Rootstock Effects on Fruit Yield and Quality of ‘BRS Tainá’ Seedless Table Grape in Semi-Arid Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Growing Conditions
2.2. Experimental Design
2.3. Analyzed Variables
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vitorino, L.; Silva, F.C.A.; Gomes, C.F.S.; Medina, A.C.; Santos, M. Simulation of the grape distribution network in the São Francisco Valley Region: Analogistix. Procedia Comput. Sci. 2022, 214, 1015–1022. [Google Scholar] [CrossRef]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Observatório da Uva 2023. Available online: https://www.embrapa.br/en/observatorio-da-uva (accessed on 20 October 2023).
- Clingeleffer, P.; Morales, N.; Davis, H.; Smith, H. The significance of scion × rootstock interactions. Oeno One 2019, 53, 335–346. [Google Scholar] [CrossRef]
- Oliveira, C.R.S.; Silva, F.B.; Felinto Filho, E.F.; Mendonça Junior, A.F.; Ulisses, C.; Leão, P.C.S. The influence of rootstock on vigor and bud fertility of ‘BRS Tainá’ grape in the São Francisco Valley. Rev. Bras. Frutic. 2023, 45, e-103. [Google Scholar] [CrossRef]
- Klimek, K.; Kapłan, M.; Najda, A. Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit. Molecules 2022, 27, 2065. [Google Scholar] [CrossRef]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Cultivares de Uva e Porta-Enxertos de Alta Sanidade. Available online: https://www.embrapa.br/en/uva-e-vinho/cultivares-e-porta-enxertos/porta-enxertos (accessed on 29 May 2024).
- Hajdu, E. Grapevine breeding in Hungary. In Grapevine Breeding Programs for the Wine Industry, 1st ed.; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 103–134. ISBN 978-17-8242-080-4. [Google Scholar]
- Leão, P.C.S.; Nascimento, J.H.B.; Moraes, D.S.; Souza, E.R. Rootstocks for the new seedless table grape ‘BRS Vitória’ under tropical semi-arid conditions of São Francisco Valley. Ciênc. Agrotecnol. 2020, 44, e025119. [Google Scholar] [CrossRef]
- Mascarenhas, R.D.J.; Guerra, N.B.; Aquino, J.D.S.; Leão, P.C.S. Sensory and physicochemical quality of fine table grapes cultured in the sub-middle São Francisco valley. Rev. Bras. Frutic. 2013, 35, 546–554. [Google Scholar] [CrossRef]
- Martinez, E.A.; Ribeiro, V.G.; Vilar, P.F.I.; Hausen, L.J.D.O.V.; Bezerra, E.D. Evaluation of nitrogen monitoring, bud fertility and ‘Thompson Seedless’ grapevine production on different rootstocks. Rev. Bras. Frutic. 2017, 39, e-950. [Google Scholar] [CrossRef]
- Costa, R.R.; Rodrigues, A.A.M.; Vasconcelos, V.A.F.; Costa, J.P.D.; Lima, M.A.C. Trellis systems, rootstocks and season influence on the phenolic composition of ‘Chenin Blanc’ grape. Sci. Agric. 2018, 77, e20180207. [Google Scholar] [CrossRef]
- Ferreira, T.O.; Lima, A.S.; Marques, A.T.B.; Rybka, A.C.P.; Lima, M.A.C. Rootstock for the ‘BRS Magna’ grapevine grown in a tropical region affects the quality of the stored juice. Rev. Ciênc. Agron. 2020, 51, e20186562. [Google Scholar] [CrossRef]
- Costa, R.R.; Ferreira, T.O.; Lima, M.A.C. Training systems, rootstocks and climatic conditions influence quality and antioxidant activity of ‘BRS Cora’ grape. Acta Sci. Agron. 2021, 43, e49054. [Google Scholar] [CrossRef]
