Green Extraction of Plant Materials Using Supercritical CO2: Insights into Methods, Analysis, and Bioactivity
Abstract
:1. Introduction
1.1. Supercritical Fluid
Basic Physical Properties of SFs
1.2. CO2 as a SF
1.2.1. Advantages of ScCO2
1.2.2. Disadvantages of ScCO2
1.3. Parameters Affecting Efficiency in Supercritical Fluid Extraction (SFE)
1.3.1. Temperature
1.3.2. Pressure
1.3.3. Flow Rate
1.3.4. Modifier
1.3.5. Grinding Time and Particle Size
1.4. Extraction of Biologically Active Substances from Plants with ScCO2
Preparation of Plant Material for ScCO2 Extraction
Entry | Plant Name (Plant Material) [Region] | Bioactive Compounds or Compound Classes | Temperature (°C) | Pressure (bar) | Time (min) | Co-Solvent | Flow Rate | Particle Size | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | Lippia graveolens (flowers and leaves) [Mexico] | Cirsimaritin, Quercetin, Phloridzin, Apigenin, Naringenin, Luteolin | 58.4 | 166 | 75 | 12.44% Ethanol | 5 mL/min | - | [29] |
2 | Bee pollen [Colombia] | β-carotene | 60 | 280 | 360 | 5000 mL/min | - | [56] | |
3 | Camellia sinensis L. (leaves) [Switzerland] | Carotenoids, Chlorophyll B, Chlorophyll A, Caffeine | 35 and 70 | 300 | 90 | Ethanol, ethanol/water (1:1) or water | - | 0.34 mm | [26] |
4 | Phaseolus vulgaris L. (seeds) [Peru] | α-Tocopherol, β-Tocopherol, γ-Tocopherol, δ-Tocopherol | 35–45 | 380–420 | 30–120 | - | 1 mL/min | - | [57] |
5 | Tobacco (rhizomes) [Zimbabwe] | Nicotine | 45–65 | 250 | 60–120 | Ethanol | - | 0.35–0.42 mm | [28] |
6 | Cosmos sulphureus (seeds) [China] | Catechin, Epicatechin, Coreopsin, Sulfuretin, Luteolin, Quercetin, Butein, Myricetin, Rutin, Hesperidin, Kaempferol, Naringenin | 55 | 250 | 75–105 | 10% Ethanol | 0.5 g/min | - | [27] |
7 | Rosmarinus officinalis L. (leaves) [Germany] | Quinic acid, Danshensu, Hydroxybenzoic acid, Caffeic acid, Gallocatechin, Rosmarinic acid, Luteolin-O-glucuronide, Salvianolic acid A, Luteolin-O-acetylglucuronide I, Luteolin-O-acetylglucuronide II, Cirsimaritin, Ladanein, Rosmanol, Epirosmanol, Isorosmanol, Genkwanin, Epiisorosmanol, Epirosmanol methyl Ether, Methoxyrosmanol, Carnosol, Rosmadial I, Rosmadial II, Carnosic acid I, Carnosic acid methyl Ester, Carnosic acid II | 40, 50 and 60 | 100 | 40 | - | 7000 mL/min | - | [46] |
8 | Lippia origanoides [Colombia] | Taxifolin-hexoside, Quercetin-3-glucoside, Luteolin deoxyhexoside, Eriodictyol hexoside, Luteolin hexoside, Taxifolin, Galangine-hexoside, Phloridzin, Eriodictyol, Quercetin, Luteolin, Naringenin, Hesperetin, Chrysoeryol, Cirsimaritin, Sakuranetin, Pinocembrin, Dimethylated flavone, Trimethylated tricetin, Galangin, Methylated galangin | 40 | 300 | 180 | 89% v/v aqueous ethanol | 39 g/min | - | [43] |
9 | Cymbopogon flexuosus (leaves and stems) [Palestine] | Hydrocarbon monoterpenes, oxygenated monoterpenoids, hydrocarbon sesquiterpenes | 40 | 150 | 15 | - | 200 g/60 min | - | [44] |
10 | Quebec LSD-type Cannabis (flowers) [Canada] | Tetrahydrocannabinol (∆ 9-THC), Cannabigerol (CBG), Cannabinol (CBN) | 40–70 | 150–320 | 120–240 | - | 5–15 g/min | - | [58] |
11 | Maackia amurensis (bark) [Russia] | Flavones, Isoflavones, Flavonols, Flavonoids, Isoflavans, Prenyl flavonoids, Phenolic acids, Coumarins, | 31–70 | 50–400 | 60–90 | 2% Ethanol | 10–25 mL/min | - | [59] |
12 | Ledum Palustre L. (Leaves and twigs) [Russia] | Flavanols, Flavones, Flavan-3-ols, Coumarins Terpenes, Terpenoids | 60 | 350 | 60 | 3.5% Methanol | - | - | [60] |
13 | Quercus infectoria (gall) [Indonesia] | Phenolic compounds, Coumarins | 60 | 200 | 60 | 0.05% Methanol | 25 mL/min | 0.3 mm | [38] |
14 | Terminalia chebula (pulp) [India] | (+)-Chebulic acid, Gallic acid, Ellagic acid, Quercetin 3-O-glucuronide, Asiatic acid, Fertaric acid, Amlaic acid, Isoterchebin, 2-Hydroxychromene-2-carboxylate, 2,6-Digalloylglucose, a-Santalal, Dambonitol, Terbinafine, Tiropramide, Solanocapsine, Erythromycin B, Telaprevir, Nafoxidine, Novaluron, Dihydrodeoxystreptomycin, Sphinganine, Stigmatellin Y, Oxymetazoline, l-Arginine, Retronecine, S-(Hydroxymethyl) Mycothiol, Oxdemetonmethyl, Punicacortein B, | 51.97 | 166.94 | 67.47 | 3.34 mL/min | 0.149 mm | [30] | |
15 | Ziziphus jujuba L. (fruits) [Iraq] | Andrographolide, Spiro[androst-5-ene-17,1′- cyclobutan]-2′-one, 3-hydroxy-, (3β,17β)-, 1,3-Bis-t-butylperoxy-phthalan, Cyclobarbital, Androstane-11,17-dione, 3-[(trimethylsilyl)oxy]-, 17-[O- (phenylmethyl) oxime], (3α,5α)- | 52 | 270 | 240 | 90% ethanol | 50 g/min | - | [45] |
16 | Narcissus poeticus L. (Flowers) [Lithuania] | Monoterpene hydrocarbons, Oxygenated monoterpenes, Oxygenated sesquiterpenes Diterpenoids, Triterpenoids, Tocopherols, Phenylpropanoids, phenols | 40 | 480 | 10 | 5% (v/v) ethanol | 2000 mL/min | 0.5 mm | [61] |
17 | Capsicum annuum L. [Hungary] | Carotenoids | 50 | 350–450 | 60 | - | 15,000 g/60 min | <0.2 mm | [40] |
18 | Lamium album (white dead nettle, Lamiaceae) (Flower) [Poland] | Phenolic compounds, | 40–60 | 250 | 180 | 25% methanol | 4 mL/min | - | [47] |
19 | Elaeagnus mollis Diels (seeds) [China] | Amino acids | 37 | 300–310 | 210 | - | - | 0.22 mm | [62] |
20 | Iberis amara (seeds) [China] | Cucurbitacin E | 40–60 | 350 | 20–100 | 3–15% ethanol | 1–3 mL/min | 0.45 mm | [63] |
21 | Eugenia uniflora (leaves) [Brazil] | Selina-1,3,7(11)- trien-8-one, Phytol, Phytol Acetate, Vitamin E, γ-sitosterol, Vitamine C, Friedelin | 40–60 | 150–250 | 90 | - | 4 mL/min | 0.204 mm | [64] |
22 | Vitis vinifera L. (leaves) [Portugal] | α-tocopherol, β-sitosterol, β-amyrin, Lupeol | 40–80 | 300 | 30–360 | Ethanol 5–10 wt.% Ethylacetate 5–10 wt.% | 12 g/min | 30 mm | [65] |
23 | Cnidoscolus quercifolius (seeds) [Brazil] | Tocopherols, β-sitosterol | 40–60 | 200–300 | 120 | 5 g/min | 0.51 mm | [66] | |
24 | Beta vulgaris (roots) [Argentina] | Polyphenols | 35–50 | 300–400 | 75% ethanol | 600 g/60 min | - | [67] | |
25 | Carum copticum L. and Thymus vulgaris L. (seeds) [Egypt] | Monoterpenes hydrocarbons, Oxygenated monoterpenes, Sesquiterpenes hydrocarbons, Oxygenated sesquiterpenes, Thymol | 40 | 104 and 167 | 90 | - | 8 mL/min | 0.5 mm | [68] |
26 | Lippia graveolens and Lippia origanoides (leaves) [Colombia] | Taxifolin, Eriodictyol, Quercetin, Luteolin, Naringenin, Hesperetin, Apigenin, Chrysoeriol, Dimethylated flavone, Pinocembrin, Cirsimaritin, Sakuranetin, Galangin, Methylated galangin, Methylated apigenin | 40–60 | 80–400 | 60–120 | 10% ethanol | 10–50 g/min | 0.5–2 mm | [69] |
27 | Camellia sinensis var. assamica, (seeds) [ Thailand] | Flavonoids, Phenolics, Saponins, Tannins | 40–60 | 125–250 | 60–300 | - | 110–170,000 mL/60 min | - | [48] |
28 | Morus alba (leaves) [Brazil] | β-sitosterol, Phytosterol, Phenolics | 40–60 | 150–200 | 120 | - | 2 g/min | 0.297–0.71 mm | [70] |
29 | Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder (leaves and stems) [Russia] | Flavonoids, Phenolics | 50–60 | 300–400 | 60–70 | 1% ethanol | 50 mL/min | - | [71] |
30 | Bauhinia forficata subsp. pruinosa (leaves) [Brazil] | β-sitosterol, γ-tocopherol, α-tocopherol, Phytol, Lanosterol | 40–60 | 180–220 | 200 | - | 2 mL/min | 0.297–0.71 mm | [72] |
31 | Ziziphus jujuba Mill. cv. Junzao (leaves) [China] | Quercetin 3- O-robinobioside, Rutin, Hyperoside (quercetin-3- O-D-galactoside), Quercetin-3- O-D-glucoside, Kaempferol-3-O-robinobioside, Kaempferol-3-O-glucoside, Quercetin-3-O-β-L-arabinosyl-(1→2)-α-L-rhamnoside, Quercetin-3-O-β-D-xylosyl-(1→2)-α-L-rhamnoside | 45–55 | 200–300 | 60–120 | 90% ethanol | 0.2–0.6 mL/min | 0.25 mm | [34] |
