Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Vegetative Growth Parameters
2.2. Root Growth Parameters
2.3. Chemical Composition
3. Materials and Methods
3.1. Experimental Conditions
3.2. Plant Material and Experimental Layout
3.2.1. Salinity Treatments
- Control: irrigated with tap water; 250 mg L−1 (4.28 mM NaCl);
- Salinity level 2000 mg L−1: irrigated with tap water containing 2000 mg L−1 NaCl (34.2 mM NaCl);
- Salinity level 4000 mg L−1: irrigated with tap water containing 4000 mg L−1 NaCl (68.4 mM NaCl);
- Salinity level 6000 mg L−1: irrigated with tap water containing 6000 mg L−1 NaCl (102.7 mM NaCl);
- Salinity level 8000 mg L−1: irrigated with tap water containing 8000 mg L−1 NaCl (136.9 mM NaCl);
- Salinity level 10,000 mg L−1: irrigated with tap water containing 10,000 mg L−1 NaCl (171.2 mM NaCl).
3.2.2. Biostimulant Foliar Spraying
- Control: spraying with tap water;
- Putrescine spraying at a concentration of 200 mg L−1;
- Salicylic acid spraying at a concentration of 200 mg L−1.
3.3. Data Recorded
3.3.1. Vegetative Growth Measurements
3.3.2. Chemical Composition
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sdouga, D.; Ben Amor, F.; Ghribi, S.; Kabtni, S.; Tebini, M.; Branca, F.; Trifi-Farah, N.; Marghali, S. An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicol. Environ. Saf. 2019, 172, 45–52. [Google Scholar] [CrossRef]
- Cantabella, D.; Piqueras, A.; Acosta-Motos, J.R.; Bernal-Vicente, A.; Hernández, J.A.; Díaz-Vivancos, P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 2017, 115, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Urgeghe, P.P.; Massa, D.; Melito, S. Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiol. Biochem. 2019, 141, 30–39. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Bosland, P.W.; Steiner, R.L.; Walker, S.J. Irrigation water salinity influences at various growth stages of Capsicum annuum. Agric. Water Manag. 2017, 179, 246–253. [Google Scholar] [CrossRef]
- Lamsaadi, N.; Farssi, O.; El Moukhtari, A.; Farissi, M. Different approaches to improve the tolerance of aromatic and medicinal plants to salt stressed conditions. J. Appl. Res. Med. Aromat. Plants 2024, 39, 100532. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Koyro, H.W.; Khan, M.A.; Lieth, H. Halophytic crops: A resource for the future to reduce the water crisis? Emir. J. Food Agric. 2011, 23, 1–16. [Google Scholar] [CrossRef]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef]
- Montoya-García, C.O.; García-Mateos, R.; Becerra-Martínez, E.; Toledo-Aguilar, R.; Volke-Haller, V.H.; Jesús Magdaleno-Villar, J. Bioactive compounds of purslane (Portulaca oleracea L.) according to the production system: A review. Sci. Hortic. 2023, 308, 111584. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. Int. J. Mol. Sci. 2023, 24, 15740. [Google Scholar] [CrossRef]