- Costa, R.R.; Ferreira, T.O.; Rodrigues, A.A.M.; Neto, E.R.A.; Lima, M.A.C. Quality and antioxidant activity of ‘Isabel Precoce’ grapes installed on different training systems and rootstocks in warmer seasons in a tropical semi-arid region. Aust. J. Crop Sci. 2020, 14, 1991–1998. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Borges, R.M.E.; Melo, N.F.D.; Barbosa, M.A.G.; Lima, M.A.C. BRS Tainá: New white seedless grape cultivar for the Brazilian semi-arid region. Crop Breed. Appl. Biotechnol. 2021, 21, e389321310. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.J.; Soares, J.M. Fertirrigação. In A Vitivinicultura No Semiárido Brasileiro, 1st ed.; Soares, J.M., Leão, P.C.S., Eds.; Embrapa: Brasília, DF, Brazil, 2009; pp. 481–512. ISBN 978-85-7383-460-4. [Google Scholar]
- AOAC—Association of Official Agricultural Chemists. Official Methods of Analysis of the Association of the Agricultural Chemists, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2010; ISBN-13 978-09-3558-475-2. [Google Scholar]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Viana, A.P.; Bruckner, C.H.; Martinez, H.E.P.; Huaman, C.A.M.; Mosquim, P.R. Teores de Na, K, Mg e Ca em porta-enxertos de videira em solução salina. Sci. Agric. 2001, 58, 187–191. [Google Scholar] [CrossRef]
- Christensen, L.P.; Dokoozlian, N.K.; Walker, M.A.; Wolpert, J.A.; Bettiga, L.J.; Golino, D.A.; McGourty, G.; Smith, R.J.; Verdegaal, P.S.; Weber, E. Wine Grape Varieties in California; University of California and Natural Resources Publication: Davis, CA, USA, 2003; pp. 86–89, ISBN-13 978-18-7990-663-1. [Google Scholar]
- Hermínio, P.J.; Amorim, T.L.; Barroso Neto, J.; Patriota, M.A.; Silva, S.L.F. Evaluation of growth associate to ionic partitioning in vine rootstocks subjected to salt stress. In Proceedings of the Simpósio Nacional de Estudos para Produção Vegetal no Semiárido (III SINPROVS), Campina Grande, Brazil, 1–5 May 2018; pp. 1–5. [Google Scholar]
- Leão, P.C.S.; Brandão, E.O.; Gonçalves, N.P.S. Production and quality of table grapes ‘Sugraone’ on different rootstocks in the São Francisco River Valley. Ciênc. Rural 2011, 41, 1526–1531. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Oliveira, C.R.S. Agronomic performance of table grape cultivars affected by rootstocks in semi-arid conditions. Bragantia 2023, 82, e20220176. [Google Scholar] [CrossRef]
- Ibacache, A.; Albornoz, F.; ZURITA-SILVA, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semiarid conditions. Sci. Hortic. 2016, 204, 25–32. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Nascimento, J.H.; Moraes, D.S.; Souza, E.R. Agronomic performance of seedless table grape genotypes under tropical semiarid conditions. Bragantia 2020, 79, 364–371. [Google Scholar] [CrossRef]
- Keller, M. Partitioning of assimilates. In The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Keller, M., Ed.; Elsevier: Prosser, WA, USA, 2015; pp. 145–193. ISBN 978-01-2419-987-3. [Google Scholar]
