Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions
Abstract
:1. Introduction
2. Results
2.1. Dry Matter Partitioning and 13C-Photosynthates in Different Organs
2.2. Ci/Ca Ratio, Δ13C, and Փ
2.3. Respiration Rate and Apparent Quantum Efficiency (α)
2.4. Soil Water Content (SWC) and Chlorophyll Content
2.5. Soluble Protein, Rubisco Content, and Leaf Area Index (LAI)
2.6. Photosynthesis Light and CO2 Response Curve
2.7. Resource Use Efficiency and Barley Production
3. Discussion
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Soil Water Content
4.4. δ13C Isotope and Chlorophyll Content
4.5. Leakiness of Bundle-Sheath Cells of CO2 (Փ)
4.6. Photosynthetic CO2 and Light Response Curve
4.7. Leaf Area Index (LAI) and Resource Use Efficiency
4.8. Economic Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Xu, Y.; Ma, X.; Ahmad, I.; Kamran, M.; Dong, Z.; Cai, T.; Jia, Q.; Ren, X.; Zhang, P.; et al. Planting models and deficit irrigation strategies to improve wheat production and water use efficiency under simulated rainfall conditions. Front. Plant Sci. 2017, 8, 1408. [Google Scholar] [CrossRef]
- Guardia, G.; Cangani, M.T.; Sanz-Cobena, A.; Lucas Junior, J.; Vallejo, A. Management of pig manure to mitigate yield-scaled N2O losses in an irrigated Mediterranean crop. Agric. Ecosyst. Environ. 2017, 238, 55–66. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef]
- Pampino, P.; Pataleo, S.; Gerardi, C.; Mita, G.P.C. Drought stress response in wheat: Physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 2006, 29, 2143–2152. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Drury, C.F.; Wagner-Riddle, C. Improving fertilizer management in the US and Canada for N2O mitigation: Understanding potential positive and negative side-effects on corn yields. Agric. Ecosyst. Environ. 2016, 221, 214–221. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L.; Hu, X.T.; Cai, H.J.; Gu, B.J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Li, F.; Liang, J.; Kang, S.; Zhang, J. Benefits of alternate partial root zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization and soil water status in maize. Plant Soil 2007, 295, 279–291. [Google Scholar] [CrossRef]
- Migliorati, M.D.A.; Scheer, C.; Grace, P.R.; Rowlings, D.W.; Bell, M.; McGree, J. Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat–maize cropping system. Agric. Ecosyst. Environ. 2014, 186, 33–43. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, C.; Chen, X.; Li, Q.; Zhang, J.; Chen, F.; Yuan, L.; Mi, G. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crop Res. 2014, 159, 1–9. [Google Scholar] [CrossRef]
- Tian, F.Q.; Yang, P.J.; Hu, H.C.; Liu, H. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agric. Water Manag. 2017, 179, 110–121. [Google Scholar] [CrossRef]
- Yin, X.; Struik, P.C. C3 and C4 photosynthesis models: An overview from the perspective of crop modelling. NJAS Wagening. J. Life Sci. 2009, 57, 27–38. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Coetto, E.; Di Candillo, M.; Castelli, F.; Badeck, F.W.; Rizza, F.; Soave, C.; Volta, A.; Villani, G.; Marletto, V. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L.). Field Crops Res. 2013, 149, 159–166. [Google Scholar]
- Qiu, G.Y.; Wang, L.M.; He, X.H.; Zhang, X.Y.; Chen, S.Y.; Chen, J.; Yang, Y.H. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Lekakis, E.H.; Georgiou, P.E.; Pavlatou-Ve, A.; Antonopoulos, V.Z. Effects of fixed partial root-zone drying irrigation and soil texture on water and solute dynamics in calcareous soils and corn yield. Agric. Water Manag. 2011, 101, 71–80. [Google Scholar] [CrossRef]
- Sanchez-Martín, L.; Meijide, A.; Garcia-Torres, L.; Vallejo, A. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate. Agric. Ecosyst. Environ. 2010, 137, 99–107. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Chang. Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J. Plant Physiol. 2011, 168, 585–593. [Google Scholar] [CrossRef]
- Krömer, T.; Acebey, A.; Kluge, J.; Kessler, M. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora-Morphol. Distrib. Funct. Ecol. Plants 2013, 208, 197–210. [Google Scholar] [CrossRef]
- Burke, J.J. Identification of genetic diversity and mutations in higher plant acquired thermo-tolerance. Physiol. Plant. 2001, 112, 167–170. [Google Scholar] [CrossRef]
- Williams, D.G.; Gempko, V.; Fravolini, A.; Leavitt, S.W.; Wall, G.W.; Kimball, B.A.; Pinter, P.J., Jr.; LaMorte, R.; Ottman, M. Carbon isotope discrimination by Sorghum bicolor under CO2 enrichment and drought. New Phytol. 2001, 150, 285–293. [Google Scholar] [CrossRef]
- Saliendra, N.Z.; Meinzer, F.C.; Perry, M.; Thom, M. Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. J. Exp. Bot. 1996, 47, 907–914. [Google Scholar] [CrossRef]
- Hikosaka, K. Inter specific difference in the photosynthesis–nitrogen relationship: Patterns, physiological causes, and ecological importance. J. Plant Res. 2004, 117, 481–494. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Furbank, R.T. Modeling C4 photosynthesis. In C4 Plant Biology; Sage, R.F., Monson, R.K., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 173–211. [Google Scholar]