- Rakkammal, K.; Maharajan, T.; Antony, S.; Manikandan, C. Biostimulants and their role in improving plant growth under drought and salinity. Cereal Res. Commun. 2023, 51, 61–74. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Kaur, Y.; Das, N. Roles of Polyamines in Growth and Development of the Solanaceous Crops Under Normal and Stressful Conditions. J. Plant Growth Regul. 2023, 42, 4989–5010. [Google Scholar] [CrossRef]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef]
- Szalai, G.; Tari, I.; Janda, T.; Pestenácz, A.; Páldi, E. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol. Plant. 2000, 43, 637–640. [Google Scholar] [CrossRef]
- Mady, E.; Abd El-Wahed, A.H.M.; Awad, A.H.; Asar, T.O.; Al-Farga, A.; Abd El-Raouf, H.S.; Randhir, R.; Alnuzaili, E.S.; El-Taher, A.M.; Randhir, T.O.; et al. Evaluation of Salicylic Acid Effects on Growth, Biochemical, Yield, and Anatomical Characteristics of Eggplant (Solanum melongena L.) Plants under Salt Stress Conditions. Agronomy 2023, 13, 2213. [Google Scholar] [CrossRef]
- Arif, Y.; Sami, F.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ. Exp. Bot. 2020, 175, 104040. [Google Scholar] [CrossRef]
- Kováčik, J.; Grúz, J.; Bačkor, M.; Strnad, M.; Repčák, M. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 2009, 28, 135–143. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Du, X.; Tang, H.; Shen, C.; Wu, J. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 2014, 9, e109492. [Google Scholar] [CrossRef] [PubMed]
- Arfan, M.; Athar, H.R.; Ashraf, M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 2007, 164, 685–694. [Google Scholar] [CrossRef]
- Hanif, S.; Mahmood, A.; Javed, T.; Bibi, S.; Zia, M.A.; Asghar, S.; Naeem, Z.; Ercisli, S.; Rahimi, M.; Ali, B. Exogenous application of salicylic acid ameliorates salinity stress in barley (Hordeum vulgare L.). BMC Plant Biol. 2024, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Petropoulos, S.A. Physiological and growth responses of several genotypes of common purslane (Portulaca oleracea L.) under Mediterranean semi-arid conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 569–575. [Google Scholar] [CrossRef]
- Montoya-García, C.O.; Volke-Haller, V.H.; Trinidad-Santos, A.; Villanueva-Verduzco, C. Change in the contents of fatty acids and antioxidant capacity of purslane in relation to fertilization. Sci. Hortic. 2018, 234, 152–159. [Google Scholar] [CrossRef]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane (Portulaca oleracea L.). Heliyon 2022, 8, e08669. [Google Scholar] [CrossRef]