32 | Salvia fruticosa (leaves) [Greece] | Monoterpenes, Oxygenated monoterpenes, Sesquiterpenes, Oxygenated sesquiterpenes, Diterpenes | 40–60 | 100–280 | 150 | - | 1–3000 g/60 min | 0.2 mm | [73] |
33 | Senecio brasiliensis (leaves, flowers, and stalks) [Brazil] | β-elemene, α-humulene, Caryophyllene, Germacrene-D, Bicyclogermacrene, Spathulenol, Neophytadiene, Phytol, Isospathulenol, Senecionine, Integerrimine, Vitamin E | 40–60 | 150–250 | 45 | - | 4 g/min | 1.29 mm (leaves) 1.07 mm (flowers 0.802 mm (stalks) | [74] |
34 | Hibiscus sabdariffa (flowers) [Spain] | Quercetin-3-glucoside, Methylepigallocatechin, Myricetin, Quercetin, Kaempferol, Phenolics | 40–60 | 150–350 | 90 | 7–15% ethanol | 25 g/min | 2 mm | [75] |
35 | Bixa Orellana L. (seeds) [Brazil] | Tocotrienols, Tocopherols, Geranylgeraniol | 40–60 | 100–310 | 100–115 | - | 5 g/min | 3.4 mm | [35] |
36 | Chrysopogon zizanioides (roots) [Brazil] | Cis-eudesm-6-en-11-ol, Khusimone, Maaliol, Epi-zizanone, Zizanol, Khusiol, Spathulenol, Vetiselinenol, Khusimol, Isovalencenol, Nootkatone, α-Vetivone, Isovalecenal, β-Vetivone, Zizanoic acid | 40–60 | 140–200 | 150 | 1%, 3% or 5% (v/v) ethanol or ethyl acetate | 1.97 g/min | 0.45 mm | [36] |
37 | Tiliae Inflorescentia L. (flowers) [Poland] | Tiliroside, Eriodictyol, Quercetin, Apigenin, Naringenin, Kaempferol, Isorhamnetin, Sakuranetin | 45–80 | 100–220 | 20–60 | 5% or 10% ethanol | 10.33 mL/min for 5% ethanol 13.65 mL/min for 10% ethanol | - | [76] |
38 | Arctium lappa (leaves) [Brazil] | Phytol acetate, Phytol, ϒ-sisterol, Lupeol acetate, α-amyrim, Amyrin acetate, Lupeol | 40–80 | 150–250 | 25–150 | 33% ethanol | 2 mL/min | - | [37] |
39 | Eugenia pyriformis Cambess. (leaves) [Brazil] | Vitamin E, β-Sitosterol, β-amyrin, α-amyrin | 40–60 | 100–200 | 210 | - | 2 g/min | 0.73 mm | [77] |
40 | Ocimum basilicum L. (leaves and flowers) [Portugal] | Phenolics, Flavonoids, Terpenes | 40 | 400 | 150 | - | 1000 g/60 min | 0.6 mm | [78] |
41 | Malus pumila (seeds) [New Zealand] | Phenolics | 40 | Up to 1300 | 300 | - | 6–10 mL/min | 0.5 and 1 mm | [33] |
42 | Populus nigra L. (buds) [Poland] | Phenolics, Monoterpenes, Flavonoids, Sesquiterpenes, Diterpenes | 40–60 | 83–337 | 60 | - | 2000 g/60 min | [79] | |
43 | Ruta Chalepensis L. (roots) [Turkey] | Coumarins, Furanocoumarins, Phenolics, Furano alkaloids, Quinoline alkaloids, Acridanone alkaloids | 45 | 90 and 200 | 50 | - | 2 mL/min | - | [80] |
44 | Pterocaulon polystachyum | Coumarins | 60 | 240 | 120 | - | 1000 g/60 min | - | [81] |
45 | Juglans regia L. | Linoleic acid, Oleic acid, Palmicitic acid | 59.85 | 400 | 315–390 | - | - | - | [82] |
1.5. Characterization and Isolation Methods
1.5.1. Chromatography
1.5.2. Gas Chromatography (GC)
1.5.3. Counter-Current Chromatography (CCC)
1.5.4. Preparative Thin-Layer Chromatography
1.6. The Use of Herbal Compounds in the Treatment of Cancer
1.6.1. Clinical or Preclinical Study Examples
1.6.2. The Significance of Herbal Compounds in Discovery of New Drugs
1.6.3. Application of Herbal Compounds in Cancer Treatment; Synergistic Effects and Combination Treatments
2. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Younis, A.; Osman, A. Solvent-free Organic Reaction Techniques as an Approach for Green Chemistry. J. Turk. Chem. Soc. Sect. A Chem. 2023, 10, 549–576. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Hessel, V.; Tran, N.N.; Asrami, M.R.; Tran, Q.D.; Long, N.V.D.; Escribà-Gelonch, M.; Tejada, J.O.; Linke, S.; Sundmacher, K. Sustainability of green solvents—Review and perspective. Green Chem. 2022, 24, 410–437. [Google Scholar] [CrossRef]
- Yan, B.; Hu, Y.; Wang, J.; Tao, J.; Xia, S.; Yang, W.; Zhang, Y.; Chen, G.; Zhou, W.; Chen, G. State-of-the-art conceptual design of supercritical carbon dioxide as a green technology involved in bioresource conversion processes. Chem. Eng. J. 2024, 486, 150166. [Google Scholar] [CrossRef]
- Aman Mohammadi, M.; Safavizadeh, V.; Yousefi, M.; Hosseini, S.M. A short review of supercritical fluid extraction of plant extracts. J. Food Meas. Charact. 2024, 18, 3651–3664. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, B. Bio-based chemicals from biorefining: Lipid and wax conversion and utilization. In Advances in Biorefineries; Woodhead Publishing: Sawston, UK, 2014; pp. 693–720. [Google Scholar]
- Khmelinskii, I.; Woodcock, L.V. Supercritical fluid gaseous and liquid states: A review of experimental results. Entropy 2020, 22, 437. [Google Scholar] [CrossRef]
- Carroll, M.A.; Holmes, A.B. Palladium-catalysed carbon–carbon bond formation in supercritical carbon dioxide. Chem. Commun. 1998, 1395–1396. [Google Scholar] [CrossRef]
- Brunner, G. Stofftrennung mit ueberkritischen gasen (gasextraktion). Chem. Ing. Tech. 1987, 59, 12–22. [Google Scholar] [CrossRef]
- Jessop, P.G.; Leitner, W. Chemical Synthesis Using Supercritical Fluids; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Taylor, S.L.; King, J.W.; List, G.R. Determination of oil content in oilseeds by analytical supercritical fluid extraction. J. Am. Oil Chem. Soc. 1993, 70, 437–439. [Google Scholar] [CrossRef]
- Crouch, M.P. Luminosity Performance Limitations Due to the Beam-Beam Interaction in the Large Hadron Collider; The University of Manchester: Manchester, UK, 2018. [Google Scholar]
- Saus, W.; Knittel, D.; Schollmeyer, E. Dyeing of textiles in supercritical carbon dioxide. Text. Res. J. 1993, 63, 135–142. [Google Scholar] [CrossRef]
- Witkowski, A.; Majkut, M.; Rulik, S. Analysis of pipeline transportation systems for carbon dioxide sequestration. Arch. Thermodyn. 2014, 35, 117–140. [Google Scholar] [CrossRef]
- Goto, M.; Roy, B.C.; Hirose, T. Shrinking-core leaching model for supercritical-fluid extraction. J. Supercrit. Fluids 1996, 9, 128–133. [Google Scholar] [CrossRef]
- Shcherbakov, V.V.; Artemkina, Y.M.; Akimova, I.A.; Artemkina, I.M. Dielectric Characteristics, Electrical Conductivity and Solvation of Ions in Electrolyte Solutions. Materials 2021, 14, 5617. [Google Scholar] [CrossRef] [PubMed]
- May, E.; Moldover, M.R.; Schmidt, J.W. The dielectric permittivity of saturated liquid carbon dioxide and propane measured using cross capacitors. Int. J. Thermophys. 2005, 26, 563–576. [Google Scholar] [CrossRef]
- Dean, J.R. Applications of Supercritical Fluids in Industrial Analysis; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- O’Sullivan, A.; Ryan, K.M.; Padrela, L. Production of biopharmaceutical dried-powders using supercritical CO2 technology. J. Supercrit. Fluids 2022, 187, 105645. [Google Scholar] [CrossRef]
- Guiliano, M.; Boukir, A.; Doumenq, P.; Mille, G.; Crampon, C.; Badens, E.; Charbit, G. Supercritical Fluid Extraction of Bal 150 Crude Oil Asphaltenes. Energy Fuels 1999, 14, 89–94. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.-D.; Dahmen, N.; Dinjus, E. Solubility of triphenylphosphine, tris (p-fluorophenyl) phosphine, tris (pentafluorophenyl) phosphine, and tris (p-trifluoromethylphenyl) phosphine in liquid and supercritical carbon dioxide. J. Chem. Eng. Data 2000, 45, 672–677. [Google Scholar] [CrossRef]
- Guzel, B.; Akgerman, A. Solubility of disperse and mordant dyes in supercritical CO2. J. Chem. Eng. Data 1999, 44, 83–85. [Google Scholar] [CrossRef]
- Enick, R.; Beckman, E.; Yazdi, A.; Krukonis, V.; Schonemann, H.; Howell, J. Phase behavior of CO2–perfluoropolyether oil mixtures and CO2–perfluoropolyether chelating agent mixtures. J. Supercrit. Fluids 1998, 13, 121–126. [Google Scholar] [CrossRef]
