Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8
Abstract
:1. Introduction
2. Experimental Result and Analysis
2.1. Experimental Platform and Parameter Settings
2.2. Comparison Experiments of Different Models
2.3. Ablation Experiments
Attention Mechanism
2.4. Application Performance of Tracking
3. Materials and Methods
3.1. Data Acquisition
3.2. YOLO v8-Improved Model
3.2.1. YOLO·v8 Network Structure
3.2.2. BiFPN
3.2.3. Mixed Local Channel Attention
3.2.4. Wise-Inner-IoU
3.3. Tracking Based on ByteTrack
3.4. Evaluation Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RGB-D | Red, Green, Blue, and Depth |
MLCA | Mixed Local Channel Attention |
BiFPN | Bidirectional Feature Pyramid Network |
ReLU | Rectified Linear Unit |
IoU | Intersection over Union |
DFL | Distributional Feature Loss |
FPS | Frames Per Second |
Params | Parameters |
GFlops | Giga Floating-point Operations Per Second |
TP | True Positive |
FP | False Positive |
FN | False Negative |
P | Precision |
R | Recall |
Appendix A
References
- Kim, S.; Subramanian, P.; Hahn, B. Glucosinolate Diversity Analysis in Choy Sum (Brassica rapa subsp. chinensis var. parachinensis) Germplasms for Functional Food Breeding. Foods 2023, 12, 2400. [Google Scholar] [CrossRef] [PubMed]
- Koo, A.; Ghate, V.; Zhou, W. Direct seeding compromised the vitamin C content of baby vegetables andthe glucosinolate content of mature vegetables in Asian leafy brassicas. Food Chem. 2024, 437, 137783. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, C.; Tong, J.; Chen, J.; He, L.; Wang, R.; Jia, J. Deviation Tolerance Performance Evaluation and Experiment of Picking End Effector for Famous Tea. Agriculture 2021, 11, 128. [Google Scholar] [CrossRef]
- Gopal, S.; Rashmi, B. Vegetable Plucking Machine Using Object Detection: A Case Study. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2021, 7, 501–508. [Google Scholar]
- Hussain, M.; He, L.; Schupp, J.; Lyons, D.; Heinemann, P. Green fruit segmentation and orientation estimation for robotic green fruit thinning of apples. Comput. Electron. Agric. 2023, 207, 107734. [Google Scholar] [CrossRef]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhao, X.; Su, X.; Wu, W. Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4. Comput. Electron. Agric. 2023, 211, 107955. [Google Scholar] [CrossRef]
- Lv, J.; Xu, H.; Xu, L.; Zou, L.; Rong, H.; Yang, B.; Niu, L.; Ma, Z. Recognition of fruits and vegetables with similar-color background in natural environment: A survey. J. Field Robot. 2022, 39, 888–904. [Google Scholar] [CrossRef]
- Cakmak, H.; Sogut, E. Imaging Techniques for Evaluation of Ripening and Maturity of Fruits and Vegetables. In Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables; Pathare, P.B., Rahman, M.S., Eds.; Springer Nature: Singapore, 2022; pp. 35–59. [Google Scholar]
- NY/T 1647-2008; Grades and Specifications. Industry Standards Agricultural: Beijing, China, 2008.
- Pornpanomchai, C.; Sakunreraratsame, P.; Wongsasirinart, R.; Youngtavichavhart, N. Herb flower recognition system (HFRS). In Proceedings of the International Conference on Electronics and Information Engineering (ICEIE 2010), Kyoto, Japan, 1–3 August 2010; Volume 1, pp. 123–127. [Google Scholar]
- Lin, G.; Tang, Y.; Zou, X.; Cheng, J.; Xiong, J. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform. Precis. Agric. 2020, 21, 160–177. [Google Scholar] [CrossRef]
- Guru, D.S.; Kumar, Y.S.; Manjunath, S. Textural features in flower classification. Math. Comput. Model. 2011, 54, 1030–1036. [Google Scholar] [CrossRef]
- Guo, C.; Liu, F.; Kong, W.; He, Y.; Lou, B. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 2016, 179, 11–18. [Google Scholar]
- Wu, X.; Sahoo, D.; Steven, C. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Front. Plant Sci. 2020, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- He, L.F.W.Z. Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Instance segmentation of apple flowers using the improved mask R–CNN model. Biosyst. Eng. 2020, 193, 264–278. [Google Scholar] [CrossRef]
- Lin, P.; Lee, W.S.; Chen, Y.M.; Peres, N.; Fraisse, C. A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field. Precis. Agric. 2020, 21, 387–402. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, W.S.; Gan, H.; Peres, N.; Fraisse, C.; Zhang, Y.; He, Y. Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages. Remote Sens. 2019, 11, 1584. [Google Scholar] [CrossRef]
- Qi, C.; Gao, J.; Pearson, S.; Harman, H.; Chen, K.; Shu, L. Tea chrysanthemum detection under unstructured environments using the TC-YOLO model. Expert Syst. Appl. 2022, 193, 116473. [Google Scholar] [CrossRef]
- Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment. Comput. Electron. Agric. 2023, 107625. [Google Scholar] [CrossRef]
- Jocher, G.; Ayush, G.; Jing, Q. Ultralytics YOLOv8(Version 8.0.0). Available online: https://github.com/ultralytics/ultralytics (accessed on 10 January 2023).
