Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Materials for Protoplasts’ Isolation of P. aegyptiaca Haustorium
2.3. Protoplasts’ Isolation and Purification
2.4. Protoplasts’ Yield and Viability Assessment
2.5. Protoplasts’ Transformation
2.6. Detection of pCAMBIA3301, NPTII and eGFP in the Transfected Protoplasts by PCR
2.7. Statistical Analysis
3. Results
3.1. Selection of Optimal Materials for Protoplasts’ Isolation of P. aegyptiaca Haustorium
3.2. Selection of Optimal Factors for Protoplasts’ Isolation of P. aegyptiaca Haustorium
3.3. Assessment of the Optimal Protocol in Protoplasts’ Isolation of P. aegyptiaca Haustorium
3.4. Optimization of the Transient Transformation System of P. aegyptiaca Haustorium Protoplasts
3.5. Assessment of the Optimized Protocol in Terms of Transfection Effect in Protoplasts of P. aegyptiaca Haustorium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piwowarczyk, R.; Sánchez, P.Ó.; Moreno, M.G.; Fayvush, G.; Zakaryan, N.; Kartashyan, N.; Aleksanyan, A. Holoparasitic Orobanchaceae (Cistanche, Diphelypaea, Orobanche, Phelipanche) in Armenia: Distribution, habitats, host range and taxonomic problems. Phytotaxa 2019, 386, 1–106. [Google Scholar] [CrossRef]
- Aly, R.; Lati, R.; Abu-Nassar, J.; Ziadna, H.; Achdari, G.; von Muenchow, C.S.; Wicke, S.; Bari, V.K.; Eizenberg, H. The weedy parasite Phelipanche aegyptiaca attacks Brassica rapa var. Rapa for the first time in Israel. Plant Dis. 2019, 103, 1796. [Google Scholar] [CrossRef]
- Bai, J.R.; Wei, Q.; Shu, J.S.; Gan, Z.X.; Li, B.J.; Yan, D.L.; Huang, Z.J.; Guo, Y.M.; Wang, X.X.; Zhang, L.X. Exploration of resistance to Phelipanche aegyptiaca in tomato. Pest Manag. Sci. 2020, 76, 3806–3821. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Ahmad, B.; Tariq, R.M.S.; Syed, M.Z.; Ahmad, Z. Assessment of the yield loss imparted by Orobanche aegyptiaca in tomato in Pakistan. An. Acad. Bras. Ciências 2018, 90, 3559–3563. [Google Scholar] [CrossRef] [PubMed]
- Furuta, K.M.; Xiang, L.; Cui, S.; Yoshida, S. Molecular dissection of haustorium development in Orobanchaceae parasitic plants. Plant Physiol. 2021, 186, 1424–1434. [Google Scholar] [CrossRef] [PubMed]
- Kokla, A.; Leso, M.; Zhang, X.; Simura, J.; Serivichyaswat, P.T.; Cui, S.; Ljung, K.; Yoshida, S.; Melnyk, C.W. Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nat. Commun. 2022, 13, 2976. [Google Scholar] [CrossRef]
- Wiseglass, G.; Pri-Tal, O.; Mosquna, A. ABA signaling components in Phelipanche aegyptiaca. Sci. Rep. 2019, 9, 6476. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shao, Y.; Chaffin, T.A.; Ahkami, A.H.; Blumwald, E.; Stewart, C.N. Synthetic promoter screening using poplar mesophyll protoplast transformation. Bio Protoc. 2023, 13, e4660. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, L.; Deng, Y.; Bai, Y.; Sun, C.; Huang, S.; Zhou, J.; Shi, L.; Yang, X.; Li, L.; et al. BrpNAC895 and BrpABI449 coregulate the transcription of the afflux-type cadmium transporter BrpHMA2 in Brassica parachinensis. Hortic. Res. 2022, 9, uhac044. [Google Scholar] [CrossRef]
- Cocking, E.C. A method for the isolation of plant protoplasts and vacuoles. Nature 1960, 187, 962–963. [Google Scholar] [CrossRef]
- Babaei, S.; Alizadeh, H.; Jahansouz, M.R.; Mashhadi, H.R.; Moeini, M.M. Management of Phelipanche aegyptiaca Pomel. using trap crops in rotation with tomato (Solanum lycopersicom L.). Aust. J. Crop Sci. 2010, 4, 437–442. [Google Scholar]
- Duarte, P.; Ribeiro, D.; Carqueijeiro, I.; Bettencourt, S.; Sottomayor, M. Protoplast transformation as a plant-transferable transient expression system. Methods Mol. Biol. 2016, 1405, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, S.; Fu, Y.; Wang, Z.; Yang, X.; Li, W.; Zhang, C.; Zhang, D.; Li, J. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis. Plant Methods 2023, 19, 5. [Google Scholar] [CrossRef]