- Milovanovic, S.; Lukic, I.; Krgovic, N.; Tadic, V.; Radovanovic, Z.; Tyśkiewicz, K.; Konkol, M. Selection of processing parameters for the integrated supercritical CO2 extraction from green tea leaves and extract impregnation onto starch-chitosan based films. J. Supercrit. Fluids 2024, 206, 106163. [Google Scholar] [CrossRef]
- Ou, H.; Zuo, J.; Gregersen, H.; Liu, X.-Y. Combination of supercritical CO2 and ultrasound for flavonoids extraction from Cosmos sulphureus: Optimization, kinetics, characterization and antioxidant capacity. Food Chem. 2024, 435, 137598. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Xie, Q.; Ren, Q.; Kong, J. Extraction and Purification of Nicotine from Tobacco Rhizomes by Supercritical CO2. Molecules 2024, 29, 1147. [Google Scholar] [CrossRef]
- Picos-Salas, M.A.; Leyva-López, N.; Bastidas-Bastidas, P.d.J.; Antunes-Ricardo, M.; Cabanillas-Bojórquez, L.A.; Angulo-Escalante, M.A.; Heredia, J.B.; Gutiérrez-Grijalva, E.P. Supercritical CO2 extraction of naringenin from Mexican oregano (Lippia graveolens): Its antioxidant capacity under simulated gastrointestinal digestion. Sci. Rep. 2024, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Sit, N. Effect of ultrasound, microwave, and enzymatically pre-treated Terminalia chebula pulp on extraction of bioactive compounds using supercritical CO2. Sustain. Chem. Pharm. 2023, 33, 101098. [Google Scholar] [CrossRef]
- Trevisani Juchen, P.; Nolasco Araujo, M.; Hamerski, F.; Corazza, M.L.; Pedersen Voll, F.A. Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization. Ind. Crops Prod. 2019, 139, 111506. [Google Scholar] [CrossRef]
- Topal, U.; Sasaki, M.; Goto, M.; Hayakawa, K. Extraction of Lycopene from Tomato Skin with Supercritical Carbon Dioxide: Effect of Operating Conditions and Solubility Analysis. J. Agric. Food Chem. 2006, 54, 5604–5610. [Google Scholar] [CrossRef]
- Montañés, F.; Catchpole, O.J.; Tallon, S.; Mitchell, K.A.; Scott, D.; Webby, R.F. Extraction of apple seed oil by supercritical carbon dioxide at pressures up to 1300 bar. J. Supercrit. Fluids 2018, 141, 128–136. [Google Scholar] [CrossRef]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Vardanega, R.; Nogueira, G.C.; Nascimento, C.D.; Faria-Machado, A.F.; Meireles, M.A.A. Selective extraction of bioactive compounds from annatto seeds by sequential supercritical CO2 process. J. Supercrit. Fluids 2019, 150, 122–127. [Google Scholar] [CrossRef]
- Santos, K.A.; Klein, E.J.; da Silva, C.; da Silva, E.A.; Cardozo-Filho, L. Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics. J. Supercrit. Fluids 2019, 150, 30–39. [Google Scholar] [CrossRef]
- de Souza, A.R.C.; Stefanov, S.; Bombardelli, M.C.; Corazza, M.L.; Stateva, R.P. Assessment of composition and biological activity of Arctium lappa leaves extracts obtained with pressurized liquid and supercritical CO2 extraction. J. Supercrit. Fluids 2019, 152, 104573. [Google Scholar] [CrossRef]
- Purbowati, R.; Taufikurohmah, T.; Syahrani, A. Green extraction of Quercus infectoria gall with supercritical CO2 and methanol co-solvent. Environ. Sci. Pollut. Res. 2023, 30, 116952–116959. [Google Scholar] [CrossRef] [PubMed]
- Manjare, S.D.; Dhingra, K. Supercritical fluids in separation and purification: A review. Mater. Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Reszczyński, R. Pilot scale supercritical CO2 extraction of carotenoids from sweet paprika (Capsicum annuum L.): Influence of particle size and moisture content of plant material. Lwt 2021, 136, 110345. [Google Scholar] [CrossRef]
- Seitimova, G.A.; Shokan, A.K.; Tolstikova, T.G.; Zhukova, N.A.; Korulkin, D.Y.; Kudrina, N.O.; Litvinenko, Y.A.; Meduntseva, N.D.; Terletskaya, N.V.; Kulmanov, T.E. Antiulcer Activity of Anthraquinone–Flavonoid Complex of Rumex tianschanicus Losinsk. Molecules 2023, 28, 2347. [Google Scholar] [CrossRef] [PubMed]
- Terletskaya, N.V.; Korbozova, N.K.; Kudrina, N.O.; Kobylina, T.N.; Kurmanbayeva, M.S.; Meduntseva, N.D.; Tolstikova, T.G. The influence of abiotic stress factors on the morphophysiological and phytochemical aspects of the acclimation of the plant Rhodiola semenowii Boriss. Plants 2021, 10, 1196. [Google Scholar] [CrossRef]
- Arias, J.; Muñoz, F.; Mejía, J.; Kumar, A.; Villa, A.L.; Martínez, J.R.; Stashenko, E.E. Simultaneous extraction with two phases (modified supercritical CO2 and CO2-expanded liquid) to enhance sustainable extraction/isolation of pinocembrin from Lippia origanoides (Verbenaceae). Adv. Sample Prep. 2023, 6, 100059. [Google Scholar] [CrossRef]
- Jaradat, N. Qualitative and Quantitative Comparison of Aromatic Oil Components and Antifungal Effects of Cymbopogon flexuosus Obtained with Supercritical CO2, Microwave–Ultrasonic, Steam Distillation, and Hydrodistillation Extraction Techniques. Molecules 2023, 28, 6870. [Google Scholar] [CrossRef] [PubMed]
- Abdulqahar, F.W.; Morgab, M.A.; Hussein, F.F.; Apyantseva, Y.; El-Messery, T.M. In silico analyses of bioactive compounds extracted from Ziziphus jujuba using supercritical CO2 extraction: Potential anti-anxiety and anti-Alzheimer’s disease. Bioact. Compd. Health Dis. 2023, 6, 215–234. [Google Scholar] [CrossRef]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Korona-Glowniak, I.; Minceva, M.; Skalicka-Woźniak, K.; Trifan, A. Value-added compounds with antimicrobial, antioxidant, and enzyme-inhibitory effects from post-distillation and post-supercritical CO2 extraction by-products of rosemary. Antioxidants 2023, 12, 244. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Gramza-Michałowska, A.; Bryła, M.; Waśkiewicz, A. Antioxidant activity and bioactive compounds of lamium album flower extracts obtained by supercritical fluid extraction. Appl. Sci. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Muangrat, R.; Jirarattanarangsri, W. Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensis var. assamica) by supercritical CO2 extraction. J. Food Process. Preserv. 2020, 44, e14364. [Google Scholar] [CrossRef]
- Yıldırım, M.; Sessevmez, M.; Poyraz, S.; Düzgüneş, N. Recent Strategies for Cancer Therapy: Polymer Nanoparticles Carrying Medicinally Important Phytochemicals and Their Cellular Targets. Pharmaceutics 2023, 15, 2566. [Google Scholar] [CrossRef] [PubMed]
- Ardiansah, B.; Tanimoto, H.; Tomohiro, T.; Morimoto, T.; Kakiuchi, K. Sulfonium ion-promoted traceless Schmidt reaction of alkyl azides. Chem. Commun. 2021, 57, 8738–8741. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Simándi, B. Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. J. Supercrit. Fluids 2008, 46, 293–298. [Google Scholar] [CrossRef]
- Snyder, J.; Friedrich, J.; Christianson, D. Effect of moisture and particle size on the extractability of oils from seeds with supercritical CO2. J. Am. Oil Chem. Soc. 1984, 61, 1851–1856. [Google Scholar] [CrossRef]
- Putra, N.R.; Rizkiyah, D.N.; Aziz, A.H.A.; Mamat, H.; Jusoh, W.M.S.W.; Idham, Z.; Yunus, M.A.C.; Irianto, I. Influence of particle size in supercritical carbon dioxide extraction of roselle (Hibiscus sabdariffa) on bioactive compound recovery, extraction rate, diffusivity, and solubility. Sci. Rep. 2023, 13, 10871. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Viloria-Pérez, N.; Camargo-Ovalle, L.V.; Rodríguez-Varela, L.I.; Díaz-Moreno, C.; Suárez-Mahecha, H. Supercritical CO2 extraction of carotenoids from high Andean forest bee pollen. J. Supercrit. Fluids 2024, 209, 106236. [Google Scholar] [CrossRef]
- Benites-Mena, J.; Vargas-De-La-Cruz, C.; Vergara-Valdés, C.; Jave-Nakayo, J.; Ortiz-Viedma, J.; Char, C.; Inga-Guevara, M.; Flores, M.; Cepeda, A. Obtaining an Oily Ingredient Rich in PUFAS and Tocopherols and a High-Nutritional-Value Flour from Beans (Phaseolus vulgaris L.) by Supercritical CO2 Extraction. Foods 2023, 13, 36. [Google Scholar] [CrossRef]
