Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Biochar, Compost, and Their Mixtures on Soil Properties
2.2. Influence of Biochar, Compost, and Their Mixtures on PTE Mobility
2.3. Influence of Biochar, Compost, and Their Mixtures on Enzyme Activities and Biolog Community-Level Physiological Profile
2.4. Influence of Biochar, Compost, and Their Mixtures on Plant Growth
2.5. Influence of Biochar, Compost, and Their Mixtures on PTE Uptake by Rigid Ryegrass
2.6. Influence of Biochar, Compost, and Their Mixtures on PTE Bioaccumulation, Translocation, and Mineralomasses in Rigid Ryegrass
3. Materials and Methods
3.1. Soil Origin, Sampling, and Experimental Set-up
3.2. Soil Sample Characterization and Analytical Determinations
3.3. Enzyme Activities, Soil Basal Respiration, and Microbial Carbon
3.4. Community-Level Physiological Profile
3.5. Plant Growth Experiment and Plant Analysis
- -
- BAFR: ratio between the PTE concentration in roots and that present in soil;
- -
- BAFS: ratio between the PTE concentration in shoots and that present in soil;
- -
- TF: ratio between the PTE concentration in shoots and that present in roots;
- -
- MMR: root biomass × PTE concentration in roots;
- -
- MMS: shoot biomass × PTE concentration in shoots.
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; pp. 1–142. [Google Scholar]
- Garau, M.; Garau, G.; Diquattro, S.; Roggero, P.P.; Castaldi, P. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicol. Environ. Saf. 2019, 186, 109766. [Google Scholar] [CrossRef] [PubMed]
- Abou Jaoude, L.; Castaldi, P.; Nassif, N.; Pinna, M.V.; Garau, G. Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci. Total Environ. 2020, 711, 134511. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Cachada, A.; Rocha-Santos, T.A. Soil Pollution: From Monitoring to Remediation; Academic Press: London, UK, 2017; pp. 1–296. [Google Scholar]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2020, 64, 156–167. [Google Scholar]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef] [PubMed]
- Garau, M.; Castaldi, P.; Patteri, G.; Roggero, P.P.; Garau, G. Evaluation of Cynara cardunculus L. and municipal solid waste compost for aided phytoremediation of multi potentially toxic element–contaminated soils. Environ. Sci. Pollut. Res. 2021, 28, 3253–3265. [Google Scholar] [CrossRef]
- O’Connor, J.; Hoang, S.A.; Bradney, L.; Dutta, S.; Xiong, X.; Tsang, D.C.; Ramadas, K.; Vinu, A.; Kirkham, M.B.; Bolan, N.S. A review on the valorisation of food waste as a nutrient source and soil amendment. Environ. Pollut. 2021, 272, 115985. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.T.; Henry-des-Tureaux, T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Lima, J.Z.; Raimondi, I.M.; Schalch, V.; Rodrigues, V.G. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. J. Environ. Manag. 2018, 226, 386–399. [Google Scholar] [CrossRef]
- Milojković, J.; Pezo, L.; Stojanović, M.; Mihajlović, M.; Lopičić, Z.; Petrović, J.; Stanojević, M.; Kragović, M. Selected heavy metal biosorption by compost of Myriophyllum spicatum—A chemometric approach. Ecol. Eng. 2016, 93, 112–119. [Google Scholar] [CrossRef]
- Garau, G.; Porceddu, A.; Sanna, M.; Silvetti, M.; Castaldi, P. Municipal solid wastes as a resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Burges, A.; Fievet, V.; Oustriere, N.; Epelde, L.; Garbisu, C.; Becerril, J.M.; Mench, M. Long-term phytomanagement with compost and a sunflower–Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Sci. Total Environ. 2020, 700, 134529. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Hassan, S.H.; Chafik, Y.; Sena-Velez, M.; Lebrun, M.; Scippa, G.S.; Bourgerie, S.; Trupiano, D.; Morabito, D. Importance of Application Rates of Compost and Biochar on Soil Metal (Loid) Immobilization and Plant Growth. Plants 2023, 12, 2077. [Google Scholar] [CrossRef] [PubMed]
- Manzano, R.; Diquattro, S.; Roggero, P.P.; Pinna, M.V.; Garau, G.; Castaldi, P. Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements. Sci. Total Environ. 2020, 739, 139946. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Garau, M.; Sizmur, T.; Coole, S.; Castaldi, P.; Garau, G. Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. Sci. Total Environ. 2022, 806, 151255. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Chand, N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere 2022, 307, 135889. [Google Scholar] [CrossRef] [PubMed]