- Petropoulos, S.; Karkanis, A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R.; Ntatsi, G.; Petrotos, K.; Lykas, C.; Khah, E. Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): An alternative source of omega-3 fatty acids. Plant Foods Hum. Nutr. 2015, 70, 420–426. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Srivastava, R.; Srivastava, V.; Singh, A. Multipurpose Benefits of an Underexplored Species Purslane (Portulaca oleracea L.): A Critical Review. Environ. Manag. 2021, 72, 309–320. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Bekmirzaev, G.; Ouddane, B.; Beltrao, J.; Khamidov, M.; Fujii, Y.; Sugiyama, A. Effects of salinity on the macro-and micronutrient contents of a halophytic plant species (Portulaca oleracea L.). Land 2021, 10, 481. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Mehrabani, L.V.; Bonabian, Z.; Aazami, M.A.; Rasouli, F.; Feldo, M.; Strzemski, M.; Dresler, S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. Int. J. Mol. Sci. 2022, 23, 5093. [Google Scholar] [CrossRef] [PubMed]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef]
- Tassoni, A.; Van Buuren, M.; Franceschetti, M.; Fornalè, S.; Bagni, N. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol. Biochem. 2000, 38, 383–393. [Google Scholar] [CrossRef]
- Prajapati, U.; Asrey, R.; Sinha, S.K.; Joshi, A.; Varghese, E.; Meena, N.K. Salicylic acid and putrescine treatments reduce yellowing, decay and retain postharvest quality of bitter gourd (Momordica charantia L.) during cold storage. S. Afr. J. Bot. 2024, 164, 111–120. [Google Scholar] [CrossRef]
- Pál, M.; Szalai, G.; Janda, T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015, 237, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef]
- Islam, M.J.; Ryu, B.R.; Azad, M.O.K.; Rahman, M.H.; Rana, M.S.; Lim, J.D.; Lim, Y.S. Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean ginseng (Panax ginseng Meyer) sprouts. Plants 2021, 10, 1313. [Google Scholar] [CrossRef]
- Rathinapriya, P.; Pandian, S.; Rakkammal, K.; Balasangeetha, M.; Alexpandi, R.; Satish, L.; Rameshkumar, R.; Ramesh, M. The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol. Mol. Biol. Plants 2020, 26, 1815–1829. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhong, M.; Du, N.; Shu, S.; Sun, J.; Guo, S. Putrescine enhances salt tolerance of cucumber seedlings by regulating ion homeostasis. Environ. Exp. Bot. 2019, 165, 70–82. [Google Scholar] [CrossRef]
- Ahmad, M.; Naqve, M.; Lihong, W.; Zia, M.A.; Mahmood, A.; Javaid, M.M.; Ameen, M.; Rashed, A.A.; Rasheed, A.; Hassan, M.U.; et al. Mitigating negative impact of salinity on berseem (Trifolium alexandrinum) by foliar application of salicylic acid. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13467. [Google Scholar] [CrossRef]
- Buffagni, V.; Zhang, L.; Senizza, B.; Rocchetti, G.; Ferrarini, A.; Miras-Moreno, B.; Lucini, L. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Sci. 2022, 322, 111346. [Google Scholar] [CrossRef]
- Minocha, R.; Majumdar, R.; Minocha, S.C. Polyamines and abiotic stress in plants: A complex relationship. Front. Plant Sci. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed]
