Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius
Abstract
:1. Introduction
2. Results
2.1. Morphological Ginseng Parameters
2.2. Phenotypic Correlations
2.3. Genetic Relatedness of the P. quinquefolius Samples
2.4. Genetic Relatedness Compared to Phenotypic Parameters
3. Discussion
4. Materials and Methods
4.1. Plant Material and Measurements
4.2. Phylogeny
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.K.; Tabassum, N.; Uddin, M.R.; Park, S.U. Ginseng: A miracle sources of herbal and pharmacological uses. Orient. Pharm. Exp. Med. 2016, 16, 243–250. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Persons, W.S. American Ginseng: Green Gold; Bright Mountain Books: Asheville, NC, USA, 1986. [Google Scholar]
- Westerveld, S. Ginseng Production in Ontario; Queen’s Printer for Ontario: Toronto, ON, Canada, 2010. [Google Scholar]
- Kaberi, K.M. The Analysis of Ginsenosides in Ginseng Garden Soil. Doctoral Dissertation, The University of Western Ontario, London, ON, Canada, 2021. [Google Scholar]
- Goodwin, P.H.; Proctor, E. Molecular techniques to assess genetic variation within and between Panax ginseng and Panax quinquefolius. Fitoterapia 2019, 138, 104343. [Google Scholar] [CrossRef] [PubMed]
- Westerveld, S.M.; Shi, F. The history, etiology, and management of ginseng replant disease: A Canadian perspective in review. Can. J. Plant Sci. 2021, 101, 886–901. [Google Scholar] [CrossRef]
- Proctor, J.T.A.; Bailey, W.G. Ginseng: Industry, botany, and culture. Hortic. Rev. 1987, 9, 187–236. [Google Scholar]
- Yuk, J.; McIntyre, K.L.; Fischer, C.; Hicks, J.; Colson, K.L.; Lui, E.; Arnason, J.T. Distinguishing Ontario ginseng landraces and ginseng species using NMR-based metabolomics. Anal. Bioanal. Chem. 2013, 405, 4499–4509. [Google Scholar] [CrossRef]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef]
- Mooney, E.H.; McGraw, J.B. Relationship between age, size, and reproduction in populations of American ginseng, Panax quinquefolius (Araliaceae), across a range of harvest pressures. Ecoscience 2009, 16, 84–94. [Google Scholar] [CrossRef]
- Carpenter, S.G.; Cottam, G. Growth and reproduction of American ginseng (Panax quinquefolius) in Wisconsin, USA. Can. J. Bot. 1982, 60, 2692–2696. [Google Scholar] [CrossRef]
- [OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs. Guide to Ginseng Production; Publication 848; Queen’s Printer for Ontario: Toronto, ON, Canada, 2015. [Google Scholar]
- Harrison, H.C.; Parke, J.L.; Oelke, E.A.; Kaminski, A.R.; Hudelson, B.D.; Martin, L.J.; Kelling, K.A.; Binning, L.K. Ginseng. Corn Agronomy. Available online: http://corn.agronomy.wisc.edu/Crops/Ginseng.aspx (accessed on 1 November 2023).