- Pinna, M.V.; Lauro, G.P.; Diquattro, S.; Garau, M.; Senette, C.; Castaldi, P.; Garau, G. Softwood-derived Biochar as a Green Material for the Recovery of Environmental Media Contaminated with Potentially Toxic Elements. Water Air Soil Pollut. 2022, 233, 152. [Google Scholar] [CrossRef]
- Li, H.; Ye, X.; Geng, Z.; Zhou, H.; Guo, X.; Zhang, Y.; Zhano, H.; Wang, G. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J. Hazard. Mater. 2016, 304, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.C.; Mu, J.E. Prospect of China’s renewable energy development from pyrolysis and biochar applications under climate change. Renew. Sust. Energ. Rev. 2019, 114, 109343. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, L.; Zhang, X.; Zhao, X.; Zhong, K.; Wang, S.; Zou, J.; Shen, Z.; Chen, Y. Earthworm activities weaken the immobilizing effect of biochar as amendment for metal polluted soils. Sci. Total Environ. 2019, 696, 133729. [Google Scholar] [CrossRef]
- Alling, V.; Hale, S.E.; Martinsen, V.; Mulder, J.; Smebye, A.; Breedveld, G.D.; Cornelissen, G. The role of biochar in retaining nutrients in amended tropical soils. J. Plant Nutr. Soil Sci. 2014, 177, 671–680. [Google Scholar] [CrossRef]
- Egene, C.E.; Van Poucke, R.; Ok, Y.S.; Meers, E.; Tack, F.M.G. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Sci. Total Environ. 2018, 626, 195–202. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Quian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Aminiyan, M.M.; Rahman, M.M.; Rodríguez-Seijo, A.; Hajiali Begloo, R.; Cheraghi, M.; Aminiyan, F.M. Elucidating of potentially toxic elements contamination in topsoils around a copper smelter: Spatial distribution, partitioning and risk estimation. Environ. Geochem. Health 2022, 44, 1795–1811. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L.J.E.I. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Wu, H.; Liang, J.; Guo, S.; Huang, L.; Xu, P.; Liu, Y.; He, Y.; He, Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015, 5, 34541–34548. [Google Scholar] [CrossRef]
- Diquattro, S.; Garau, G.; Lauro, G.P.; Silvetti, M.; Deiana, S.; Castaldi, P. Municipal solid waste compost as a novel sorbent for antimony (V): Adsorption and release trials at acidic pH. Environ. Sci. Pollut. Res. 2018, 25, 5603–5615. [Google Scholar] [CrossRef]
- Mitsunobu, S.; Harada, T.; Takahashi, Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 2006, 40, 7270–7276. [Google Scholar] [CrossRef] [PubMed]
- Garau, G.; Silvetti, M.; Vasileiadis, S.; Donner, E.; Diquattro, S.; Deiana, S.; Lombi, E.; Castaldi, P. Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal(loid)s. Soil Biol. Biochem. 2017, 111, 25–35. [Google Scholar] [CrossRef]
- Hale, B.; Evans, L.; Lambert, R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils. J. Hazard. Mater. 2012, 199, 119–127. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Kaurin, A.; Cernilogar, Z.; Lestan, D. Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. Chemosphere 2018, 193, 726–736. [Google Scholar] [CrossRef]
- Ali, A.; Shaheen, S.M.; Guo, D.; Li, Y.; Xiao, R.; Wahid, F.; Azeem, M.; Sohail, K.; Zhang, T.; Rinkleble, J.; et al. Apricot shell-and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environ. Pollut. 2020, 264, 114773. [Google Scholar] [CrossRef]
- Khan, M.N.; Huang, J.; Li, D.; Daba, N.A.; Han, T.; Du, J.; Qaswar, M.; Anthonio, C.K.; Sial, T.A.; Haseeb, A.; et al. Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environ. Res. 2022, 203, 111879. [Google Scholar] [CrossRef] [PubMed]
- Garau, M.; Castaldi, P.; Pinna, M.V.; Diquattro, S.; Cesarani, A.; Mangia, N.P.; Vasileiadis, S.; Garau, G. Sustainable Restoration of Soil Functionality in PTE-Affected Environments: Biochar Impact on Soil Chemistry, Microbiology, Biochemistry, and Plant Growth. Soil Syst. 2023, 7, 96. [Google Scholar] [CrossRef]
- Pardo, T.; Clemente, R.; Epelde, L.; Garbisu, C.; Bernal, M.P. Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. J. Hazard. Mater. 2014, 268, 68–76. [Google Scholar] [CrossRef]