- Boumghar, H.; Sarrazin, M.; Banquy, X.; Boffito, D.C.; Patience, G.S.; Boumghar, Y. Optimization of supercritical carbon dioxide fluid extraction of medicinal cannabis from Quebec. Processes 2023, 11, 1953. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Cherevach, E.I.; Tekutyeva, L.A.; Fedoreyev, S.A.; Mishchenko, N.P.; Tarbeeva, D.V.; Demidova, E.N.; Kirilenko, N.S.; Golokhvast, K. Maackia amurensis Rupr. et Maxim.: Supercritical CO2 Extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023, 28, 2026. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Golokhvast, K. Investigation of the Supercritical CO2 Extracts of Wild Ledum Palustre L. (Rhododendron Tomentosum Harmaja) and Identification of Its Metabolites by Tandem Mass Spectrometry. Russ. J. Bioorg. Chem. 2023, 49, 1645–1657. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022, 27, 353. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wu, G.; Chen, Z.; Brennan, C.S.; Tran, K.; Dilrukshi, H.; Shi, C.; Zhen, H.; Hui, X. Identification of the fatty acids profiles in supercritical CO2 fluid and Soxhlet extraction of Samara oil from different cultivars of Elaeagnus mollis Diels seeds. J. Food Compos. Anal. 2021, 101, 103982. [Google Scholar] [CrossRef]
- Liu, X.-y.; Ou, H.; Gregersen, H. Ultrasound-assisted supercritical CO2 extraction of cucurbitacin E from Iberis amara seeds. Ind. Crops Prod. 2020, 145, 112093. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Veggi, P.C.; Vardanega, R.; Mazutti, M.A.; do Carmo Ferreira, M. Techno-economic evaluation and mathematical modeling of supercritical CO2 extraction from Eugenia uniflora L. leaves. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100261. [Google Scholar] [CrossRef]
- de Melo, M.M.; Carius, B.; Simões, M.M.; Portugal, I.; Saraiva, J.; Silva, C.M. Supercritical CO2 extraction of V. vinifera leaves: Influence of cosolvents and particle size on removal kinetics and selectivity to target compounds. J. Supercrit. Fluids 2020, 165, 104959. [Google Scholar] [CrossRef]
- Santos, K.A.; da Silva, E.A.; da Silva, C. Supercritical CO2 extraction of favela (Cnidoscolus quercifolius) seed oil: Yield, composition, antioxidant activity, and mathematical modeling. J. Supercrit. Fluids 2020, 165, 104981. [Google Scholar] [CrossRef]
- Goyeneche, R.; Di Scala, K.; Ramirez, C.L.; Fanovich, M.A. Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource. J. Supercrit. Fluids 2020, 155, 104658. [Google Scholar] [CrossRef]
- Morsy, N.F. Production of thymol rich extracts from ajwain (Carum copticum L.) and thyme (Thymus vulgaris L.) using supercritical CO2. Ind. Crops Prod. 2020, 145, 112072. [Google Scholar] [CrossRef]
- Arias, J.; Mejía, J.; Córdoba, Y.; Martínez, J.R.; Stashenko, E.; del Valle, J.M. Optimization of flavonoids extraction from Lippia graveolens and Lippia origanoides chemotypes with ethanol-modified supercritical CO2 after steam distillation. Ind. Crops Prod. 2020, 146, 112170. [Google Scholar] [CrossRef]
- Santos, K.A.; Klein, E.J.; Fiorese, M.L.; Palu, F.; da Silva, C.; da Silva, E.A. Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: Evaluation of β-sitosterol content. J. Supercrit. Fluids 2020, 159, 104752. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Ercisli, S.; Grudev, V.; Golokhvast, K. Comparative analysis of Far East Sikhotinsky rhododendron (Rh. sichotense) and East Siberian rhododendron (Rh. adamsii) using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. Molecules 2020, 25, 3774. [Google Scholar] [CrossRef]
- Palsikowski, P.A.; Besen, L.M.; Santos, K.A.; da Silva, C.; da Silva, E.A. Supercritical CO2 oil extraction from Bauhinia forficata link subsp. pruinosa leaves: Composition, antioxidant activity and mathematical modeling. J. Supercrit. Fluids 2019, 153, 104588. [Google Scholar] [CrossRef]
- Kavoura, D.; Kyriakopoulou, K.; Papaefstathiou, G.; Spanidi, E.; Gardikis, K.; Louli, V.; Aligiannis, N.; Krokida, M.; Magoulas, K. Supercritical CO2 extraction of Salvia fruticosa. J. Supercrit. Fluids 2019, 146, 159–164. [Google Scholar] [CrossRef]
- Confortin, T.C.; Todero, I.; Canabarro, N.I.; Luft, L.; Ugalde, G.A.; Neto, J.R.C.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V. Supercritical CO2 extraction of compounds from different aerial parts of Senecio brasiliensis: Mathematical modeling and effects of parameters on extract quality. J. Supercrit. Fluids 2019, 153, 104589. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Pieczykolan, A.; Pietrzak, W.; Rój, E.; Nowak, R. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers. Open Chem. 2019, 17, 302–312. [Google Scholar] [CrossRef]
- Klein, E.J.; Santos, K.A.; Palu, F.; Vieira, M.G.A.; da Silva, E.A. Use of supercritical CO2 and ultrasound-assisted extractions to obtain α/β-amyrin-rich extracts from uvaia leaves (Eugenia pyriformis Cambess.). J. Supercrit. Fluids 2018, 137, 1–8. [Google Scholar] [CrossRef]
- Coelho, J.; Veiga, J.; Karmali, A.; Nicolai, M.; Pinto Reis, C.; Nobre, B.; Palavra, A. Supercritical CO2 extracts and volatile oil of basil (Ocimum basilicum L.) comparison with conventional methods. Separations 2018, 5, 21. [Google Scholar] [CrossRef]
- Kuś, P.M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC–MS and UHPLC-DAD-QqTOF-MS. J. Pharm. Biomed. Anal. 2018, 158, 15–27. [Google Scholar] [CrossRef]
- Demirkol, O.; Erşatır, M.; Giray, E.S.; Kırıcı, S. Comparison of the effects of green and sustainable extraction methods on the extraction yield and chemical composition of Ruta chalepensis roots. Sustain. Chem. Pharm. 2022, 29, 100750. [Google Scholar] [CrossRef]
- Scopel, J.M.; Medeiros-Neves, B.; Teixeira, H.F.; Brazil, N.T.; Bordignon, S.A.L.; Diz, F.M.; Morrone, F.B.; Almeida, R.N.; Cassel, E.; von Poser, G.L.; et al. Supercritical Carbon Dioxide Extraction of Coumarins from the Aerial Parts of Pterocaulon polystachyum. Molecules 2024, 29, 2741. [Google Scholar] [CrossRef]
- Mouahid, A.; Rébufa, C.; Le Dréau, Y. Supercritical CO2 extraction of Walnut (Juglans regia L.) oil: Extraction kinetics and solubility determination. J. Supercrit. Fluids 2024, 211, 106313. [Google Scholar] [CrossRef]
- Pohl, P.; Szymczycha-Madeja, A.; Welna, M. Direct ICP-OES multielement analysis of infused black and green teas and chemical fractionation of selected essential and non-essential elements prior to evaluation of their bioavailability and classification of teas by pattern recognition. Arab. J. Chem. 2020, 13, 1955–1965. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Bi, H.; Li, X.; Ni, W.; Han, H.; Li, N.; Wang, B.; Zhou, Y.; Tai, G. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 2009, 77, 544–552. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef]
- Topiar, M.; Sajfrtova, M.; Pavela, R.; Machalova, Z. Comparison of fractionation techniques of CO2 extracts from Eucalyptus globulus—Composition and insecticidal activity. J. Supercrit. Fluids 2015, 97, 202–210. [Google Scholar] [CrossRef]
- Shukla, A.; Naik, S.N.; Goud, V.V.; Das, C. Supercritical CO2 extraction and online fractionation of dry ginger for production of high-quality volatile oil and gingerols enriched oleoresin. Ind. Crops Prod. 2019, 130, 352–362. [Google Scholar] [CrossRef]