- Sarwat, M.; Naqvi, A.R.; Ahmad, P.; Ashraf, M.; Akram, N.A. Phytohormones and microRNAs as sensors and regulators of leaf senescence: Assigning macro roles to small molecules. Biotechnol. Adv. 2013, 31, 1153–1171. [Google Scholar] [CrossRef]
- Shu, S.; Yuan, Y.; Chen, J.; Sun, J.; Zhang, W.; Tang, Y.; Zhong, M.; Guo, S. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 2015, 5, 14390. [Google Scholar] [CrossRef]
- Rakbar, S.; Jabbarzadeh, Z.; Barin, M. Impact of putrescine and arbuscular mycorrhizal fungi on nutrient uptake, growth, and post-harvest performance of Gerbera (Gerbera jamesonii cv. Dune) cut flowers. Acta Physiol. Plant. 2024, 46, 45. [Google Scholar] [CrossRef]
- Mahdavian, K. Application of Salicylic Acid on Chlorophyll, Carotenoids, and Proline in Radish Under Salinity Stress. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 93, 809–818. [Google Scholar] [CrossRef]
- Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006, 141, 391–396. [Google Scholar] [CrossRef]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Teixeira, M.; Carvalho, I.S. Effects of salt stress on purslane (Portulaca oleracea) nutrition. Ann. Appl. Biol. 2009, 154, 77–86. [Google Scholar] [CrossRef]
- Uddin, K.; Juraimi, A.S.; Anwar, F.; Hossain, M.A.; Alam, M.A. Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Aust. J. Crop Sci. 2012, 6, 1732–1736. [Google Scholar]
- Nasiri, M.; Andalibi, B.; Khomari, S.; Goli, E.; Nasiri, S.; El-Keblawy, A.; Mastinu, A. Enhancing salt stress tolerance in kidney beans: The synergistic effects of biochar and salicylic acid in arid and semi-arid regions. Plant Stress 2024, 11, 100423. [Google Scholar] [CrossRef]
- Haghshenas, M.; Nazarideljou, M.J.; Shokoohian, A. Phytochemical and Quality Attributes of Strawberry Fruit under Osmotic Stress of Nutrient Solution and Foliar Application of Putrescine and Salicylic Acid. Int. J. Hortic. Sci. Technol. 2020, 7, 263–278. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Fairoj, S.A.; Islam, M.M.; Islam, M.A.; Zaman, E.; Momtaz, M.B.; Hossain, M.S.; Jahan, N.A.; Shams, S.N.U.; Urmi, T.A.; Rasel, M.A.; et al. Salicylic Acid Improves Agro-Morphology, Yield and Ion Accumulation of Two Wheat (Triticum aestivum L.) Genotypes by Ameliorating the Impact of Salt Stress. Agronomy 2023, 13, 25. [Google Scholar] [CrossRef]
- Horchani, F.; Mabrouk, L.; Borgi, M.A.; Abbes, Z. Foliar Spray or Root Application: Which Method of Salicylic Acid Treatment is More Efficient in Alleviating the Adverse Effects of Salt Stress on the Growth of Alfalfa Plants, Medicago sativa L.? Gesunde Pflanz. 2023, 75, 2697–2712. [Google Scholar] [CrossRef]
- Raziq, A.; Mohi Ud Din, A.; Anwar, S.; Wang, Y.; Jahan, M.S.; He, M.; Ling, C.G.; Sun, J.; Shu, S.; Guo, S. Exogenous spermidine modulates polyamine metabolism and improves stress responsive mechanisms to protect tomato seedlings against salt stress. Plant Physiol. Biochem. 2022, 187, 1–10. [Google Scholar] [CrossRef]