- Bian, P.; Sun, C.; Cao, X.; Yao, Z.; Zhang, X.; Zhao, S. Screening of haustorium induction factors of Phelipanche aegyptiaca Pers. based on metabolome analysis of Cucumis melo L. root exudates. Agronomy 2023, 13, 2648. [Google Scholar] [CrossRef]
- Poddar, S.; Tanaka, J.; Cate, J.H.D.; Staskawicz, B.; Cho, M.J. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods 2020, 16, 151. [Google Scholar] [CrossRef]
- Yang, P.; Sun, Y.; Sun, X.; Li, Y.; Wang, L. Optimization of preparation and transformation of protoplasts from Populus simonii × P. nigra leaves and subcellular localization of the major latex protein 328 (MLP328). Plant Methods 2024, 20, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, R.; Tian, X.; Guo, Y.; Li, X.; Liu, X.; Xie, Y.; Li, M.; Xia, H.; Liang, D. Establishment of protoplasts isolation and transient transformation system for kiwifruit. Sci. Hortic. 2024, 329, 113034. [Google Scholar] [CrossRef]
- Wu, J.Z.; Liu, Q.; Geng, X.S.; Li, K.M.; Luo, L.J.; Liu, J.P. A highly efficient mesophyll protoplast isolation and PEG-mediated transient expression system in eggplant. Sci. Hortic. 2022, 304, 111303. [Google Scholar] [CrossRef]
- Shao, Y.; Mu, D.; Pan, L.; Wilson, I.W.; Zheng, Y.; Zhu, L.; Lu, Z.; Wan, L.; Fu, J.; Wei, S.; et al. Optimization of isolation and transformation of protoplasts from Uncaria rhynchophylla and its application to transient gene expression analysis. Int. J. Mol. Sci. 2023, 24, 3633. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, L.J.; Yu, P.; Chen, J.; Du, S.; Qin, G.; Zhang, L.; Li, N.; Yuan, D. Development of a protoplast isolation system for functional gene expression and characterization using petals of Camellia oleifera. Plant Physiol. Biochem. 2023, 201, 107885. [Google Scholar] [CrossRef]
- Yuan, G.; Lu, H.; Tang, D.; Hassan, M.M.; Li, Y.; Chen, J.G.; Tuskan, G.A.; Yang, X. Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants. Hortic. Res. 2021, 8, 234. [Google Scholar] [CrossRef]
- Xiong, L.; Li, C.; Li, H.; Lyu, X.; Zhao, T.; Liu, J.; Zuo, Z.; Liu, B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Sci. China Life Sci. 2019, 62, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; An, Y.; Zhang, J.; Li, H. Transient ChIP-Seq for genome-wide in vivo DNA binding landscape. Trends Plant Sci. 2021, 26, 524–525. [Google Scholar] [CrossRef] [PubMed]
- Ovcharenko, O.O.; Rudas, V.A.; Kuchuk, M.V. Protoplast fusion for cellular engineering of the Brassicaceae. Cytol. Genet. 2023, 57, 432–450. [Google Scholar] [CrossRef]
- Wang, Q.L.; Yu, G.; Chen, Z.Y.; Han, J.L.; Hu, Y.F.; Wang, K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L). Crop J. 2021, 9, 133–142. [Google Scholar] [CrossRef]
- Cheng, Z.; Mu, C.; Li, X.; Cheng, W.; Cai, M.; Wu, C.; Jiang, J.; Fang, H.; Bai, Y.; Zheng, H.; et al. Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (Phyllostachys edulis). Hortic. Res. 2023, 10, uhad122. [Google Scholar] [CrossRef] [PubMed]
- Adjei, M.O.; Zhao, H.; Tao, X.; Yang, L.; Deng, S.; Li, X.; Mao, X.; Li, S.; Huang, J.; Luo, R.; et al. Using a protoplast transformation system to enable functional studies in Mangifera indica L. Int. J. Mol. Sci. 2023, 24, 11984. [Google Scholar] [CrossRef]
- Yang, W.H.; Ren, J.Q.; Liu, W.R.; Liu, D.; Xie, K.D.; Zhang, F.; Wang, P.W.; Guo, W.W.; Wu, X.M. An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts. Hortic. Plant J. 2023, 9, 425–436. [Google Scholar] [CrossRef]
- Stajič, E.; Kunej, U. Optimization of cabbage (Brassica oleracea var. capitata L.) protoplast transformation for genome editing using CRISPR/Cas9. Front. Plant Sci. 2023, 14, 1245433. [Google Scholar] [CrossRef]