- Zhang, Y.X.; Niu, Y.Q.; Wang, X.F.; Wang, Z.H.; Wang, M.L.; Yang, J.; Li, L.F. Phenotypic and transcriptomic responses of the shade-grown species Panax ginseng to variable light conditions. Ann. Bot. 2022, 130, 749–762. [Google Scholar] [CrossRef]
- Wang, S.; Liang, W.; Yao, L.; Wang, J.; Gao, W. Effect of temperature on morphology, ginsenosides biosynthesis, functional genes, and transcriptional factors expression in Panax ginseng adventitious roots. J. Food Biochem. 2019, 43, e12794. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Sun, D.; Chen, L.; You, F.M.; Wang, J.; Peng, Y.; Peng, J. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int. J. Mol. Sci. 2013, 14, 7061–7088. [Google Scholar] [CrossRef] [PubMed]
- Jo, I.H.; Bang, K.H.; Kim, Y.C.; Lee, J.W.; Seo, A.Y.; Seong, B.J.; Kim, H.S. Rapid identification of ginseng cultivars (Panax ginseng Meyer) using novel SNP-based probes. J. Ginseng Res. 2011, 35, 504. [Google Scholar] [CrossRef] [PubMed]
- Li, M.R.; Wang, X.F.; Zhang, C.; Wang, H.Y.; Shi, F.X.; Xiao, H.X.; Li, L.F. A simple strategy for development of single nucleotide polymorphisms from non-model species and its application in Panax. Int. J. Mol. Sci. 2013, 14, 24581–24591. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.C.; Grohs, R.; Reeleder, R.D. A method for the classification by shape of dried roots of ginseng (Panax quinquefolius L.). Can. J. Plant Sci. 2003, 83, 955–958. [Google Scholar] [CrossRef]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP markers and their impact on plant breeding. Int. J. Plant Genom. 2012, 2012, 728398. [Google Scholar] [CrossRef] [PubMed]
- Morgil, H.; Can Gercek, Y.; Tulum, I. Single nucleotide polymorphisms (SNPs) in plant genetics and breeding. In The Recent Topics in Genetic Polymorphisms; Caliskan, M., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Díaz, B.; Zucchi, M.; Alves-Pereira, A.; de Almeida, C.; Moraes, A.; Vianna, S.; Azevedo-Filho, J.; Colombo, C. Whole-Genome SNP analysis elucidates the genetic population structure and diversity of Acrocomia species. bioRxiv 2020. [Google Scholar] [CrossRef]
- Batley, J.; Edwards, D. SNP Applications in Plants. Association Mapping in Plants; Springer: Berlin/Heidelberg, Germany, 2007; pp. 95–102. [Google Scholar]
- Rajendran, V.; Kalita, P.; Shukla, H.; Kumar, A.; Tripathi, T. Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int. J. Biol. Macromol. 2018, 111, 400–414. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Hao, Y.Y.; Wang, Y.H.; Wang, C.M.; Wang, Y.L.; Long, W.H.; Wan, J.M. Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. Plant Cell Rep. 2017, 36, 1053–1064. [Google Scholar] [CrossRef]
- McGraw, J.B.; Lubbers, A.E.; Van der Voort, M.; Mooney, E.H.; Furedi, M.A.; Souther, S.; Chandler, J. Ecology and conservation of ginseng (Panax quinquefolius) in a changing world. Ann. N. Y. Acad. Sci. 2013, 1286, 62–91. [Google Scholar] [CrossRef]
- Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C.; Wang, Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020, 25, 2635. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S. Effect of seeding depth and of soil texture on seeding emergence and root shape of American ginseng. J. Ginseng Res. 1997, 21, 115–118. [Google Scholar]
- Burkhart, E.P.; Nilson, S.E.; Pugh, C.V.; Zuiderveen, G.H. Neither wild nor cultivated: American ginseng (Panax quinquefolius L.) seller surveys provide insights into in situ planting and husbandry. Econ. Bot. 2021, 75, 126–143. [Google Scholar] [CrossRef]
- Bai, D.; Brandle, J.; Reeleder, R. Genetic diversity in North American ginseng (Panax quinquefolius L.) grown in Ontario detected by RAPD analysis. Genome 1997, 40, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Schluter, C.; Punja, Z.K. Genetic diversity among natural and cultivated field populations and seed lots of American ginseng (Panax quinquefolius L.) in Canada. Int. J. Plant Sci. 2002, 163, 427–439. [Google Scholar] [CrossRef]
- Lim, W.; Mudge, K.W.; Weston, L.A. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med. 2007, 73, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Obae, S.G.; West, T.P. Effects of anthropogenic activities on genetic diversity and population structure of American ginseng (Panax quinquefolius L.) growing in West Virginia. J. Hortic. For. 2011, 3, 270–281. [Google Scholar]
- Schlag, E.M.; McIntosh, M.S. The relationship between genetic and chemotypic diversity in American ginseng (Panax quinquefolius L.). Phytochemistry 2013, 93, 96–104. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Index of Official Visual Aids. 2017. Available online: https://www.ams.usda.gov/sites/default/files/media/Official%20Inventory%20of%20FV%20Inspection%20Aids.pdf (accessed on 1 November 2023).
- Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
Group No. | No. of Samples | Pencil | Chunk | Forked | Spider |
---|---|---|---|---|---|
1 | 3 | 0.33% | 33.33% | 33.33% | 0.00% |
2 | 14 | 0.27% | 20.00% | 40.00% | 13.33% |
3 | 6 | 0.33% | 0.00% | 16.67% | 50.00% |
4 | 19 | 0.38% | 12.50% | 37.50% | 12.50% |
5 | 7 | 0.40% | 20.00% | 40.00% | 0.00% |
6 | 4 | 0.25% | 50.00% | 25.00% | 0.00% |
7 | 5 | 0.57% | 0.00% | 28.57% | 14.29% |
8 | 6 | 0.38% | 12.50% | 37.50% | 12.50% |
9 | 15 | 0.52% | 13.04% | 17.39% | 17.39% |
10 | 3 | 0.67% | 0.00% | 33.33% | 0.00% |
11 | 12 | 0.46% | 15.38% | 15.38% | 23.08% |
12 | 2 | 0.00% | 50.00% | 50.00% | 0.00% |
13 | 11 | 0.46% | 15.38% | 30.77% | 7.69% |
14 | 6 | 0.20% | 20.00% | 20.00% | 40.00% |
15 | 4 | 0.50% | 0.00% | 50.00% | 0.00% |
16 | 5 | 0.83% | 0.00% | 16.67% | 0.00% |
17 | 5 | 0.40% | 0.00% | 20.00% | 40.00% |
18 | 6 | 0.22% | 11.11% | 44.44% | 22.22% |
19 | 4 | 0.80% | 0.00% | 20.00% | 0.00% |
20 | 4 | 0.60% | 20.00% | 0.00% | 20.00% |
21 | 14 | 0.54% | 7.69% | 23.08% | 15.38% |
22 | 7 | 0.43% | 14.29% | 28.57% | 14.29% |
Group No. | Leaf Fresh Weight (g) | Leaf Dry Weight (g) | Leaflets per Plant | Leaflets per Leaf |
---|---|---|---|---|
1 | 6.07 AB a | 1.53 AB | 12.00 AB | 4.50 A |
2 | 6.36 AB | 1.58 AB | 13.29 AB | 4.55 AB |
3 | 5.36 AB | 1.41 AB | 11.00 B | 4.05 B |
4 | 5.59 AB | 1.45 AB | 14.00 AB | 4.29 AB |
5 | 6.88 AB | 1.67 AB | 12.57 AB | 4.34 AB |
6 | 5.75 AB | 1.48 AB | 13.50 AB | 4.59 A |
7 | 7.25 A | 1.74 A | 14.00 AB | 4.65 A |
8 | 5.17 AB | 1.38 AB | 14.67 AB | 4.44 AB |
9 | 5.19 AB | 1.38 AB | 13.73 AB | 4.36 AB |
10 | 5.11 AB | 1.37 AB | 12.33 AB | 4.60 A |
11 | 6.90 AB | 1.68 AB | 15.25 A | 4.43 AB |
12 | 6.13 AB | 1.55 AB | 14.00 AB | 4.67 A |
13 | 5.80 AB | 1.49 AB | 13.91 AB | 4.41 AB |
14 | 5.04 AB | 1.36 AB | 13.83 AB | 4.39 AB |
15 | 4.97 AB | 1.34 AB | 14.00 AB | 4.37 AB |
16 | 5.39 AB | 1.41 AB | 13.20 AB | 4.61 A |
17 | 5.91 AB | 1.51 AB | 13.60 AB | 4.53 AB |
18 | 5.48 AB | 1.42 AB | 14.50 AB | 4.75 A |
19 | 4.43 AB | 1.25 AB | 14.00 AB | 4.67 A |
20 | 5.12 AB | 1.37 AB | 14.50 AB | 4.85 A |
21 | 5.97 AB | 1.52 AB | 13.29 AB | 4.51 AB |
22 | 4.26 B | 1.22 B | 12.86 AB | 4.39 AB |
Group No. | Leaf Petiole Fresh Weight (g) | Stem Length (cm) | Stem Fresh Weight (g) | Stem Dry Weight (g) |