- Gilsanz, C.; Báez, D.; Misselbrook, T.H.; Dhanoa, M.S.; Cárdenas, L.M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 2016, 216, 1–8. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Janowiak, F.; Szczyrek, P.; Kaczanowska, K.; Ostrowska, A.; Rut, G.; Hura, T.; Rzepka, A.; Grzesiak, S. Impact of soil compaction stress combined with drought or water logging on physiological and biochemical markers in two maize hybrids. Acta Physiol. Plant. 2016, 38, 109–117. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Cano, F.J.; Sharwood, R.E.; Cousins, A.B.; Ghannoum, O. The role of leaf width and conductances to CO2 in determining water use efficiency in C4 grasses. New Phytol. 2019, 223, 1280–1295. [Google Scholar] [CrossRef]
- Leegood, R.C. Roles of the bundle sheath cells in leaves of C3 plants. J. Exp. Bot. 2008, 59, 1663–1673. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.; Jensen, C.R.; Liu, F. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J. Exp. Bot. 2012, 63, 1145–1153. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, J.; Yao, F.; Hao, C. Interactive Effects of Elevated CO2 Concentration and Irrigation on Photosynthetic Parameters and Yield of Maize in Northeast China. PLoS ONE 2014, 9, e98318. [Google Scholar] [CrossRef]
- Ye, Z.P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 2007, 45, 637–640. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Watling, J.R.; Press, M.C.; Quick, W.P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol. 2000, 123, 1143–1152. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Hadj, S.B.; Braham, M.; Lemeur, R.; VanLabeke, M. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Thomas, D.S.; Carl, J.B.; Graham, D.F.; Eric, L.S. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 2007, 30, 1035–1040. [Google Scholar]
- Wang, Y.; Janz, B.; Engedal, T.; Neergaard, A.D. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agric. Water Manag. 2017, 179, 271–276. [Google Scholar] [CrossRef]
- Galmes, J.; Conesa, M.A.; Diaz-Espejo, A.; Mir, A.; Perdomo, J.A.; Niinemets, U.; Flexas, J. Rubisco catalytic properties optimized for present and future climatic conditions. Plant Sci. 2014, 226, 61–70. [Google Scholar] [CrossRef]
- Zhou, H.; Akçay, E.; Helliker, B.R. Estimating C4 photosynthesis parameters by fitting intensive A/Ci curves. Photosynth. Res. 2019, 141, 181–194. [Google Scholar] [CrossRef]
- Bowman, W.D.; Hubick, K.T.; von Caemmerer, S.; Farquhar, G.D. Short-term changes in leaf carbon isotope discrimination in saltand water-stressed C4 grasses. Plant Physiol. 1989, 90, 162–166. [Google Scholar] [CrossRef]
- Zhao, X.F.; Wang, L.J.; Li, R.Q.; Li, Y.M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat. J. Triticeae Crops 2009, 29, 1004–1009, (In Chinese with English abstract). [Google Scholar]
- Skillman, J.B. Quantum yield variation across the three pathways of photosynthesis: Not yet out of the dark. J. Exp. Bot. 2008, 59, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Sigua, G.C.; Stone, K.C.; Bauer, P.J.; Szogi, A.A. Biomass and nitrogen use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agron. J. 2018, 110, 1119–1127. [Google Scholar] [CrossRef]
- Mae, T.; Makino, A.; Ohira, K. Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol. 1983, 24, 1079–1086. [Google Scholar]
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Ren, X.L.; Jia, Z.K.; Chen, X.L. Rainfall concentration for increasing corn production under semiarid climate. Agric. Water Manag. 2008, 95, 1293–1302. [Google Scholar] [CrossRef]
- Ye, Z.P.; Yu, Q. A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica 2008, 46, 637–640. [Google Scholar] [CrossRef]
- Shahnazari, A.; Ahmadi, S.H.; Laerke, P.E.; Liu, F.; Plauborg, F.; Jacobsen, S.E.; Jensen, C.R.; Andersen, M.N. Nitrogen dynamics in the soil–plant system under deficit and partial root-zone drying irrigation strategies in potatoes. Eur. J. Agron. 2008, 28, 65–73. [Google Scholar] [CrossRef]
- Ordóñez, R.A.; Savin, R.; Cossani, C.M.; Slafer, G.A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Res. 2015, 183, 184–203. [Google Scholar] [CrossRef]
- Elhefnawy, S.M.; Elsheery, N.I. Use of nanoparticles in improving photosynthesis in crop plants under stress. In Photosynthesis; Academic Press: San Diego, CA, USA, 2023; pp. 105–135. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Hoseiny, H.M.; Elsheery, N.I.; Kalaji, H.M.; de los Santos-Villalobos, S.; Wróbel, J.; Hassan, I.F.; Gaballah, M.S.; Abdelrhman, L.A.; Mira, A.M.; et al. 5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants. Plants 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Elsheery, N.I.; Elzaawely, A.A.; Strobel, M.; Kalaji, W.H. International Over expression of Jatropha’s Dehydrin Jcdhn-2 enhances tolerance to water stress in Rice plants. J. Biosci. 2018, 13, 53–60. Available online: https://www.researchgate.net/publication/332550808_Over_expression_of_Jatropha%27s_dehydrin_jcdhn-2_enhances_tolerance_to_water_stress_in_rice_plants (accessed on 3 December 2023).