- Guo, D.; Ren, C.; Ali, A.; Li, R.; Du, J.; Liu, X.; Guan, W.; Zhang, Z. Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil. Ecotoxicol. Environ. Saf. 2019, 181, 312–320. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, J.C. Biochar activation with exoenzymes induced by earthworms: A novel functional strategy for soil quality promotion. J. Hazard. Mater. 2018, 350, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.J.; Fogle, E.J.; Cotrufo, M.F. Sorption to biochar impacts β-glucosidase and phosphatase enzyme activities. Agriculture 2018, 8, 158. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, S.; Kang, Y.; Feng, H. Urease activity and its relationships to soil physiochemical properties in a highly saline-sodic soil. J. Soil Sci. Plant Nutr. 2014, 14, 304–315. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Damon, P.; Rengel, Z. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil. PLoS ONE 2017, 12, e0185395. [Google Scholar] [CrossRef]
- De Conti, L.; Cesco, S.; Mimmo, T.; Pii, Y.; Valentinuzzi, F.; Melo, G.W.; Ceretta, C.A.; Trentin, E.; Marques, A.C.R.; Brunetto, G. Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere 2020, 243, 125298. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Ji, Y.; Sarret, G.; Schulin, R.; Tandy, S. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environ. Pollut. 2017, 231, 1322–1329. [Google Scholar] [CrossRef]
- Ji, Y.; Mestrot, A.; Schulin, R.; Tandy, S. Uptake and transformation of methylated and inorganic antimony in plants. Front. Plant Sci. 2018, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Bidar, G.; Garçon, G.; Pruvot, C.; Dewaele, D.; Cazier, F.; Douay, F.; Shirali, P. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environ. Pollut. 2007, 147, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, T.; Lequeue, G.; Lobet, G.; Godin, B.; Bielders, C.L.; Lutts, S. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: Implications for phytostabilization. Plant Soil 2014, 376, 229–244. [Google Scholar] [CrossRef]
- Rees, F.; Sterckeman, T.; Morel, J.L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 2016, 142, 48–55. [Google Scholar] [CrossRef]
- Garau, M.; Castaldi, P.; Diquattro, S.; Pinna, M.V.; Senette, C.; Roggero, P.P.; Garau, G. Combining grass and legume species with compost for assisted phytostabilization of contaminated soils. Environ. Technol. Innov. 2021, 22, 101387. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, M.Z.; Cydzik-Kwiatkowska, A.; Blazejczyk, A.; Kumar, V.; Kintl, A.; Brtnicky, M. Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze–Thaw Cycles. Materials 2022, 15, 3801. [Google Scholar] [CrossRef]
- Hagner, M.; Uusitalo, M.; Ruhanen, H.; Heiskanen, J.; Peltola, R.; Tiilikkala, K.; Hyvönen, J.; Sarala, P.; Mäkitalo, K. Amending mine tailing cover with compost and biochar: Effects on vegetation establishment and metal bioaccumulation in the Finnish subarctic. Environ. Sci. Pollut. Res. 2021, 28, 59881–59898. [Google Scholar] [CrossRef]
- Kovács-Bokor, É.; Domokos, E.; Biró, B. Toxic metal phytoextraction potential and health-risk parameters of some cultivated plants when grown in metal-contaminated river sediment of Danube, near an industrial town. Environ. Geochem. Health 2021, 43, 2317–2330. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, N.; Geng, Y.; Zhou, J.; Lei, J. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). RSC Adv. 2019, 9, 20603–20611. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Vymazal, J. Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. J. Geochem. Explor. 2017, 181, 22–30. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef]
- Cidu, R.; Biddau, R.; Dore, E.; Vacca, A.; Marini, L. Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Sci. Total Environ. 2014, 497, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Gazzetta Ufficiale della Repubblica Italiana n. 84 del 10 Aprile 2002, 2002. Metodi Ufficiali di Analisi Chimica dei Suoli. DM 11 Maggio 1992, Suppl. G.U. 121, 25 Maggio 1992. Official Gazette of the Italian Republic No 84 of 10 April 2002, 2002. Official Methods of Chemical Analysis of Soils. Available online: https://www.gazzettaufficiale.it/eli/gu/1992/05/25/121/so/79/sg/pdf (accessed on 7 January 2024).