- Batista, D.C.; Barbosa, M.A.G.; Moura, M.S.B.; Anjos, J.B. Dynamics of inoculum and diseases in grapevines cultivated under plastic cover and conventional. Rev. Caatinga 2015, 28, 256–262. [Google Scholar]
- Brasil. Instrução Normativa Nº 1, de 01 de fevereiro de 2002. Aprova os regulamentos técnicos de identidade e de qualidade para a classificação dos produtos a seguir discriminados: Abacaxi; Uva Fina de Mesa; Uva Rústica. Diário Oficial da República Federativa do Brasil, Seção 1: Brasília, Brazil, 2002; pp. 1–19. [Google Scholar]
- Benato, E.A. Tecnologia, fisiologia e doenças pós-colheita de uvas de mesa. In Uva: Tecnologia de Produção, Pós-Colheita, Mercado, 1st ed.; Pommer, C.V., Ed.; Cinco Continentes: Porto Alegre, RS, Brazil, 2003; pp. 635–723. ISBN 10-8586466-25-5. [Google Scholar]
- Lima, M.A.C.; Choudhury, M.M. Características dos cachos de uva. In Uva de Mesa: Pós-Colheita, 2nd ed.; Lima, M.A.C., Ed.; Embrapa Semiárido: Petrolina, PE, Brazil, 2007; pp. 21–30, ISBN-13 978-85-7383-417-8. [Google Scholar]
- Rizzon, L.A.; Link, M. Composition of homemade grape juice from different varieties. Ciênc. Rural 2006, 36, 689–692. [Google Scholar] [CrossRef]
Production Cycle | Production Pruning | Harvest |
---|---|---|
2021.2 | 23 August 2021 | 7 December 2021 |
2022.2 | 7 July 2022 | 31 October 2022 |
2023.1 | 12 January 2023 | 26 April 2023 |
2023.2 | 6 July 2023 | 26 October 2023 |
Soil Properties | Soil Layers Value | |
---|---|---|
(0–20 cm) | (20–40 cm) | |
Sand content (g kg−1) | 784.88 | 778.85 |
Silt content (g kg−1) | 189.24 | 149.07 |
Clay content (g kg−1) | 55.88 | 70.18 |
Soil bulk density (kg dm−3) | 1.31 | 1.34 |
Porosity (%) | 48.37 | 47.71 |
Organic matter (g kg−1) | 7.0 | 3.9 |
ECE (mS cm−1) | 0.71 | 0.56 |
pH water | 5.5 | 5.4 |
Ca (cmol+dm−3) | 2.4 | 2.3 |
Mg (cmol+ dm−3) | 2.8 | 2.7 |
Na (cmol+ dm−3) | 0.03 | 0.02 |
Al (cmol+ dm−3) | 0.00 | 0.00 |
K (cmol+ dm−3) | 0.25 | 0.17 |
P (mg dm−3) | 120.11 | 130.26 |
Rootstock | YP (kg) | NB | BWt (g) |
---|---|---|---|
101-14 MgT | 15.86 b 1 | 81.69 ab | 335.21 ns * |
IAC 313 | 14.55 b | 86.56 ab | 321.96 |
IAC 572 | 11.88 b | 62.75 b | 323.01 |
IAC 766 | 16.46 ab | 84.53 ab | 335.97 |
Paulsen 1103 | 22.20 a | 87.75 a | 350.28 |
Ramsey | 16.80 ab | 79.88 ab | 324.57 |
SO4 | 16.65 ab | 79.56 ab | 340.07 |
Teleki 5C | 16.78 ab | 80.53 ab | 341.00 |
Mean | 16.40 | 80.41 | 334.01 |
CV (%) | 18.31 | 13.03 | 9.87 |
Production cycle | |||
2021.2 | 10.79 c | 37.94 c | 318.13 b |
2022.2 | 15.09 b | 49.44 c | 479.15 a |
2023.1 | 15.94 b | 129.25 a | 177.85 c |
2023.2 | 23.78 a | 105.00 b | 360.92 b |
CV (%) | 16.08 | 13.64 | 11.22 |
Rootstock | Berry Length (mm) | ||||
---|---|---|---|---|---|
2021.2 | 2022.2 | 2023.1 | 2023.2 | Mean | |
101-14 MgT | 22.88 aAB 1 | 24.70 aA | 21.93 abB | 21.62 aB | 22.78 ab |
IAC 313 | 23.11 aAB | 24.35 aA | 21.04 abBC | 20.64 aC | 22.28 ab |
IAC 572 | 23.23 aAB | 24.22 aA | 19.80 bC | 21.24 aBC | 22.12 b |
IAC 766 | 23.25 aAB | 23.92 aA | 21.11 abC | 21.17 aBC | 22.36 ab |