- Kamaruddin, M.S.H.; Chong, G.H.; Mohd Daud, N.; Putra, N.R.; Md Salleh, L.; Suleiman, N. Bioactivities and green advanced extraction technologies of ginger oleoresin extracts: A review. Food Res. Int. 2023, 164, 112283. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, N.; Joshi, D.R. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Raval, K.; Patel, H. Review on Common Observed HPLC Troubleshooting Problems. Int. J. Pharma Res. Health Sci. 2020, 8, 3195–3202. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Dou, D. Anti-prostate cancer mechanism of black ginseng during the “nine steaming and nine sun-drying” process based on HPLC analysis combined with vector space network pharmacology. Discov. Oncol. 2024, 15, 12. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef]
- Park, J.; Do, S.; Lee, M.; Ha, S.; Lee, K.-G. Preparation of turmeric powder with various extraction and drying methods. Chem. Biol. Technol. Agric. 2022, 9, 39. [Google Scholar] [CrossRef]
- Maslov, O.Y.; Komisarenko, M.A.; Kolisnyk, Y.S.; Kostina, T.A. Determination of catechins in green tea leaves by HPLC compared to spectrophotometry. J. Org. Pharm. Chem. 2021, 19, 28–33. [Google Scholar] [CrossRef]
- Sun, L.; Qi, H.; Zheng, H.; Du, Y.; Yang, C.; Gan, C. Determination of Seven Phenolic Acids in Echinacea purpurea by HPLC and the Cluster Analysis. Her. Med. 2020, 39, 831–835. [Google Scholar]
- Carrara, V.d.S.; Serra, L.Z.; Cardozo-Filho, L.; Cunha-Júnior, E.F.; Torres-Santos, E.C.; Cortez, D.A.G. HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity. Molecules 2011, 17, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.; Zakharenko, A.; Shin, T.-S.; Chung, G.; Golokhvast, K. Supercritical CO2 Extraction and Identification of Ginsenosides in Russian and North Korean Ginseng by HPLC with Tandem Mass Spectrometry. Molecules 2020, 25, 1407. [Google Scholar] [CrossRef] [PubMed]
- Nuralın, L.; Gürü, M. Berberis Vulgaris Fruit: Determination of Phenolic Compounds in Extracts Obtained by Supercritical CO2 and Soxhlet Methods Using HPLC. Food Anal. Methods 2021, 15, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Stierlin, É.; Michel, T.; Fernandez, X. Field analyses of lavender volatile organic compounds: Performance evaluation of a portable gas chromatography–mass spectrometry device. Phytochem. Anal. 2020, 31, 778–785. [Google Scholar] [CrossRef]
- Dong, G.; Bai, X.; Aimila, A.; Aisa, H.; Maiwulanjiang, M. Study on Lavender Essential Oil Chemical Compositions by GC-MS and Improved pGC. Molecules 2020, 25, 3166. [Google Scholar] [CrossRef] [PubMed]
- Virgiliou, C.; Zisi, C.; Kontogiannopoulos, K.N.; Nakas, A.; Iakovakis, A.; Varsamis, V.; Gika, H.G.; Assimopoulou, A.N. Headspace gas chromatography-mass spectrometry in the analysis of lavender’s essential oil: Optimization by response surface methodology. J. Chromatogr. B 2021, 1179, 122852. [Google Scholar] [CrossRef] [PubMed]
- Cagliero, C.; Bicchi, C.; Marengo, A.; Rubiolo, P.; Sgorbini, B. Gas chromatography of essential oil: State-of-the-art, recent advances, and perspectives. J. Sep. Sci. 2022, 45, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A. Anticandidal and anti-carcinogenic activities of Mentha longifolia (Wild Mint) extracts in vitro. J. King Saud Univ.—Sci. 2020, 32, 2046–2052. [Google Scholar] [CrossRef]
- Asghari, B.; Zengin, G.; Bahadori, M.B.; Abbas-Mohammadi, M.; Dinparast, L. Amylase, glucosidase, tyrosinase, and cholinesterases inhibitory, antioxidant effects, and GC-MS analysis of wild mint (Mentha longifolia var. calliantha) essential oil: A natural remedy. Eur. J. Integr. Med. 2018, 22, 44–49. [Google Scholar] [CrossRef]
- Sut, S.; Ferrarese, I.; Lupo, M.G.; De Zordi, N.; Tripicchio, E.; Ferri, N.; Dall’ Acqua, S. The Modulation of PCSK9 and LDLR by Supercritical CO2 Extracts of Mentha longifolia and Isolated Piperitone Oxide, an In Vitro Study. Molecules 2021, 26, 3886. [Google Scholar] [CrossRef] [PubMed]
- Solati, Z.; Baharin, B.S.; Bagheri, H. Supercritical carbon dioxide (SC-CO2) extraction of Nigella sativa L. oil using full factorial design. Ind. Crops Prod. 2012, 36, 519–523. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, X.; Yang, G.; Zhan, J.; Li, M.; Long, T.; Ho, C.-T.; Li, S. Simultaneous separation of six pure polymethoxyflavones from sweet orange peel extract by high performance counter current chromatography. Food Chem. 2019, 292, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sun, C.; Wang, Y.; Pan, Y. Two-dimensional counter-current chromatography for the preparative separation of prenylflavonoids from Artocarpus altilis. J. Chromatogr. A 2007, 1151, 31–36. [Google Scholar] [CrossRef]
- Pan, Y.; Ju, R.; Cao, X.; Pei, H.; Zheng, T.; Wang, W. Optimization extraction and purification of biological activity curcumin from Curcuma longa L by high-performance counter-current chromatography. J. Sep. Sci. 2020, 43, 1586–1592. [Google Scholar]
- Cai, X.; Xiao, M.; Zou, X.; Tang, J.; Huang, B.; Xue, H. Extraction and separation of flavonoids from Malus hupehensis using high-speed countercurrent chromatography based on deep eutectic solvent. J. Chromatogr. A 2021, 1641, 461998. [Google Scholar] [CrossRef] [PubMed]
- Long, T.; Lv, X.; Xu, Y.; Yang, G.; Xu, L.-Y.; Li, S. Supercritical fluid CO2 extraction of three polymethoxyflavones from Citri reticulatae pericarpium and subsequent preparative separation by continuous high-speed counter-current chromatography. J. Chromatogr. B 2019, 1124, 284–289. [Google Scholar] [CrossRef]
- Ma, C.; Li, G.; Zhang, J.; Zheng, Q.; Fan, X.; Wang, Z. An efficient combination of supercritical fluid extraction and high-speed counter-current chromatography to extract and purify homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. J. Sep. Sci. 2009, 32, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Rabel, F.; Sherma, J. Review of the state of the art of preparative thin-layer chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 165–176. [Google Scholar] [CrossRef]
- Kassim, N.K.; Lim, P.C.; Ismail, A.; Awang, K. Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2, 2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chem. 2019, 272, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Johner, J.C.F.; Meireles, M.A.d.A. Construction of a supercritical fluid extraction (SFE) equipment: Validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image. Food Sci. Technol. 2016, 36, 210–247. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Sringarm, K.; Sommano, S.; Jantrawut, P. Depigmented Centella asiatica Extraction by Pretreated with Supercritical Carbon Dioxide Fluid for Wound Healing Application. Processes 2020, 8, 277. [Google Scholar] [CrossRef]
- Bakó, C.; Balázs, V.L.; Takács, G.; Pallos, J.P.; Pál, S.; Kocsis, B.; Pethő, D.R.; Horváth, G. Combination of Analytical and Statistical Methods in Order to Optimize Antibacterial Activity of Clary Sage Supercritical Fluid Extracts. Molecules 2021, 26, 277. [Google Scholar] [CrossRef]
- Czernicka, L.; Ludwiczuk, A.; Rój, E.; Marzec, Z.; Jarzab, A.; Kukula-Koch, W. Acetylcholinesterase inhibitors among Zingiber officinale terpenes—Extraction conditions and thin layer chromatography-based bioautography studies. Molecules 2020, 25, 1643. [Google Scholar] [CrossRef] [PubMed]
- Terletskaya, N.V.; Seitimova, G.A.; Kudrina, N.O.; Meduntseva, N.D.; Ashimuly, K. The reactions of photosynthetic capacity and plant metabolites of sedum hybridum l. In response to mild and moderate abiotic stresses. Plants 2022, 11, 828. [Google Scholar] [CrossRef]
- Ali, M.; Wani, S.U.D.; Salahuddin, M.; Manjula, S.N.; Mruthunjaya, K.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023, 9, e13684. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals 2023, 16, 253. [Google Scholar] [CrossRef]