- El-Hawary, M.M.; Hashem, O.S.M.; Hasanuzzaman, M. Seed Priming and Foliar Application with Ascorbic Acid and Salicylic Acid Mitigate Salt Stress in Wheat. Agronomy 2023, 13, 493. [Google Scholar] [CrossRef]
- Youssef, S.M.; López-Orenes, A.; Ferrer, M.A.; Calderón, A.A. Foliar Application of Salicylic Acid Enhances the Endogenous Antioxidant and Hormone Systems and Attenuates the Adverse Effects of Salt Stress on Growth and Yield of French Bean Plants. Horticulturae 2023, 9, 75. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Jackson, M.L., Ed.; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Chemical and Microbiological Properties. In Methods of Soil Analysis; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1965; pp. 34–41. ISBN 9780891180722. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2019; ISBN 0935584773. [Google Scholar]
- Pregl, F. Quantitative Organic Microanalysis, 4th ed.; Chundril: London, UK, 1961. [Google Scholar]
- Brown, J.; Lilliland, O. Rapid determination of potassium and sodium in plant materials and soil extracts by flame photometry. Proc. Am. Soc. Hortic. Sci. 1946, 48, 341–346. [Google Scholar]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chemical Analysis of Microbial Cells. Methods Microbiol. 1971, 5B, 209–344. [Google Scholar] [CrossRef]
Treatments | Height (cm) | Shoots/Plant (No) | Fresh Weight/Plant (g) | Dry Weight/Plant (g) | |||||
---|---|---|---|---|---|---|---|---|---|
Salinity Level | Biostimulants | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
Tap water | 31.8 | 34.0 | 13.9 | 15.2 | 284 | 308 | 42.2 | 50.7 | |
2000 mg L−1 | 28.1 | 33.6 | 13.4 | 15.3 | 279 | 304 | 41.4 | 50.3 | |
4000 mg L−1 | 26.2 | 30.2 | 12.1 | 12.7 | 255 | 285 | 37.9 | 46.8 | |
6000 mg L−1 | 22.5 | 26.8 | 10.8 | 11.5 | 225 | 240 | 33.4 | 39.1 | |
8000 mg L−1 | 20.2 | 22.8 | 8.9 | 10.0 | 194 | 210 | 30.0 | 34.6 | |
10,000 mg L−1 | 17.3 | 17.2 | 7.5 | 8.5 | 163 | 176 | 23.9 | 28.4 | |
LSD at 0.05 | 2.14 | 1.92 | 1.12 | 1.09 | 14.3 | 12.9 | 3.15 | 3.18 | |
Control | 22.5 | 24.3 | 10.4 | 10.9 | 198 | 216 | 29.3 | 35.3 | |
Putrescine | 26.3 | 30.0 | 11.9 | 13.6 | 261 | 280 | 38.4 | 46.1 | |
Salicylic acid | 24.2 | 28.0 | 11.1 | 12.1 | 241 | 265 | 36.3 | 43.5 | |
LSD at 0.05 | 3.06 | 2.75 | 1.60 | 1.56 | 20.45 | 18.45 | 4.50 | 4.55 | |
Tap water | Control | 28.3 | 29.4 | 12.3 | 13.1 | 245 | 259 | 36.4 | 42.3 |
Putrescine | 35.6 | 37.1 | 15.8 | 17.2 | 317 | 341 | 47.2 | 56.5 | |
Salicylic acid | 31.4 | 35.6 | 13.7 | 15.3 | 289 | 324 | 43.1 | 53.2 | |
2000 mg L−1 | Control | 26.9 | 28.7 | 12.1 | 13.4 | 239 | 251 | 35.2 | 41.4 |
Putrescine | 29.4 | 36.9 | 14.9 | 17.0 | 308 | 335 | 46.0 | 55.6 | |
