | 11.5 ± 0.01 b | 12.2 ± 0.04 c | 10.5 ± 0.00 a | 12.3 ± 0.01 c | 17.6 ± 0.02 f | 16.0 ± 0.03 d | 17.9 ± 0.14 f |
SFA | 8.2 ± 0.08 | 8.9 ± 0.05 | 8.0 ± 0.05 | 8.1 ± 0.04 | 8.4 ± 0.05 | 7.6 ± 0.08 | 7.7 ± 0.05 | 7.8 ± 0.10 |
MUFA | 21.9 ± 0.03 | 20.3 ± 0.04 | 23.04 ± 0.07 | 22.94 ± 0.02 | 15.43 ± 0.02 | 12.43 ± 0.01 | 14.33 ± 0.02 | 13.53 ± 0.11 |
PUFA | 69.9 ± 0.11 | 71.0 ± 0.11 | 69.0 ± 0.05 | 68.9 ± 0.01 | 76.1 ± 0.02 | 79.9 ± 0.15 | 78.1 ± 0.13 | 78.7 ± 0.46 |
PUFA/SFA | 8.52 | 7.98 | 8.63 | 8.51 | 9.06 | 10.51 | 10.14 | 10.09 |
ɷ-6/ɷ-3 | 5.1 | 5.2 | 4.7 | 5.5 | 5.2 | 3.5 | 3.8 | 3.4 |
Fatty Acids | PCA1 | PCA2 |
---|---|---|
Palmitic acid | 0.752 | −0.234 |
Stearic acid | 0.318 | −0.687 |
Arachinodic acid | 0.690 | 0.370 |
Palmitoleic acid | 0.871 | 0.276 |
Oleic acid | 0.911 | 0.071 |
Gondoic acid | −0.250 | 0.940 |
Linoleic acid | −0.739 | −0.486 |
ɣ-linolenic acid | −0.885 | 0.328 |
Walnut Varieties | ||||||||
---|---|---|---|---|---|---|---|---|
(mg/kg) | M10B | M10P | A117B | A117P | Chernivets’ky 1 | American Chandler | Chilean Chandler | Brazilian Chandler |
Macro-elements | ||||||||
Ca | 2800 ± 100 b | 2400 ± 100 abc | 2800 ± 200 b | 2666 ± 230 bc | 2033 ± 57 a | 2333 ± 208 ab | 2600 ± 20 bc | 2333 ± 115 ab |
K | 4833 ± 58 ab | 4500 ± 0 a | 4800 ± 173 ab | 4733 ± 850 a | 5433 ± 289 ab | 5333 ± 551 ab | 5866 ± 404 b | 5100 ± 200 ab |
Mg | 1933 ± 58 b | 1900 ± 265 b | 1833 ± 58 ab | 1833 ± 252 ab | 1700 ± 100 bc | 1800 ± 153 bc | 1800 ± 100 bc | 1800 ± 0 bc |
Na | 493.33 ± 29 ab | 400 ± 26 ab | 453 ± 104 ab | 337 ± 47 a | 323.00 ± 100.00 a | 370.00 ± 26.46 ab | 360.00 ± 40.00 ab | 370.00 ± 34.64 ab |
P | 4766 ± 115 bcd | 4233± 58 abcd | 4900 ± 100 cd | 4933 ± 416 d | 4233 ± 115 ab | 4167 ± 404 ab | 4266 ± 208 abc | 4066 ± 153 a |
Micro-elements | ||||||||
Cu | 18.33 ± 1.15 b | 20.00 ± 0.00 b | 17.33 ± 0.58 b | 19.00 ± 2.65 b | 12.00 ± 1.00 a | 19.00 ± 2.00 b | 21.33 ± 2.08 b | 18.33 ± 1.15 b |
Fe | 30.67 ± 2.08 ab | 28.33 ± 1.53 b | 24.67 ± 1.15 bc | 25.33 ± 4.51 bc | 25.00 ± 1.00 b | 27.00 ± 4.00 b | 28.33 ± 0.58 b | 27.33 ± 3.51 b |
Zn | 30.00 ± 1.00 ab | 28.00 ± 1.00 a | 31.33 ± 0.58 ab | 31.33 ± 4.16 ab | 26.67 ± 2.08 a | 31.00 ± 3.00 ab | 35.01 ± 3.00 b | 27.12 ± 1.00 a |
(Na + Ca)/(K + Mg) | 0.38 ± 0.01 | 0.39 ± 0.01 | 0.49 ± 0.02 | 0.56 ± 0.20 | 0.39 ± 0.03 | 0.48 ± 0.03 | 0.33 ± 0.02 | 0.46 ± 0.05 |
Minerals | Recommended Daily Intake (mg/Day) [41] | mg Minerals/1 pcs Kernel (% RDI/1 pcs. Kernel) | |||||||
---|---|---|---|---|---|---|---|---|---|
‘M10B’ | ‘M10P’ | ‘A117B’ | ‘A117P’ | ‘Chernivets’ky 1’ | ‘American Chandler’ | ‘Chilean Chandler’ | ‘Brazilian Chandler’ | ||
K | 3500 | 34.31 (1.0) | 31.95 (0.9) | 28.80 (0.8) | 28.44 (0.8) | 32.59 (0.9) | 34.13 (0.9) | 37.54 (3.5) | 32.64 (0.9) |