- Ahmad, S.; Parveen, A.; Parveen, B.; Parveen, R. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci. 2015, 7, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Oyenihi, O.R.; Oyenihi, A.B.; Erhabor, J.O.; Matsabisa, M.G.; Oguntibeju, O.O. Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021, 26, 6541. [Google Scholar] [CrossRef] [PubMed]
- Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M.; Lin, S.-C. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2021, 2021, 9963038. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Nguyen, T.T.T.; Pandey, S.; Thurecht, K.J.; Falconer, J.R. Factorial design-assisted supercritical carbon-dioxide extraction of cytotoxic active principles from Carica papaya leaf juice. Sci. Rep. 2019, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.-H.; Chen, W.-C.; Pei, W.; Chuang, M.-H.; Hsu, T.; Chuang, P.-C. Purification of Artepillin C (ARC) with Anticancer Activities from Supercritical CO2-Ethanol Extracts of Brazilian Green Propolis by Using Adsorption Column Chromatography. J. Mar. Sci. Technol. 2022, 30, 260–269. [Google Scholar] [CrossRef]
- Dat, T.D.; Viet, N.D.; Thanh, V.H.; Nhi, H.N.D.; Linh, N.T.T.; Ngan, N.T.K.; Nam, H.M.; Thanh Phong, M.; Hieu, N.H. Optimization of Triterpenoid Extracted from Vietnamese Ganoderma lucidum via Supercritical Extraction Method and Biological Tests. Sep. Sci. Technol. 2022, 57, 2211–2226. [Google Scholar] [CrossRef]
- Ribeiro Grijó, D.; Lazarin Bidoia, D.; Vataru Nakamura, C.; Vieitez Osorio, I.; Cardozo-Filho, L. Analysis of the antitumor activity of bioactive compounds of Cannabis flowers extracted by green solvents. J. Supercrit. Fluids 2019, 149, 20–25. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Alvarez-Rivera, G.; García Ocampo, A.F.; Morantes, S.J.; Sánchez Camargo, A.d.P.; Cifuentes, A.; Parada-Alfonso, F.; Ibánez, E. Supercritical antisolvent fractionation as a tool for enhancing antiproliferative activity of mango seed kernel extracts against colon cancer cells. J. Supercrit. Fluids 2019, 152, 104563. [Google Scholar] [CrossRef]
- Lucas, A.M.; Bento, A.F.M.L.; Vargas, R.M.F.; Scheffel, T.B.; Rockenbach, L.; Diz, F.M.; Capellari, A.R.; Morrone, F.B.; Cassel, E. Use of supercritical CO2 to obtain Baccharis uncinella extracts with antioxidant and antitumor activity. J. CO2 Util. 2021, 49, 101563. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R.-r.; Wang, Y.-m.; Zhang, J.; Wang, Q.; Cheng, A.-w.; Guo, X.; Wang, X.-k.; Sun, J.-y. Supercritical CO2 fluid extraction of croton crassifolius Geisel root: Chemical composition and anti-proliferative, autophagic, apoptosis-inducing, and related molecular effects on A549 tumour cells. Phytomedicine 2019, 61, 152846. [Google Scholar] [CrossRef]
- Jovanović Galović, A.; Jovanović Lješković, N.; Vidović, S.; Vladić, J.; Mrkonjić, Z.; Gigov, S.; Ilić, M.; Kojić, V.; Jakimov, D.; Zloh, M. Potential of Helicrysum italicum cultivated in urban environment: SCCO2 extract cytotoxicity & NF-kB activation in HeLa, MCF-7 and MRC-5 cells. Sustain. Chem. Pharm. 2022, 26, 100622. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhao, W.H.; Lu, Y.F.; Wang, C.X. Antioxidant and Cytotoxic Activities of Distillates Purified by Means of Molecular Distillation from Ginger Extract Obtained with Supercritical CO2 Fluid. Chem. Biodivers. 2019, 16, e1900357. [Google Scholar] [CrossRef]
- Giordo, R.; Cossu, A.; Porcu, M.C.; Cappuccinelli, R.; Biosa, G.; Sharifi-Rad, J.; Pretti, L.; Nasrallah, G.K.; Pintus, G.; Posadino, A.M. Cytoprotective, antioxidant, and anti-migratory activity of Pistacia lentiscus L. supercritical carbon dioxide extract on primary human endothelial cells. Nat. Prod. Res. 2022, 37, 2681–2687. [Google Scholar] [CrossRef] [PubMed]
- Žitek, T.; Postružnik, V.; Knez, Ž.; Golle, A.; Dariš, B.; Knez Marevci, M. Arnica Montana L. Supercritical Extraction Optimization for Antibiotic and Anticancer Activity. Front. Bioeng. Biotechnol. 2022, 10, 897185. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.J.; Tripathy, S.; Mukhopadhyay, K.D.; Wangjam, T.; Cabang, A.B.; Morris, J.; Wargovich, M.J. A supercritical CO2 extract of neem leaf (A. indica) and its bioactive liminoid, nimbolide, suppresses colon cancer in preclinical models by modulating pro-inflammatory pathways. Mol. Carcinog. 2018, 57, 1156–1165. [Google Scholar] [CrossRef]
- Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev. 2012, 6, 1. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional Medicinal Plants. J. Evid.-Based Complement. Altern. Med. 2012, 18, 67–74. [Google Scholar] [CrossRef]
- Borchardt, J.K. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect. 2002, 15, 187–192. [Google Scholar] [CrossRef]
- Hassan, H.M.A. A Short History of the Use of Plants as Medicines from Ancient Times. Chimia 2015, 69, 622. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian Traditional Ayurvedic System of Medicine and Nutritional Supplementation. Evid.-Based Complement. Altern. Med. 2013, 2013, 376327. [Google Scholar] [CrossRef]
- Kurhekar, J.V. Ancient and modern practices in phytomedicine. In Preparation of Phytopharmaceuticals for the Management of Disorders; Academic Press: Cambridge, MA, USA, 2021; pp. 55–75. [Google Scholar]
- Seidel, V. Plant-Derived Chemicals: A Source of Inspiration for New Drugs. Plants 2020, 9, 1562. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Mishra, K.P.; Ganju, L.; Sairam, M.; Banerjee, P.K.; Sawhney, R.C. A review of high throughput technology for the screening of natural products. Biomed. Pharmacother. 2008, 62, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.E. Pharmacognosy: Science of natural products in drug discovery. BioImpacts 2017, 4, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.; Panagiotopoulos, A.; Bariotakis, M.; Daskalakis, V.; Lionis, C.; Sourvinos, G.; Karakasiliotis, I.; Kampa, M.; Castanas, E. From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules 2022, 27, 4060. [Google Scholar] [CrossRef]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Da Acad. Bras. De Ciências 2019, 91, e20190105. [Google Scholar] [CrossRef]
- Tarkowská, D. Plants are Capable of Synthesizing Animal Steroid Hormones. Molecules 2019, 24, 2585. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.M.; Alhatlani, B.Y.; de Paula Menezes, R.; Martins, C.H.G. Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants 2023, 12, 3077. [Google Scholar] [CrossRef]
- Hashemi, M.; Zandieh, M.A.; Talebi, Y.; Rahmanian, P.; Shafiee, S.S.; Nejad, M.M.; Babaei, R.; Sadi, F.H.; Rajabi, R.; Abkenar, Z.O.; et al. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed. Pharmacother. 2023, 160, 114392. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Ağagündüz, D.; Şahin, T.Ö.; Yılmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R.; Wall Medrano, A. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid.-Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Gualdani, R.; Cavalluzzi, M.; Lentini, G.; Habtemariam, S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016, 21, 1530. [Google Scholar] [CrossRef]
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol. 2020, 66, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Waseem, Z.; Agarwal, S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res. Int. 1998, 31, 737–741. [Google Scholar] [CrossRef]