Salicylic acid | 28.1 | 35.1 | 13.2 | 15.6 | 291 | 326 | 43.1 | 53.8 | |
4000 mg L−1 | Control | 24.3 | 27.1 | 11.9 | 12.5 | 216 | 236 | 32.1 | 38.9 |
Putrescine | 27.8 | 32.4 | 12.4 | 13.6 | 284 | 315 | 42.2 | 51.8 | |
Salicylic acid | 26.4 | 31.0 | 12.1 | 12.1 | 264 | 304 | 39.4 | 49.7 | |
6000 mg L−1 | Control | 21.1 | 24.3 | 10.2 | 10.6 | 182 | 204 | 27.0 | 33.1 |
Putrescine | 24.1 | 29.4 | 11.3 | 12.5 | 251 | 269 | 37.2 | 44.0 | |
Salicylic acid | 22.3 | 26.7 | 10.8 | 11.3 | 242 | 246 | 36.1 | 40.2 | |
8000 mg L−1 | Control | 19.2 | 21.6 | 8.6 | 8.4 | 167 | 189 | 24.9 | 31.0 |
Putrescine | 21.8 | 24.8 | 9.2 | 11.6 | 218 | 224 | 33.1 | 36.9 | |
Salicylic acid | 19.6 | 21.9 | 9.0 | 9.9 | 198 | 217 | 32.0 | 35.8 | |
10,000 mg L−1 | Control | 15.3 | 14.8 | 7.1 | 7.3 | 138 | 156 | 20.2 | 25.1 |
Putrescine | 18.9 | 19.3 | 7.8 | 9.8 | 186 | 198 | 27.4 | 32.0 | |
Salicylic acid | 17.6 | 17.4 | 7.6 | 8.4 | 164 | 174 | 24.1 | 28.2 | |
LSD at 0.05 | 5.3 | 4.8 | 2.8 | 2.7 | 35 | 32 | 7.8 | 7.9 |
Treatments | Roots Fresh Weight/Plant (g) | Roots Dry Weight/Plant (g) | |||
---|---|---|---|---|---|
Salinity Level | Biostimulants | 2022 | 2023 | 2022 | 2023 |
Tap water | 52.8 | 59.3 | 8.69 | 10.43 | |
2000 mg L−1 | 51.6 | 58.2 | 8.52 | 10.24 | |
4000 mg L−1 | 48.7 | 52.3 | 8.15 | 9.21 | |
6000 mg L−1 | 41.8 | 45.5 | 6.85 | 8.16 | |
8000 mg L−1 | 35.4 | 37.0 | 5.91 | 6.39 | |
10,000 mg L−1 | 26.7 | 30.2 | 4.33 | 5.15 | |
LSD at 0.05 | 2.3 | 3.1 | 0.28 | 0.43 | |
Control | 38.4 | 40.7 | 6.37 | 7.09 | |
Putrescine | 47.2 | 52.1 | 7.80 | 9.18 | |
Salicylic acid | 42.9 | 49.1 | 7.06 | 8.52 | |
LSD at 0.05 | 3.3 | 3.3 | 0.40 | 0.61 | |
Tap water | Control | 38.4 | 51.8 | 8.14 | 9.14 |
Putrescine | 47.2 | 64.7 | 9.46 | 11.46 | |
Salicylic acid | 42.9 | 61.3 | 8.48 | 10.68 | |
2000 mg L−1 | Control | 46.3 | 50.2 | 7.61 | 8.92 |
Putrescine | 56.9 | 62.6 | 9.24 | 11.12 | |
Salicylic acid | 51.6 | 61.9 | 8.71 | 10.67 | |
4000 mg L−1 | Control | 42.6 | 45.3 | 7.12 | 8.14 |
Putrescine | 54.2 | 58.2 | 9.16 | 10.24 | |
Salicylic acid | 49.3 | 53.4 | 8.16 | 9.26 | |
6000 mg L−1 | Control | 36.6 | 39.8 | 6.08 | 6.92 |
Putrescine | 47.3 | 51.3 | 7.69 | 9.11 | |
Salicylic acid | 41.6 | 48.5 | 6.79 | 8.46 | |
8000 mg L−1 | Control | 31.2 | 30.6 | 5.24 | 5.12 |
Putrescine | 38.2 | 41.5 | 6.41 | 7.13 | |
Salicylic acid | 36.7 | 39.0 | 6.09 | 6.92 | |
10,000 mg L−1 | Control | 24.8 | 26.4 | 4.02 | 4.28 |
Putrescine | 29.3 | 34.1 | 4.81 | 6.02 | |
Salicylic acid | 25.9 | 30.2 | 4.15 | 5.14 | |
LSD at 0.05 | 5.7 | 5.7 | 0.69 | 1.06 |
Treatments | N% | P% | K% | Total Carbohydrates% | |||||
---|---|---|---|---|---|---|---|---|---|
Salinity Level | Biostimulants | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
Tap water | 1.58 | 1.55 | 0.237 | 0.246 | 1.42 | 1.54 | 17.1 | 18.7 | |
2000 mg L−1 | 1.57 | 1.52 | 0.235 | 0.243 | 1.42 | 1.51 | 16.4 | 18.1 | |