- Gazzetta Ufficiale, 2006. Norme in Materia Ambientale. Decreto Legislativo 3 Aprile 2006, n. 152, 2006, Official Gazette of the Italian Republic. Environmental Regulations. Legislative Decree No. 152 of 3 April 2006. 2006. Available online: https://www.gazzettaufficiale.it/eli/gu/2006/04/14/88/so/96/sg/pdf (accessed on 7 January 2024).
- Basta, N.; Gradwohl, R. Estimation of Cd, Pb, and Zn bioavailability in smelter–contaminated soils by a sequential extraction procedure. J. Soil. Contam. 2000, 9, 149–164. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995. [Google Scholar]
- Marabottini, R.; Stazi, S.R.; Papp, R.; Grego, S.; Moscatelli, M.C. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol. Environ. Saf. 2013, 96, 147–153. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. J. Soils Sediments 2018, 18, 2188–2202. [Google Scholar] [CrossRef]
U | B | C | B50/C50 | B75/C25 | B25/C75 | |
---|---|---|---|---|---|---|
pH | 7.61 ± 0.04 a | 7.90 ± 0.03 e | 7.68 ± 0.02 b | 7.78 ± 0.01 c | 7.86 ± 0.01 d | 7.81 ± 0.02 c |
EC (mS cm−1) | 2.37 ± 0.01 b | 2.30 ± 0.02 a | 2.99 ± 0.04 f | 2.62 ± 0.03 d | 2.47 ± 0.01 c | 2.85 ± 0.02 e |
Total organic matter (%) | 6.43 ± 0.17 a | 10.64 ± 0.22 d | 6.93 ± 0.14 b | 8.77 ± 0.21 c | 9.50 ± 0.70 c | 7.24 ± 0.09 b |
Total N (%) | 0.26 ± 0.02 a | 0.29 ± 0.01 ab | 0.33 ± 0.03 b | 0.30 ± 0.01 b | 0.29 ± 0.01 ab | 0.32 ± 0.03 b |
TOC (%) | 3.73 ± 0.10 a | 6.17 ± 0.13 d | 4.02 ± 0.09 b | 5.09 ± 0.21 c | 5.51 ± 0.24 c | 4.20 ± 0.10 b |
DOC (mg·g−1) | 0.03 ± 0.00 b | 0.02 ± 0.00 a | 0.20 ± 0.01 e | 0.07 ± 0.00 c | 0.04 ± 0.00 b | 0.15 ± 0.01 d |
Extractable P (mg·kg−1) | 5.09 ± 0.23 a | 5.20 ± 0.22 a | 17.23 ± 0.56 e | 12.24 ± 0.42 c | 9.65 ± 0.23 b | 15.36 ± 0.53 d |
CEC (cmol(+)·kg−1) | 16.05 ± 0.06 a | 14.86 ± 0.09 a | 17.69 ± 0.03 c | 16.98 ± 0.11 b | 15.93 ± 0.07 a | 17.38 ± 0.05 c |
Exchangeable Na (cmol(+)·kg−1) | 0.06 ± 0.01 a | 0.10 ± 0.02 b | 0.47 ± 0.00 f | 0.27 ± 0.02 d | 0.16 ± 0.01 c | 0.33 ± 0.01 e |
Exchangeable K (cmol(+)·kg−1) | 0.12 ± 0.01 b | 0.03 ± 0.00 a | 0.42 ± 0.04 d | 0.24 ± 0.01 c | 0.12 ± 0.02 b | 0.26 ± 0.02 c |
Exchangeable Ca (cmol(+)·kg−1) | 14.81 ± 0.10 b | 14.15 ± 0.21 a | 16.29 ± 0.38 d | 15.73 ± 0.44 c | 14.73 ± 0.23 b | 16.00 ± 0.11 cd |
Exchangeable Mg (cmol(+)·kg−1) | 0.23 ± 0.03 a | 0.29 ± 0.02 b | 0.49 ± 0.02 d | 0.39 ± 0.00 c | 0.37 ± 0.05 c | 0.41 ± 0.00 c |