Paulsen 1103 | 23.06 aA | 24.32 aA | 22.35 aA | 22.49 aA | 23.05 a |
Ramsey | 23.16 aA | 24.04 aA | 22.75 aA | 22.26 aA | 23.05 a |
SO4 | 22.94 aA | 23.41 aA | 21.48 abA | 22.67 aA | 22.62 ab |
Teleki 5C | 23.45 aA | 24.27 aA | 20.93 abB | 22.51 aAB | 22.79 ab |
Mean | 23.13 A | 24.15 A | 21.42 B | 21.82 B | 22.63 |
CV | 3.96 |
Rootstock | Soluble Solids (ºBrix) | |||
2021.2 | 2022.2 | 2023.1 | Mean | |
101-14 MgT | 16.00 aB 1 | 14.75 aB | 20.55 aA | 17.10 ns * |
IAC 313 | 14.53 aB | 15.60 aB | 20.25 aA | 16.79 |
IAC 572 | 15.73 aB | 16.03 aB | 19.15 aA | 16.97 |
IAC 766 | 15.05 aB | 15.30 aB | 20.00 aA | 16.78 |
Paulsen 1103 | 16.38 aB | 15.28 aB | 19.45 aA | 17.03 |
Ramsey | 15.18 aB | 15.20 aB | 19.63 aA | 16.67 |
SO4 | 15.05 aB | 14.98 aB | 20.38 aA | 16.80 |
Teleki 5C | 15.40 aB | 15.20 aB | 19.38 aA | 16.66 |
Mean | 15.41 B | 15.29 B | 19.85 A | 16.85 |
CV (%) | 5.97 | |||
Rootstock | Titratable acidity (g of tartaric acid 100 mL−1) | |||
2021.2 | 2022.2 | 2023.1 | Mean | |
101-14 MgT | 0.36 aB | 0.56 aA | 0.33 aB | 0.42 ns |
IAC 313 | 0.33 aB | 0.51 aA | 0.36 aB | 0.40 |
IAC 572 | 0.36 aB | 0.57 aA | 0.37 aB | 0.43 |
IAC 766 | 0.37 aB | 0.56 aA | 0.37 aB | 0.43 |
Paulsen 1103 | 0.36 aB | 0.57 aA | 0.30 aB | 0.41 |
Ramsey | 0.31 aB | 0.53 aA | 0.40 aB | 0.41 |
SO4 | 0.36 aB | 0.54 aA | 0.30 aB | 0.40 |
Teleki 5C | 0.39 aB | 0.56 aA | 0.28 aB | 0.41 |
Mean | 0.35 B | 0.55 A | 0.34 B | 0.41 |
CV (%) | 9.88 | |||
Rootstock | SS/TA ratio | |||
2021.2 | 2022.2 | 2023.1 | Mean | |
101-14 MgT | 44.70 aB | 26.44 aC | 62.44 abcA | 44.52 ns |
IAC 313 | 45.17 aB | 31.10 aC | 59.08 abcA | 45.12 |
IAC 572 | 44.24 aB | 28.15 aC | 53.13 bcA | 41.84 |
IAC 766 | 41.09 aB | 27.67 aC | 54.13 bcA | 40.96 |
Paulsen 1103 | 46.23 aB | 26.97 aC | 65.58 abA | 46.26 |
Ramsey | 50.91 aA | 28.92 aB | 50.45 cA | 43.42 |
SO4 | 42.87 aB | 28.50 aC | 69.63 aA | 47.00 |
Teleki 5C | 39.85 aB | 27.51 aC | 69.10 aA | 45.86 |
Mean | 44.38 B | 28.15 C | 60.44 A | 44.32 |
CV (%) | 11.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.R.S.d.; Mendonca Junior, A.F.d.; Leão, P.C.d.S. Rootstock Effects on Fruit Yield and Quality of ‘BRS Tainá’ Seedless Table Grape in Semi-Arid Tropical Conditions. Plants 2024, 13, 2314. https://doi.org/10.3390/plants13162314
Oliveira CRSd, Mendonca Junior AFd, Leão PCdS. Rootstock Effects on Fruit Yield and Quality of ‘BRS Tainá’ Seedless Table Grape in Semi-Arid Tropical Conditions. Plants. 2024; 13(16):2314. https://doi.org/10.3390/plants13162314
Chicago/Turabian StyleOliveira, Carlos Roberto Silva de, Antônio Francisco de Mendonca Junior, and Patrícia Coelho de Souza Leão. 2024. "Rootstock Effects on Fruit Yield and Quality of ‘BRS Tainá’ Seedless Table Grape in Semi-Arid Tropical Conditions" Plants 13, no. 16: 2314. https://doi.org/10.3390/plants13162314
APA StyleOliveira, C. R. S. d., Mendonca Junior, A. F. d., & Leão, P. C. d. S. (2024). Rootstock Effects on Fruit Yield and Quality of ‘BRS Tainá’ Seedless Table Grape in Semi-Arid Tropical Conditions. Plants, 13(16), 2314. https://doi.org/10.3390/plants13162314