- Medina-Franco, J.L. Discovery and Development of Lead Compounds from Natural Sources Using Computational Approaches. In Evidence-Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 455–475. [Google Scholar]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Shaito, A.; Thuan, D.T.B.; Phu, H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front. Pharmacol. 2020, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal Medicines for Diabetes Management and its Secondary Complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef]
- Chaughule, R.S.; Barve, R.S. Role of herbal medicines in the treatment of infectious diseases. Vegetos 2023, 37, 41–51. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, P.; Pandey, A.; Khanna, V.K.; Pant, A.B. Phytomedicine. In New Look to Phytomedicine; Academic Press: Cambridge, MA, USA, 2019; pp. 625–655. [Google Scholar]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
- Castillo, W.O.; Palomino, N.V.; Takahashi, C.S.; Giuliatti, S. Genistein and Galantamine Combinations Decrease beta-Amyloid Peptide ((1-42))-Induced Genotoxicity and Cell Death in SH-SY5Y Cell Line: An In Vitro and In Silico Approach for Mimic of Alzheimer’s Disease. Neurotox Res. 2020, 38, 691–706. [Google Scholar] [CrossRef]
- Gao, H.; Lei, X.; Ye, S.; Ye, T.; Hua, R.; Wang, G.; Song, H.; Zhou, P.; Wang, Y.; Cai, B. Genistein attenuates memory impairment in Alzheimer’s disease via ERS-mediated apoptotic pathway in vivo and in vitro. J. Nutr. Biochem. 2022, 109, 109118. [Google Scholar] [CrossRef]
- Atanasova, M.; Yordanov, N.; Dimitrov, I.; Berkov, S.; Doytchinova, I. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors. Mol. Inform. 2015, 34, 394–403. [Google Scholar] [CrossRef]
- Razay, G.; Wilcock, G.K. Galantamine in Alzheimer’s disease. Expert Rev. Neurother. 2014, 8, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Foa, R.; Norton, L.; Seidman, A.D. Taxol (paclitaxel): A novel anti-microtubule agent with remarkable anti-neoplastic activity. Int. J. Clin. Lab. Res. 1994, 24, 6–14. [Google Scholar] [CrossRef]
- Motyka, S.; Jafernik, K.; Ekiert, H.; Sharifi-Rad, J.; Calina, D.; Al-Omari, B.; Szopa, A.; Cho, W.C. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmacother. 2023, 158, 114145. [Google Scholar] [CrossRef]
- Ferraz da Costa, D.C.; Pereira Rangel, L.; Martins-Dinis, M.M.D.d.C.; Ferretti, G.D.d.S.; Ferreira, V.F.; Silva, J.L. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020, 25, 893. [Google Scholar] [CrossRef]
- Huang, L.-C.S.; Chuang, H.; Kapoor, M.; Hsieh, C.-Y.; Chou, S.-C.; Lin, H.-H.; Chen, Y.-W.; Chang, C.-C.; Hwu, J.-R.; Liang, Y.-C.; et al. Development of nordihydroguaiaretic acid derivatives as potential multidrug-resistant selective agents for cancer treatment. RSC Adv. 2015, 5, 107833–107838. [Google Scholar] [CrossRef]
- Wang, C.; Du, W.; Lu, H.; Lan, J.; Liang, K.; Cao, S. A Review: Halogenated Compounds from Marine Actinomycetes. Molecules 2021, 26, 2754. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Jeong, G.-S. Salinosporamide A, a Marine-Derived Proteasome Inhibitor, Inhibits T Cell Activation through Regulating Proliferation and the Cell Cycle. Molecules 2020, 25, 5031. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Swanton, C.; Bernard, E.; Abbosh, C.; André, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef]
- Alsharif, F.; Ghayur, M.N. Discovering the Use of Complementary and Alternative Medicine in Oncology Patients: A Systematic Literature Review. Evid.-Based Complement. Altern. Med. 2021, 2021, 6619243. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Nawaz, A.; Ahmad, S.; Mosa, O.F.; Eisa Hamdoon, A.A.; Khalifa, M.A.; Sadiq, A.; Ullah, F.; Wadood, A.; Kabra, A.; et al. Underlying Anticancer Mechanisms and Synergistic Combinations of Phytochemicals with Cancer Chemotherapeutics: Potential Benefits and Risks. J. Food Qual. 2022, 2022, 1189034. [Google Scholar] [CrossRef]
- Corner, J.; Yardley, J.; Maher, E.J.; Roffe, L.; Young, T.; Maslin-Prothero, S.; Gwilliam, C.; Haviland, J.; Lewith, G. Patterns of complementary and alternative medicine use among patients undergoing cancer treatment. Eur. J. Cancer Care 2009, 18, 271–279. [Google Scholar] [CrossRef]
- Iliescu, M.G.; Stanciu, L.-E.; Uzun, A.-B.; Cristea, A.-E.; Motoască, I.; Irsay, L.; Iliescu, D.M.; Vari, T.; Ciubean, A.D.; Caraban, B.M.; et al. Assessment of Integrative Therapeutic Methods for Improving the Quality of Life and Functioning in Cancer Patients—A Systematic Review. J. Clin. Med. 2024, 13, 1190. [Google Scholar] [CrossRef] [PubMed]
- Poonthananiwatkul, B.; Howard, R.L.; Williamson, E.M.; Lim, R.H.M. Cancer patients taking herbal medicines: A review of clinical purposes, associated factors, and perceptions of benefit or harm. J. Ethnopharmacol. 2015, 175, 58–66. [Google Scholar] [CrossRef]
- Sharma, A.N.; Dewangan, H.K.; Upadhyay, P.K. Comprehensive Review on Herbal Medicine: Emphasis on Current Therapy and Role of Phytoconstituents for Cancer Treatment. Chem. Biodivers. 2024, 21, e202301468. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef]
- Castañeda, A.M.; Meléndez, C.M.; Uribe, D.; Pedroza-Díaz, J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies. Heliyon 2022, 8, e09519. [Google Scholar] [CrossRef]
- Damery, S.; Gratus, C.; Grieve, R.; Warmington, S.; Jones, J.; Routledge, P.; Greenfield, S.; Dowswell, G.; Sherriff, J.; Wilson, S. The use of herbal medicines by people with cancer: A cross-sectional survey. Br. J. Cancer 2011, 104, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospecting 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Majrashi, T.A.; Alshehri, S.A.; Alsayari, A.; Muhsinah, A.B.; Alrouji, M.; Alshahrani, A.M.; Shamsi, A.; Atiya, A. Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics. Nutrients 2023, 15, 1704. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Islam, S.U.; Alghamdi, A.A.A.; Kamran, M.; Ahsan, H.; Lee, Y.S. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int. J. Mol. Sci. 2022, 23, 15765. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F.; Alshammari, N.; Saeed, A.; Aqil, F.; Saeed, M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front. Pharmacol. 2023, 14, 1154034. [Google Scholar] [CrossRef]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef]
- Regassa, H.; Sourirajan, A.; Kumar, V.; Pandey, S.; Kumar, D.; Dev, K. A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers 2022, 14, 3898. [Google Scholar] [CrossRef]
- Ekowati, J.; Hamid, I.S.; Diyah, N.W.; Siswandono, S. Ferulic Acid Prevents Angiogenesis Through Cyclooxygenase-2 and Vascular Endothelial Growth Factor in the Chick Embryo Chorioallantoic Membrane Model. Turk. J. Pharm. Sci. 2020, 17, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mathew, S.O.; Aharwal, R.P.; Tulli, H.S.; Mohan, C.D.; Sethi, G.; Ahn, K.-S.; Webber, K.; Sandhu, S.S.; Bishayee, A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals 2023, 16, 160. [Google Scholar] [CrossRef]
- Toden, S.; Okugawa, Y.; Jascur, T.; Wodarz, D.; Komarova, N.L.; Buhrmann, C.; Shakibaei, M.; Boland, C.R.; Goel, A. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 2015, 36, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, S.; Wei, Y.; Cao, S.; Pi, C.; Feng, T.; Liang, J.; Zhao, L.; Ren, G. Curcumin Enhances the Anticancer Effect of 5-fluorouracil against Gastric Cancer through Down-Regulation of COX-2 and NF- κB Signaling Pathways. J. Cancer 2017, 8, 3697–3706. [Google Scholar] [CrossRef]