Total PTEs (mg·kg−1) | ||||||
Cd | 11.91 ± 1.33 | |||||
Cr | 47.12 ± 1.99 | |||||
Cu | 136.18 ± 4.74 | |||||
Ni | 122.02 ± 9.56 | |||||
Pb | 402.96 ± 6.34 | |||||
Sb | 2362 ± 26 b | 2080 ± 23 a | 2070 ± 12 a | 2072 ± 19 a | 2068 ± 129 a | 2089 ± 21 a |
Zn | 2801 ± 224 a | 2791 ± 51 a | 2801 ± 174 a | 2822 ± 106 a | 2782 ± 208 a | 2818 ± 83 a |
U | B | C | B50/C50 | B75/C25 | B25/C75 | ||
---|---|---|---|---|---|---|---|
BAFR | Sb | 0.18±0.01 c | 0.06 ± 0.01 a | 0.09 ± 0.01 b | 0.08 ± 0.01 b | 0.08 ± 0.01 b | 0.09 ± 0.01 b |
Zn | 0.27 ± 0.00 a | 0.28 ± 0.00 a | 0.34 ± 0.00 c | 0.33 ± 0.01 bc | 0.32 ± 0.01 b | 0.28 ± 0.01 a | |
BAFs | Sb | 0.27 ± 0.00 d | 0.09 ± 0.00 a | 0.22 ± 0.03 c | 0.18 ± 0.02 b | 0.18 ± 0.00 b | 0.18 ± 0.00 b |
Zn | 0.10 ± 0.00 d | 0.06 ± 0.00 b | 0.06 ± 0.00 b | 0.05 ± 0.00 a | 0.06 ± 0.00 b | 0.07 ± 0.00 c | |
TF | Sb | 1.50 ± 0.05 a | 1.63 ± 0.07 b | 2.38 ± 0.16 d | 2.24 ± 0.15 d | 2.26 ± 0.03 d | 2.03 ± 0.02 c |
Zn | 0.36 ± 0.06 c | 0.21 ± 0.03 ab | 0.19 ± 0.04 a | 0.16 ± 0.03 a | 0.20 ± 0.03 a | 0.25 ± 0.02 b | |
MMR | Sb | 5.98 ± 0.04 a | 7.13 ± 0.05 b | 9.89 ± 0.03 f | 9.36 ± 0.05 e | 8.35 ± 0.06 c | 8.93 ± 0.05 d |
Zn | 10.77 ± 0.02 a | 42.50 ± 0.05 d | 43.68 ± 0.03 e | 44.92 ± 0.03 f | 39.67 ± 0.04 c | 33.88 ± 0.03 b | |
MMs | Sb | 21.81 ± 0.06 b | 21.41 ± 0.08 a | 37.61 ± 0.36 d | 32.52 ± 0.53 c | 47.82 ± 0.07 f | 41.39 ± 0.06 e |
Zn | 9.35 ± 0.03 a | 16.44 ± 0.03 d | 13.09 ± 0.06 c | 11.09 ± 0.13 b | 20.30 ± 0.04 f | 19.46 ± 0.03 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garau, M.; Pinna, M.V.; Nieddu, M.; Castaldi, P.; Garau, G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. Plants 2024, 13, 284. https://doi.org/10.3390/plants13020284
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. Plants. 2024; 13(2):284. https://doi.org/10.3390/plants13020284
Chicago/Turabian StyleGarau, Matteo, Maria Vittoria Pinna, Maria Nieddu, Paola Castaldi, and Giovanni Garau. 2024. "Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements" Plants 13, no. 2: 284. https://doi.org/10.3390/plants13020284
APA StyleGarau, M., Pinna, M. V., Nieddu, M., Castaldi, P., & Garau, G. (2024). Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. Plants, 13(2), 284. https://doi.org/10.3390/plants13020284