- Jocher, G. YOLOv5 by Ultralytics (Version 7.0). Available online: https://github.com/ultralytics/yolov5 (accessed on 10 June 2020).
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D. SSD: Single Shot MultiBox Detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yeh, I.; Mark Liao, H.Y. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. DETRs Beat YOLOs on Real-time Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Li, Y.; He, L.; Jia, J.; Lv, J.; Chen, J.; Qiao, X.; Wu, C. In-field tea shoot detection and 3D localization using an RGB-D camera. Comput. Electron. Agric. 2021, 185, 106149. [Google Scholar] [CrossRef]
- Zheng, Z.W.P.L. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Yang, J. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Wan, D.; Lu, R.; Shen, S.; Xu, T.; Lang, X.; Ren, Z. Mixed local channel attention for object detection. Eng. Appl. Artif. Intell. 2023, 123, 106442. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, Z.; Fang, H. Automated detection of boundary line in paddy field using MobileV2-UNet and RANSAC. Comput. Electron. Agric. 2022, 194, 106697. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Xue, J.; Sun, H.L. Lghtweight target detection for the field flat jujube based on improved YOLOv5. Comput. Electron. Agric. 2022, 202, 107931. [Google Scholar]
- Sun, Q.; Chai, X.; Zeng, Z.; Zhou, G.; Sun, T. Noise-tolerant RGB-D feature fusion network for outdoor fruit detection. Comput. Electron. Agric. 2022, 198, 107034. [Google Scholar] [CrossRef]
Model | Precision (%) | Recall (%) | F1 | mAP50 (%) | GFlops (G) |
---|---|---|---|---|---|
Faster R-CNN | 70.7 | 81.5 | 0.76 | 80.1 | 132.7 |
SSD | 78.3 | 55.9 | 0.65 | 75.7 | 274.9 |
RetinaNet | 72.1 | 88.5 | 0.80 | 87.3 | 128.3 |
YOLOv5 | 83.1 | 83.3 | 0.83 | 88.0 | 4.1 |
YOLOv8 | 84.9 | 83.3 | 0.84 | 88.9 | 8.1 |
YOLOv9 | 79.3 | 74.6 | 0.77 | 81.1 | 18.2 |
RT-DETR | 66.6 | 66.9 | 0.67 | 68.9 | 100.6 |
YOLOv8-Improved | 86.5 | 86.0 | 0.86 | 91.8 | 16.5 |
Tags | W | X | Y | Z | P (%) | R (%) | mAP50 (%) | mAP75 (%) | GFlops (G) | Params (M) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 84.9 | 83.3 | 88.9 | 56.9 | 8.1 | 3.01 | ||||
2 | √ | 84.0 | 85.7 | 90.1 | 58.7 | 12.2 | 2.92 | |||
3 | √ | √ | 85.6 | 85.9 | 90.7 | 59.2 | 12.2 | 2.92 | ||
4 | √ | √ | 85.3 | 86.8 | 91.4 | 59.1 | 16.5 | 2.18 | ||
5 | √ | √ | 84.0 | 86.4 | 90.3 | 59.2 | 12.2 | 2.92 | ||
6 | √ | √ | √ | √ | 86.5 | 86.0 | 91.8 | 61.6 | 16.5 | 2.18 |
Size | Weight | Precision (%) | Recall (%) | mAP50 (%) |
---|---|---|---|---|
5 | 0.3 | 85.2 | 85.5 | 90.1 |
5 | 0.5 | 86.5 | 86.0 | 91.8 |
5 | 0.7 | 84.3 | 87.3 | 90.7 |
5 | 1.0 | 84.7 | 87.3 | 91.0 |
3 | 0.5 | 83.3 | 87.4 | 90.3 |
7 | 0.5 | 84.8 | 84.8 | 90.5 |
States | Training | Validation | Test | Total |
---|---|---|---|---|
Growing | 2868 | 781 | 434 | 4063 |
Ripe | 1901 | 499 | 314 | 2714 |
Over-Ripe | 1608 | 411 | 259 | 2278 |
Harvested | 1991 | 579 | 325 | 2895 |
Model samples | 8368 | 2270 | 1332 | 11,970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shui, Y.; Yuan, K.; Wu, M.; Zhao, Z. Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8. Plants 2024, 13, 2808. https://doi.org/10.3390/plants13192808
Shui Y, Yuan K, Wu M, Zhao Z. Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8. Plants. 2024; 13(19):2808. https://doi.org/10.3390/plants13192808
Chicago/Turabian StyleShui, Yuanqing, Kai Yuan, Mengcheng Wu, and Zuoxi Zhao. 2024. "Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8" Plants 13, no. 19: 2808. https://doi.org/10.3390/plants13192808
APA StyleShui, Y., Yuan, K., Wu, M., & Zhao, Z. (2024). Improved Multi-Size, Multi-Target and 3D Position Detection Network for Flowering Chinese Cabbage Based on YOLOv8. Plants, 13(19), 2808. https://doi.org/10.3390/plants13192808