Ca | 800 | 19.88 (2.5) | 17.04 (2.1) | 16.80 (2.1) | 15.99 (1.9) | 12.19 (1.5) | 14.93 (1.8) | 16.64 (2.1) | 14.93 (1.8) |
P | 620 | 34.31 (1.0) | 30.05 (4.8) | 29.40 (4.7) | 29.60 (4.8) | 25.39 (4.1) | 26.67 (4.3) | 27.30 (4.4) | 26.02 (4.2) |
Mg | 350 | 13.72 (3.9) | 13.49 (3.8) | 10.99 (3.1) | 10.99 (3.1) | 10.20 (2.9) | 11.52 (3.3) | 11.52 (3.3) | 11.52 (3.3) |
Cu | 1.1 | 0.13 (11.8) | 0.14 (12.9) | 0.10 (9.4) | 0.11 (10.3) | 0.07 (6.5) | 0.12 (11.1) | 0.13 (12.4) | 0.12 (10.6) |
Zn | 9 | 0.21 (2.3) | 0.19 (2.2) | 0.18 (2.1) | 0.18 (2.1) | 0.16 (1.8) | 0.19 (2.2) | 0.22 (2.5) | 0.17 (1.9) |
Fe | 12.5 | 0.22 (1.7) | 0.20 (1.6) | 0.14 (1.2) | 0.15 (1.7) | 0.16 (1.7) | 0.17 (1.4) | 0.18 (1.4) | 0.17 (1.4) |
Category | Berzék | Pálháza |
---|---|---|
average yearly temperature | 11.4 °C | 10.9 °C |
average yearly temperature during the growing season (between April and September) | 18.4 °C | 17.9 °C |
average minimum temperature during spring (between March and May) | 2.4 °C | 1.9 °C |
number of days with frost during spring (between March and May) | 36 | 40 |
average yearly luminous flux | 1032 L/m2/day | 1005 L/m2/day |
average yearly precipitation | 443.2 mm | 468.2 mm |
Varieties | ||||
---|---|---|---|---|
Growing Areas | ‘Milotai 10’ | ‘Alsószentiváni 117’ | ‘Chandler’ | ‘Chernivets’ky 1’ |
Berzék, Hungary | × | × | ||
Pálháza, Hungary | × | × | ||
United States of America | × | |||
Chile | × | |||
Brazil | × | |||
Ukraine | × |
Varieties | Harvest Time | Dried Nut Weight (g) | Kernel Percentage (%) | Kernel Weight (g) |
---|---|---|---|---|
‘Milotai 10’ | 3rd week of September | 15 | 47 | 7.1 |
‘Alsószentiváni 117’ | 2nd week of September | 12.5 | 48 | 6 |
‘Chandler’ | 3rd week of September | 13.0 | 49 | 6.4 |
‘Chernivets’ky 1’ | 2nd week of September | 11.4 | 53 | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalóki-Dorkó, L.; Kumar, P.; Székely, D.; Végvári, G.; Ficzek, G.; Simon, G.; Abrankó, L.; Tormási, J.; Bujdosó, G.; Máté, M. Comparative Study of Different Walnut (Juglans regia L.) Varieties Based on Their Nutritional Values. Plants 2024, 13, 2097. https://doi.org/10.3390/plants13152097
Szalóki-Dorkó L, Kumar P, Székely D, Végvári G, Ficzek G, Simon G, Abrankó L, Tormási J, Bujdosó G, Máté M. Comparative Study of Different Walnut (Juglans regia L.) Varieties Based on Their Nutritional Values. Plants. 2024; 13(15):2097. https://doi.org/10.3390/plants13152097
Chicago/Turabian StyleSzalóki-Dorkó, Lilla, Pradeep Kumar, Dóra Székely, György Végvári, Gitta Ficzek, Gergely Simon, László Abrankó, Judit Tormási, Géza Bujdosó, and Mónika Máté. 2024. "Comparative Study of Different Walnut (Juglans regia L.) Varieties Based on Their Nutritional Values" Plants 13, no. 15: 2097. https://doi.org/10.3390/plants13152097