---|---|---|---|---|
1 | 2.00 AB a | 30.50 ABCD | 5.76 AB | 0.81 AB |
2 | 1.81 AB | 31.31 ABCD | 5.00 AB | 0.76 AB |
3 | 1.55 AB | 30.82 ABCD | 4.98 AB | 0.69 AB |
4 | 1.77 AB | 31.15 ABCD | 5.60 AB | 0.76 AB |
5 | 2.31 A | 31.29 ABCD | 5.82 AB | 0.86 AB |
6 | 1.82 AB | 28.80 BCD | 4.10 B | 0.57 B |
7 | 2.16 AB | 35.66 A | 7.02 A | 1.04 A |
8 | 1.67 AB | 28.52 BCD | 3.90 B | 0.56 B |
9 | 1.64 AB | 28.33 BCD | 4.32 B | 0.66 AB |
10 | 1.27 AB | 27.60 CD | 4.22 B | 0.56 B |
11 | 2.12 AB | 32.78 ABC | 5.51 AB | 0.84 AB |
12 | 1.97 AB | 33.85 AB | 4.96 AB | 0.67 AB |
13 | 1.57 AB | 28.62 BCD | 4.46 B | 0.57 B |
14 | 1.42 AB | 29.80 BCD | 3.73 B | 0.49 B |
15 | 1.73 AB | 29.05 BCD | 4.07 B | 0.57 B |
16 | 1.42 AB | 28.36 BCD | 4.42 B | 0.59 B |
17 | 1.55 AB | 30.26 ABCD | 4.77 AB | 0.68 AB |
18 | 1.49 AB | 28.20 BCD | 4.50 B | 0.65 AB |
19 | 1.23 B | 26.63 D | 3.63 B | 0.58 B |
20 | 1.61 AB | 32.25 ABCD | 4.68 AB | 0.62 B |
21 | 1.67 AB | 29.21 BCD | 4.34 B | 0.65 AB |
22 | 1.44 AB | 29.00 BCD | 3.94 B | 0.51 B |
Group No. | Seed Petiole Length (cm) | Seed Petiole Fresh Weight (g) | Seed petiole Dry Weight (g) | Seed Petiolules per Plant |
---|---|---|---|---|
1 | 13.43 A a | 0.67 AB | 0.16 AB | 49.00 AB |
2 | 9.13 ABC | 0.44 ABC | 0.12 AB | 40.36 ABCD |
3 | 9.80 ABC | 0.58 ABC | 0.14 AB | 40.33 ABCD |
4 | 10.58 ABC | 0.51 ABC | 0.13 AB | 54.42 A |
5 | 12.76 AB | 0.67 AB | 0.16 AB | 36.71 ABCD |
6 | 11.30 AB | 0.47 ABC | 0.11 AB | 44.50 ABC |
7 | 12.70 AB | 0.73 A | 0.20 A | 56.60 A |
8 | 8.15 BC | 0.32 BC | 0.08 B | 34.50 ABCD |
9 | 9.65 ABC | 0.39 ABC | 0.10 AB | 36.40 ABCD |
10 | 10.67 ABC | 0.38 ABC | 0.10 AB | 44.67 ABC |
11 | 12.74 AB | 0.60 ABC | 0.16 AB | 49.58 AB |
12 | 10.70 ABC | 0.32 BC | 0.08 B | 17.00 D |
13 | 9.66 ABC | 0.44 ABC | 0.12 AB | 37.36 ABCD |
14 | 10.08 ABC | 0.39 ABC | 0.09 B | 40.33 ABCD |
15 | 11.88 AB | 0.53 ABC | 0.12 AB | 52.75 A |
16 | 11.26 AB | 0.42 ABC | 0.10 B | 40.60 ABC |
17 | 10.94 ABC | 0.61 ABC | 0.16 AB | 55.40 A |
18 | 10.10 ABC | 0.51 ABC | 0.12 AB | 52.67 A |
19 | 8.825 ABC | 0.47 ABC | 0.11 AB | 57.25 A |
20 | 6.30 C | 0.27 C | 0.07 B | 25.50 CD |
21 | 10.55 ABC | 0.45 ABC | 0.12 AB | 43.86 ABC |
22 | 11.27 AB | 0.25 C | 0.06 B | 27.29 BCD |