- Du, J.G.; Zhang, H.T.; Li, W.L.; Li, X.Y.; Wang, Z.; Zhang, Y.; Xiong, A.S.; Li, M.Y. Optimization of protoplast preparation system from leaves and establishment of a transient transformation system in Apium graveolens. Agronomy 2023, 13, 2154. [Google Scholar] [CrossRef]
- Peng, Z.; Tong, H.R.; Liang, G.L.; Shi, Y.Q.; Yuan, L.Y. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant(Camellia sinensis LO Kuntze). Acta Agron. Sin. 2018, 44, 463. [Google Scholar] [CrossRef]
- Hong, K.Y.; Chen, Z.Y.; Radani, Y.; Zheng, R.H.; Zheng, X.Y.; Li, Y.; Chen, J.H.; Yang, L.M. Establishment of PEG-mediated transient gene expression in protoplasts isolated from the callus of Cunninghamia lanceolata. Forests 2023, 14, 1168. [Google Scholar] [CrossRef]
- Adedeji, O.S.; Naing, A.H.; Kang, H.; Chung, M.Y.; Lim, K.B.; Kim, C.K. Optimization of protocol for efficient protoplast isolation and transient gene expression in carnation. Sci. Hortic. 2022, 299, 111057. [Google Scholar] [CrossRef]
- Taylor, N.J.; Fauquet, C.M. Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 2002, 21, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.M.; Yao, D.M.; Lin, F.; Jiang, M.Y. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: A valuable tool for signal transduction study in maize. Acta Physiol. Plant. 2014, 36, 1271–1281. [Google Scholar] [CrossRef]
- Janssen, B.J.; Gardner, R.C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 1990, 14, 61–72. [Google Scholar] [CrossRef]
- Rostami, A.; Saremi, H.; Saremi, H. Using protoplast fusion to improve biocontrol ability of Fusarium oxysporum against Egyptian broomrapes (Phelipanche aegyptiaca). Australas. Plant Pathol. 2024, 53, 89–101. [Google Scholar] [CrossRef]
Factor | Cellulase R-10 (%) | Macerozyme R-10 (%) | Mannitol (mol/L) | Enzymolysis Time (h) | Enzymolysis Temperature (°C) | Centrifugal Gravity (× g) |
---|---|---|---|---|---|---|
Level 1 | 1.5 | 0.6 | 0.3 | 2 | 23 | 60 |
Level 2 | 2 | 0.7 | 0.4 | 3 | 24 | 70 |
Level 3 | 2.5 | 0.8 | 0.5 | 4 | 25 | 80 |
Level 4 | 3 | 0.9 | 0.6 | 5 | 26 | 90 |
Level 5 | 3.5 | 1 | 0.7 | 6 | 27 | 100 |
yield | K1 | 4.09 | 4.57 | 5.01 | 3.24 | 5.22 | 4.71 |
K2 | 4.17 | 4.79 | 5.69 | 5.21 | 5.91 | 4.42 | |
K3 | 4.87 | 4.92 | 5.38 | 5.92 | 4.61 | 4.92 | |
K4 | 5.08 | 4.81 | 5.31 | 4.94 | 4.62 | 5.03 | |
K5 | 6.31 | 5.42 | 4.02 | 5.20 | 4.15 | 5.43 | |
Range | 2.22 | 0.85 | 1.67 | 2.68 | 1.76 | 1.00 | |
Rank | enzymolysis time > Cellulase R-10 > enzymolysis temperature > mannitol > centrifugal gravity > Macerozyme R-10 | ||||||
viability | K1 | 81.18 | 81.20 | 75.40 | 78.15 | 76.92 | 78.86 |
K2 | 78.13 | 79.83 | 82.80 | 76.30 | 75.98 | 77.67 | |
K3 | 78.65 | 79.48 | 82.95 | 77.12 | 78.42 | 76.68 | |
K4 | 75.12 | 76.07 | 74.26 | 77.46 | 77.87 | 77.67 | |
K5 | 74.31 | 70.81 | 71.97 | 78.35 | 78.20 | 76.50 | |
Range | 6.87 | 10.39 | 10.98 | 2.05 | 2.44 | 2.36 | |
Rank | mannitol > Macerozyme R-10 > Cellulase R-10 > enzymolysis temperature > centrifugal gravity > enzymolysis time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Cao, X.; Zhao, Q.; Hou, S.; Hu, X.; Yang, Z.; Hao, T.; Zhao, S.; Yao, Z. Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca. Plants 2024, 13, 2163. https://doi.org/10.3390/plants13152163
Zeng X, Cao X, Zhao Q, Hou S, Hu X, Yang Z, Hao T, Zhao S, Yao Z. Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca. Plants. 2024; 13(15):2163. https://doi.org/10.3390/plants13152163
Chicago/Turabian StyleZeng, Xiaojian, Xiaolei Cao, Qiuyue Zhao, Siyuan Hou, Xin Hu, Zheyu Yang, Tingli Hao, Sifeng Zhao, and Zhaoqun Yao. 2024. "Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca" Plants 13, no. 15: 2163. https://doi.org/10.3390/plants13152163
APA StyleZeng, X., Cao, X., Zhao, Q., Hou, S., Hu, X., Yang, Z., Hao, T., Zhao, S., & Yao, Z. (2024). Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca. Plants, 13(15), 2163. https://doi.org/10.3390/plants13152163