4000 mg L−1 | 1.52 | 1.45 | 0.236 | 0.240 | 1.37 | 1.47 | 16.1 | 17.1 | |
6000 mg L−1 | 1.41 | 1.35 | 0.219 | 0.216 | 1.28 | 1.32 | 14.6 | 14.6 | |
8000 mg L−1 | 1.29 | 1.22 | 0.191 | 0.196 | 1.16 | 1.13 | 13.1 | 12.3 | |
10,000 mg L−1 | 1.18 | 1.72 | 0.184 | 0.180 | 1.09 | 1.05 | 11.2 | 11.3 | |
LSD at 0.05 | 0.07 | 0.06 | 0.007 | 0.008 | 0.05 | 0.06 | 1.1 | 1.2 | |
Control | 1.33 | 1.27 | 0.203 | 0.201 | 1.15 | 1.19 | 12.7 | 13.1 | |
Putrescine | 1.52 | 1.47 | 0.231 | 0.238 | 1.41 | 1.47 | 16.9 | 17.8 | |
Salicylic acid | 1.43 | 1.38 | 0.217 | 0.221 | 1.30 | 1.35 | 14.6 | 15.0 | |
LSD at 0.05 | 0.10 | 0.09 | 0.010 | 0.011 | 0.07 | 0.09 | 1.6 | 1.7 | |
Tap water | Control | 1.46 | 1.39 | 0.219 | 0.227 | 1.24 | 1.31 | 14.6 | 15.8 |
Putrescine | 1.72 | 1.70 | 0.256 | 0.264 | 1.62 | 1.74 | 19.8 | 21.7 | |
Salicylic acid | 1.58 | 1.56 | 0.238 | 0.249 | 1.41 | 1.58 | 16.7 | 18.6 | |
2000 mg L−1 | Control | 1.43 | 1.41 | 0.214 | 0.225 | 1.26 | 1.28 | 14.2 | 15.3 |
Putrescine | 1.69 | 1.65 | 0.252 | 0.261 | 1.59 | 1.71 | 19.3 | 21.0 | |
Salicylic acid | 1.61 | 1.52 | 0.241 | 0.243 | 1.43 | 1.54 | 15.9 | 17.9 | |
4000 mg L−1 | Control | 1.41 | 1.32 | 0.226 | 0.219 | 1.21 | 1.29 | 13.7 | 14.6 |
Putrescine | 1.62 | 1.62 | 0.246 | 0.256 | 1.52 | 1.68 | 18.4 | 20.1 | |
Salicylic acid | 1.54 | 1.41 | 0.236 | 0.246 | 1.38 | 1.46 | 16.2 | 16.8 | |
6000 mg L−1 | Control | 1.36 | 1.24 | 0.204 | 0.196 | 1.14 | 1.17 | 12.4 | 11.9 |
Putrescine | 1.46 | 1.43 | 0.236 | 0.241 | 1.39 | 1.42 | 16.8 | 17.6 | |
Salicylic acid | 1.41 | 1.38 | 0.219 | 0.212 | 1.32 | 1.38 | 14.7 | 14.3 | |
8000 mg L−1 | Control | 1.21 | 1.17 | 0.182 | 0.176 | 1.08 | 1.09 | 11.2 | 10.8 |
Putrescine | 1.39 | 1.28 | 0.201 | 0.211 | 1.24 | 1.18 | 14.9 | 14.2 | |
Salicylic acid | 1.27 | 1.21 | 0.190 | 0.202 | 1.17 | 1.14 | 13.1 | 11.9 | |
10,000 mg L−1 | Control | 1.12 | 1.09 | 0.173 | 0.167 | 1.02 | 1.01 | 10.2 | 10.4 |
Putrescine | 1.26 | 1.17 | 0.197 | 0.195 | 1.14 | 1.10 | 12.4 | 12.7 | |
Salicylic acid | 1.17 | 1.14 | 0.182 | 0.178 | 1.11 | 1.04 | 11.0 | 10.8 | |
LSD at 0.05 | 0.17 | 0.16 | 0.017 | 0.019 | 0.12 | 0.15 | 2.8 | 3.0 |
Treatments | Total Chlorophylls (mg/100 g FW) | Vitamin C Content (mg/100 g FW) | Nitrate Content (mg/g FW) | Proline Content (μg/g FW) | |||||
---|---|---|---|---|---|---|---|---|---|
Salinity Level | Biostimulants | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
Tap water | 166 | 170 | 69.0 | 74.1 | 2.28 | 2.21 | 467 | 445 | |
2000 mg L−1 | 172 | 174 | 70.7 | 76.8 | 2.37 | 2.27 | 649 | 522 | |
4000 mg L−1 | 180 | 181 | 77.2 | 80.6 | 2.79 | 2.61 | 793 | 646 | |
6000 mg L−1 | 168 | 174 | 80.3 | 83.3 | 3.28 | 3.14 | 1035 | 888 | |
8000 mg L−1 | 154 | 156 | 71.9 | 75.7 | 3.39 | 3.33 | 1392 | 1342 | |
10,000 mg L−1 | 144 | 144 | 63.5 | 62.9 | 3.11 | 3.05 | 1511 | 1433 | |