- Helaly, M.N.; El-Hoseiny, H.; El-Sheery, N.I.; Rastogi, A.; Kalaji, H.M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 2017, 118, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Elsheery, N.I.; Cao, K.F. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol. Plant. 2008, 30, 769–777. [Google Scholar] [CrossRef]
Year | Treatment | Dry Matter (g plant−1) | ||||
---|---|---|---|---|---|---|
TS | RWS | JS | FS | MS | ||
2020–2021 | NI-HF | 0.45a | 1.41a | 5.26a | 7.51a | 10.45a |
NI-MF | 0.40b | 1.22b | 4.32b | 6.24b | 8.78b | |
NI-LF | 0.33c | 0.99c | 2.35d | 4.46d | 6.26d | |
UI-HF | 0.41b | 1.21b | 4.09b | 6.16b | 8.76b | |
UI-MF | 0.34c | 1.09c | 3.24c | 5.44c | 7.14c | |
UI-LF | 0.27d | 0.80d | 2.04d | 4.01d | 4.45e | |
TP | 0.26d | 0.68e | 1.52e | 3.81e | 4.32e | |
2021–2022 | NI-HF | 0.90a | 1.44a | 3.20a | 8.23a | 15.00a |
NI-MF | 0.89a | 1.23c | 2.27b | 5.32b | 12.54b | |
NI-LF | 0.70b | 0.99d | 1.99c | 4.14c | 8.31c | |
UI-HF | 0.75b | 1.33b | 2.80b | 5.81b | 11.53b | |
UI-MF | 0.57c | 1.14c | 2.15b | 4.58c | 10.16b | |
UI-LF | 0.46d | 0.96d | 1.55c | 3.66d | 5.45d | |
TP | 0.42d | 0.43e | 0.97d | 2.55e | 2.90e |
Year | Treatment | 13C-Photosynthate Distribution in Different Organs (%) | |||
---|---|---|---|---|---|
Stem | Leaves | Spike | Grain | ||
2020–2021 | NI-HF | 48.9a | 19.9a | 1.8a | 47.8a |
NI-MF | 43.1b | 19.6a | 1.0a | 42.2b | |
NI-LF | 38.3c | 19.2a | 1.0a | 39.0c | |
UI-HF | 42.9b | 19.7a | 1.5a | 44.6b | |
UI-MF | 40.7b | 19.5a | 1.2a | 41.0b | |
UI-LF | 37.4c | 19.8a | 1.4a | 36.6d | |
TP | 33.7d | 18.7b | 0.6b | 35.6d | |
2021–2022 | NI-HF | 54.5a | 24.0a | 1.9a | 47.3a |
NI-MF | 52.0b | 20.5b | 1.8a | 40.5b | |
NI-LF | 50.7c | 17.9c | 1.6a | 35.7d | |
UI-HF | 52.3b | 21.2b | 1.6a | 40.9b | |
UI-MF | 51.5b | 19.5c | 1.6a | 38.3c | |
UI-LF | 50.1c | 18.4c | 1.4a | 34.5d | |
TP | 49.4d | 15.2d | 1.4a | 31.0e |
Year | Treatment | Apparent Quantum Efficiency (α) | Respiration Rate (Rd, μmol m−2 s−1) | ||
---|---|---|---|---|---|
FS | GFS | FS | GFS | ||
2020–2021 | NI-HF | 0.053a | 0.047a | 3.40a | 3.70a |
NI-MF | 0.051a | 0.044b | 3.00a | 3.10a | |
NI-LF | 0.050b | 0.044b | 2.80b | 2.75b | |
UI-HF | 0.052a | 0.046a | 2.75b | 3.00a | |
UI-MF | 0.050b | 0.044b | 2.85b | 2.50b | |
UI-LF | 0.048b | 0.042b | 2.50b | 2.30b | |
TP | 0.046c | 0.040c | 2.30c | 1.90c | |
2021–2022 | NI-HF | 0.058a | 0.045a | 4.00a | 3.20a |
NI-MF | 0.052b | 0.040b | 3.60b | 2.80b | |
NI-LF | 0.047c | 0.040b | 3.05b | 2.45b | |
UI-HF | 0.053b | 0.043a | 3.35b | 2.85b | |
UI-MF | 0.050b | 0.040b | 3.20b | 2.50b | |
UI-LF | 0.047c | 0.038b | 2.70c | 2.65b | |