- Gao, J.; Fan, K.; Jin, Y.; Zhao, L.; Wang, Q.; Tang, Y.; Xu, H.; Liu, Z.; Wang, S.; Lin, J.; et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur. J. Pharm. Sci. 2019, 140, 105070. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-κB Pathway in Breast Cancer Cells and Inhibits Lung Metastasis of Human Breast Cancer in Nude Mice. Clin. Cancer Res. 2005, 11, 7490–7498. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, H.; Chen, X.; Li, D.; He, Y.; Li, Y.; Du, Z.; Zhang, K.; DiPaola, R.; Goodin, S.; et al. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells. PLoS ONE 2015, 10, e0144293. [Google Scholar] [CrossRef]
- Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.B.; Shakibaei, M. Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells. Nutrients 2018, 10, 888. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-J.; Lee, C.-C.; Shih, Y.-L.; Lin, T.-Y.; Wang, S.-H.; Lin, Y.-F.; Shih, C.-M. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic. Biol. Med. 2012, 52, 377–391. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Q.; Li, Y.; Gao, Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep. 2018, 51, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget 2016, 7, 43337–43351. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Zhu, K. SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. J. Exp. Clin. Cancer Res. 2018, 37, 37. [Google Scholar] [CrossRef]
- Zhao, Y.; Jing, Z.; Li, Y.A.N.; Mao, W. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis. Oncol. Rep. 2016, 36, 567–572. [Google Scholar] [CrossRef]
- Liu, L.; Fan, J.; Ai, G.; Liu, J.; Luo, N.; Li, C.; Cheng, Z. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol. Res. 2019, 52, 37. [Google Scholar] [CrossRef] [PubMed]
- Rawat, L.; Hegde, H.; Hoti, S.L.; Nayak, V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed. Pharmacother. 2020, 128, 110243. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Chowdhury, N.; Doddapaneni, R.; Boakye, C.H.A.; Godugu, C.; Singh, M. Piperlongumine for Enhancing Oral Bioavailability and Cytotoxicity of Docetaxel in Triple-Negative Breast Cancer. J. Pharm. Sci. 2015, 104, 4417–4426. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Said, H.; Attalah, R.K. Protective effect of Moringa olifera Leaves Extracts and silymarin on hepatic Toxicity Induced by Cyclophosphamide. Arab. Univ. J. Agric. Sci. 2019, 27, 2079–2088. [Google Scholar] [CrossRef]
- Ali, M.; Manjula, S.N.; Wani, S.U.D.; Parihar, V.K.; Mruthunjaya, K.M.; Madhunapantula, S.V. Protective role of herbal formulation-divine noni against cisplatin-induced cytotoxicity in healthy cells by activating Nrf2 expression: An in-vivo and in-vitro approach. Phytomed. Plus 2021, 1, 100009. [Google Scholar] [CrossRef]
- Han, S.-Y.; Zhao, M.-B.; Zhuang, G.-B.; Li, P.-P. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells. Lung Cancer 2012, 75, 30–37. [Google Scholar] [CrossRef]
- Zhu, R.-J.; Shen, X.-L.; Dai, L.-L.; Ai, X.-Y.; Tian, R.-H.; Tang, R.; Hu, Y.-J. Total Aglycones from Marsdenia tenacissima Increases Antitumor Efficacy of Paclitaxel in Nude Mice. Molecules 2014, 19, 13965–13975. [Google Scholar] [CrossRef]
Solvent | Density (g/cm3) | Viscosity (gcm−1s−1) | Diffusion (cm2/s) |
---|---|---|---|
Gas a | 6 × 10−4–2 × 10−3 | 1 × 10−5–3 × 10−5 | 0.1–0.4 |
Liquid a | 0.6–1.6 | 2× 10−4–3× 10−3 | 2 × 10−6–2 × 10−5 |
SF b | 0.2–0.5 | 1 × 10−4–3 × 10−4 | 0.7 × 10−3 |
SF c | 0.4–0.9 | 3 × 10−5–9 × 10−5 | 2 × 10−3 |
Fluid | Critical Temperature TC (°C) | Critical Pressure PC (atm) | Critical Density δC (g/cm3) | Density at 400 atm δ (g/cm3) | Boiling Temperature Tb (OC), (1 atm) |
---|---|---|---|---|---|
CO2 | 31.3 | 72.9 | 0.47 | 0.96 | −73.5 |
N2O | 36.5 | 71.7 | 0.45 | 0.94 | - |
NH3 | 132.5 | 112.5 | 0.24 | 0.40 | −33.5 |
H2O | 374.4 | 226.8 | 0.33 | - | 100 |
n-butane | 152.0 | 37.5 | 0.23 | 0.50 | −0.4 |
Ethane | 32.4 | 48.3 | 0.20 | - | −88.0 |
Ethanol | 243.4 | 63.0 | 0.28 | - | 78.4 |
n-propane | 96.8 | 42.0 | 0.22 | - | −44.5 |
diethyl ether | 193.6 | 36.3 | 0.28 | - | 34.6 |
trichloromethane | 196.6 | 41.7 | 0.55 | - | 23.7 |
chlorotrifloromethane | 28.8 | 39.0 | 0.58 | - | −81.4 |
Pressure (MPa) | Temperature (°C) | Density (Kg/m3) | Viscosity (Kg/m·s) |
---|---|---|---|
7.38 | 31 | 464 | <2 × 10−5 |
24.5 | 39.85 | 879.5 | 8.2 × 10−5 |
54.85 | 806.2 | 6.9 × 10−5 | |
69.85 | 730 | 5.7 × 10−5 | |
17.6 | 39.85 | 814.6 | 7 × 10−5 |
54.85 | 712.5 | 5.4 × 10−5 | |
69.85 | 599.1 | 4.1 × 10−5 | |
10.8 | 39.85 | 676.1 | 4.7 × 10−5 |
54.85 | 379.4 | 2.7 × 10−5 | |
69.85 | 283.6 | 2.4 × 10−5 |
T/°C | P/MPa | ɛ |
---|---|---|
−0.15 | 3.483 | 1.57785 |
9.85 | 4.493 | 1.52996 |
19.85 | 5.712 | 1.46753 |
24.85 | 6.433 | 1.46899 |
29.85 | 7.179 | 1.34809 |
31 | 7.377 | <1.05 |
Plants or Herbal Sources | Plant Material | Bioactive Compounds or Compound Classes | Extraction Conditions | Cancer Cell Lines | References |
---|---|---|---|---|---|
Carica papaya | Leaf juice | Vitamins and phytosterols | 250 bar, 35 °C 180 min, 5 g material | SCC25 and HaCaT | [127] |
Brazilian green propolis | Artepillin C | 4000 psi 50 °C | HCT116 | [128] | |
Vietnam Ganoderma lucidum | Extract | Triterpenoids, polysaccharides, phenolics, steroids, and alkaloids | 37.5 MPa, 48 °C 1.5 h | KB, HepG2, Lu, and MCF7 | [129] |
Cannabis | Flower | - | 30 min preheating at 140 °C, 40 MPa, and 50 °C | Caco-2, PC3, Hela, SiHa, and C33, HaCat, Vero, and L929 | [130] |
Mangifera indica L. | Seed kernel | Xanthones and gallic acid derivatives | 50% water v/v in the feed extract and a feed/ScCO2 ratio of 0.0625 at 15 MPa | HT-29 | [131] |
Baccharis uncinella | Extract | - | 150 and 200 bar and 60 °C | T24, U87, and Vero | [132] |
Xinjiang jujube | Leaf | - | 52.52 °C, 27.12 MPa, 113.42 min 0.44 mL/min co-solvent flow rate | A549 | [34] |
Croton crassifolius roots | Essential oil | - | 25 MPa at 35 °C 30 min flow rate of 2 L CO2/min | A549, HeLa, HepG2, T24, MGC803, and HL-7702 | [133] |
Helichrysum italicum | Extract | Arzanol | 100, 200, and 300 bars, 40 °C, 4 h and carbon dioxide flow 1.94 kg/h | MCF-7, HeLa, and MRC 5 | [134] |
Zingiber officinale ROSCOE | Rhizome | Terpene hydrocarbons, oxygenated terpenes, and other non-volatile compounds | 35 MPa, 35 °C, a CO2 flow rate of 15 L/s, and 2 h | MDA-MB-231, A549, and HepG2 | [135] |
Pistacia lentiscus L. | Leaf | Germacrene D delta-cadinene alpha-pinene | - | Primary human endothelial cells | [136] |
Arnica montana L. | Flower | - | 60 °C, 30 MPa | WM266-4 | [137] |
Azadirachta indica | Leaf | Azadiractoids | - | HCT116 and HT29 | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, M.; Erşatır, M.; Poyraz, S.; Amangeldinova, M.; Kudrina, N.O.; Terletskaya, N.V. Green Extraction of Plant Materials Using Supercritical CO2: Insights into Methods, Analysis, and Bioactivity. Plants 2024, 13, 2295. https://doi.org/10.3390/plants13162295
Yıldırım M, Erşatır M, Poyraz S, Amangeldinova M, Kudrina NO, Terletskaya NV. Green Extraction of Plant Materials Using Supercritical CO2: Insights into Methods, Analysis, and Bioactivity. Plants. 2024; 13(16):2295. https://doi.org/10.3390/plants13162295
Chicago/Turabian StyleYıldırım, Metin, Mehmet Erşatır, Samet Poyraz, Madina Amangeldinova, Nataliya O. Kudrina, and Nina V. Terletskaya. 2024. "Green Extraction of Plant Materials Using Supercritical CO2: Insights into Methods, Analysis, and Bioactivity" Plants 13, no. 16: 2295. https://doi.org/10.3390/plants13162295
APA StyleYıldırım, M., Erşatır, M., Poyraz, S., Amangeldinova, M., Kudrina, N. O., & Terletskaya, N. V. (2024). Green Extraction of Plant Materials Using Supercritical CO2: Insights into Methods, Analysis, and Bioactivity. Plants, 13(16), 2295. https://doi.org/10.3390/plants13162295