LSD at 0.05 | 8 | 7 | 5.3 | 5.0 | 0.24 | 0.21 | 73 | 92 | |
Control | 143 | 149 | 71.2 | 73.5 | 3.00 | 2.90 | 1096 | 991 | |
Putrescine | 188 | 187 | 73.3 | 78.1 | 2.75 | 2.69 | 922 | 802 | |
Salicylic acid | 162 | 164 | 71.9 | 75.2 | 2.86 | 2.71 | 906 | 845 | |
LSD at 0.05 | 12 | 10 | 7.5 | 7.1 | 0.34 | 0.30 | 104 | 132 | |
Tap water | Control | 149 | 154 | 68.4 | 71.5 | 2.41 | 2.34 | 483 | 452 |
Putrescine | 181 | 185 | 69.7 | 76.8 | 2.19 | 2.11 | 458 | 436 | |
Salicylic acid | 169 | 171 | 68.9 | 74.2 | 2.26 | 2.19 | 462 | 448 | |
2000 mg L−1 | Control | 153 | 159 | 69.3 | 74.8 | 2.52 | 2.46 | 694 | 673 |
Putrescine | 192 | 189 | 72.4 | 79.8 | 2.24 | 2.17 | 612 | 441 | |
Salicylic acid | 173 | 174 | 70.6 | 76.0 | 2.37 | 2.18 | 642 | 453 | |
4000 mg L−1 | Control | 162 | 164 | 76.2 | 76.9 | 2.92 | 2.83 | 865 | 792 |
Putrescine | 198 | 197 | 78.3 | 84.3 | 2.68 | 2.58 | 732 | 564 | |
Salicylic acid | 182 | 183 | 77.2 | 80.7 | 2.78 | 2.43 | 784 | 584 | |
6000 mg L−1 | Control | 141 | 152 | 79.4 | 81.3 | 3.41 | 3.21 | 1108 | 984 |
Putrescine | 201 | 204 | 81.3 | 86.4 | 3.14 | 3.07 | 984 | 817 | |
Salicylic acid | 162 | 168 | 80.2 | 82.4 | 3.29 | 3.14 | 1014 | 864 | |
8000 mg L−1 | Control | 132 | 139 | 71.2 | 75.2 | 3.62 | 3.49 | 1640 | 1462 |
Putrescine | 184 | 182 | 72.9 | 76.9 | 3.19 | 3.21 | 1320 | 1246 | |
Salicylic acid | 148 | 149 | 71.8 | 75.2 | 3.38 | 3.30 | 1216 | 1319 | |
10,000 mg L−1 | Control | 124 | 128 | 62.4 | 61.8 | 3.14 | 3.09 | 1790 | 1586 |
Putrescine | 172 | 164 | 65.2 | 64.2 | 3.08 | 3.02 | 1426 | 1311 | |
Salicylic acid | 137 | 141 | 63.1 | 62.8 | 3.12 | 3.06 | 1318 | 1402 | |
LSD at 0.05 | 21 | 17 | 13.1 | 12.3 | 0.59 | 0.52 | 180 | 228 |
Physical Parameters | Chemical Parameters | ||||
---|---|---|---|---|---|
Cations | Anions | ||||
Coarse sand | 7.13% | Ca2+ | 6.26 mEq/L | CO3− | 0.00 mEq/L |
Fine sand | 17.27% | Mg2+ | 3.02 mEq/L | HCO3− | 3.92 mEq/L |
Silt | 22.28% | Na+ | 5.36 mEq/L | Cl− | 4.42 mEq/L |
Clay | 53.32% | K+ | 0.93 mEq/L | SO4− | 7.38 mEq/L |
Soil pH | 7.72 | Available N | 26.4 mg/kg | ||
E.C. | 1.48 dS/m | Available P | 8.73 mg/kg | ||
Organic matter | 1.59% | Available K | 119.9 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.H.M.; Ali, M.M.E.; Zewail, R.M.Y.; Liava, V.; Petropoulos, S.A. Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations. Plants 2024, 13, 2431. https://doi.org/10.3390/plants13172431
Mohamed MHM, Ali MME, Zewail RMY, Liava V, Petropoulos SA. Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations. Plants. 2024; 13(17):2431. https://doi.org/10.3390/plants13172431
Chicago/Turabian StyleMohamed, Mostafa H. M., Maha Mohamed Elsayed Ali, Reda M. Y. Zewail, Vasiliki Liava, and Spyridon A. Petropoulos. 2024. "Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations" Plants 13, no. 17: 2431. https://doi.org/10.3390/plants13172431