TP | 0.042d | 0.036c | 2.50c | 2.10c |
Year | Treatment | Grain Yield (t ha−1) | Total Chl ab (mg g−1) | WUE (kg mm−1 ha−1) | CSI (%) | NUE (%) |
---|---|---|---|---|---|---|
2020–2021 | NI-HF | 10.3a | 15.1a | 27.0a | 53.0c | 36.3a |
NI-MF | 9.3a | 14.6a | 25.3a | 54.8c | 30.5b | |
NI-LF | 6.5c | 11.7c | 18.7b | 68.4b | 21.7d | |
UI-HF | 8.6b | 13.7b | 20.9b | 58.4c | 29.3b | |
UI-MF | 7.3b | 13.1b | 18.9b | 61.1c | 26.0c | |
UI-LF | 5.3c | 10.1c | 13.8c | 79.2a | 15.7e | |
TP | 4.6d | 8.0d | 11.6c | - | - | |
2021–2022 | NI-HF | 9.9a | 13.9a | 30.0a | 49.6d | 44.0a |
NI-MF | 9.1a | 13.4a | 28.5a | 51.5c | 40.6b | |
NI-LF | 7.1c | 10.5b | 22.7b | 65.7b | 33.0c | |
UI-HF | 8.8b | 12.2b | 24.1b | 56.6c | 35.6c | |
UI-MF | 8.1b | 11.6b | 23.1b | 59.5c | 27.5d | |
UI-LF | 6.1d | 8.6c | 18.3c | 80.2a | 23.4e | |
TP | 4.3e | 6.9c | 11.6d | - | - |
Treatment | G.Y. | LC | PFC | MCC | SFC | IC | IV | OV | O/I | NI | NID |
---|---|---|---|---|---|---|---|---|---|---|---|
NI-HF | 10.1 | 2627 | 710 | 1450 | 1967 | 638 | 7392 | 24,288 | 3.29 | 16,897 | 11,932 |
NI-MF | 9.2 | 2627 | 710 | 1450 | 1967 | 479 | 7233 | 22,128 | 3.06 | 14,895 | 9930 |
NI-LF | 6.8 | 2627 | 710 | 1450 | 1967 | 319 | 7073 | 16,368 | 2.31 | 9295 | 4330 |
UI-HF | 8.7 | 2627 | 710 | 1450 | 1967 | 638 | 7392 | 20,928 | 2.83 | 13,537 | 8572 |
UI-MF | 7.7 | 2627 | 710 | 1450 | 1967 | 479 | 7233 | 18,528 | 2.56 | 11,295 | 6330 |
UI-LF | 5.7 | 2627 | 710 | 1450 | 1967 | 319 | 7073 | 13,728 | 1.94 | 6655 | 1690 |
TP | 4.5 | 2627 | 0 | 1169 | 1967 | 0 | 5763 | 10,728 | 1.86 | 4965 | - |
Year | pH (cm) | SOM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|
2020–2021 | 8.24 | 25.67 | 1.18 | 1.07 | 18.21 | 11.20 | 197.22 |
2021–2022 | 8.50 | 26.33 | 1.02 | 1.03 | 16.34 | 13.38 | 196.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, J.; Ren, C.; Niu, X.; Zhang, T.; Huo, K. Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions. Plants 2024, 13, 239. https://doi.org/10.3390/plants13020239
Xu Y, Liu J, Ren C, Niu X, Zhang T, Huo K. Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions. Plants. 2024; 13(2):239. https://doi.org/10.3390/plants13020239
Chicago/Turabian StyleXu, Yinping, Jianhua Liu, Cheng Ren, Xiaoxia Niu, Tinghong Zhang, and Kecang Huo. 2024. "Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions" Plants 13, no. 2: 239. https://doi.org/10.3390/plants13020239
APA StyleXu, Y., Liu, J., Ren, C., Niu, X., Zhang, T., & Huo, K. (2024). Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions. Plants, 13(2), 239. https://doi.org/10.3390/plants13020239