Group No. | Red Seeds per Plant | Green Seeds per Plant | Total Seeds per Plant | Seed Fresh Weight (g) | Seed Dry Weight (g) |
---|---|---|---|---|---|
1 | 6.67 AB a | 4.67 C | 11.33 BCD | 1.24 BC | 0.33 ABC |
2 | 3.36 AB | 13.21 ABC | 16.57 ABCD | 2.43 ABC | 0.56 ABC |
3 | 8.33 AB | 18.17 ABC | 26.50 ABC | 3.77 A | 0.77 A |
4 | 11.37 A | 17.37 ABC | 28.74 AB | 2.55 ABC | 0.55 ABC |
5 | 5.86 AB | 14.71 ABC | 20.57 ABCD | 3.28 AB | 0.61 AB |
6 | 1.75 B | 9.25 C | 11.00 BCD | 1.46 ABC | 0.26 ABC |
7 | 6.80 AB | 11.80 BC | 18.60 ABCD | 2.23 ABC | 0.39 ABC |
8 | 2.67 AB | 8.17 C | 10.83 CD | 1.43 ABC | 0.31 ABC |
9 | 5.20 AB | 15.47 ABC | 20.67 ABCD | 2.25 ABC | 0.45 ABC |
10 | 0.00 B | 7.33 C | 7.33 D | 0.23 C | 0.04 C |
11 | 6.58 AB | 10.67 C | 17.25 ABCD | 1.84 ABC | 0.40 ABC |
12 | 8.00 AB | 5.00 C | 13.00 BCD | 1.87 ABC | 0.31 ABC |
13 | 6.18 AB | 12.18 ABC | 18.36 ABCD | 1.67 ABC | 0.33 ABC |
14 | 4.00 AB | 11.50 C | 15.50 ABCD | 1.56 ABC | 0.34 ABC |
15 | 1.75 B | 26.75 A | 28.50 ABC | 1.79 ABC | 0.39 ABC |
16 | 5.80 AB | 12.80 ABC | 18.60 ABCD | 1.41 ABC | 0.25 ABC |
17 | 4.80 AB | 11.00 C | 15.80 ABCD | 1.37 ABC | 0.33 ABC |
18 | 5.00 AB | 26.50 AB | 31.50 A | 2.20 ABC | 0.47 ABC |
19 | 2.00 AB | 6.25 C | 8.25 D | 0.77 C | 0.17 BC |
20 | 4.50 AB | 10.25 C | 14.75 ABCD | 0.82 BC | 0.13 BC |
21 | 6.29 AB | 9.57 C | 15.86 ABCD | 1.78 ABC | 0.38 ABC |
22 | 3.71 AB | 3.43 C | 7.14 D | 0.45 C | 0.24 ABC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abaya, A.; Zaro, G.C.; De la Mora Pena, A.; Hsiang, T.; Goodwin, P.H. Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius. Plants 2024, 13, 300. https://doi.org/10.3390/plants13020300
Abaya A, Zaro GC, De la Mora Pena A, Hsiang T, Goodwin PH. Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius. Plants. 2024; 13(2):300. https://doi.org/10.3390/plants13020300
Chicago/Turabian StyleAbaya, Abdurraouf, Geovanna Cristina Zaro, Alvaro De la Mora Pena, Tom Hsiang, and Paul H. Goodwin. 2024. "Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius" Plants 13, no. 2: 300. https://doi.org/10.3390/plants13020300
APA StyleAbaya, A., Zaro, G. C., De la Mora Pena, A., Hsiang, T., & Goodwin, P. H. (2024). Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius. Plants, 13(2), 300. https://doi.org/10.3390/plants13020300