A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Results
2.1. Identification of Plant Growth-Promoting Traits in Spinach Rhizobacteria
2.2. The Isolate SR9 Had the Most Positive Impact on Wheat Germination and Vigor
2.3. Biosynthesis of SR9-Silver Nanoparticles
2.4. Cytotoxicity Assessment and In-Planta Effect of SR9AgNPs
2.5. SR9AgNPs Treatment Can Increase the Physiological Capacities of Wheat Plants
3. Discussion
4. Materials and Methods
4.1. Isolation of Spinach Rhizobacteria
4.2. Biochemical Identification of Bacterial Isolates
4.3. Solubilization of Insoluble Minerals
4.4. Evaluation of Indole-3-Acetic Acid Production
4.5. Impact of Plant Growth Promoting Bacteria on the Vigor Index of Wheat
4.6. Molecular Identification of Bacterial Isolates
4.7. Extracellular Synthesis and Optimization of Bacterial Silver Nanoparticles (SR9AgNO3)
4.8. Characterization of SR9AgNPs
4.9. Cytotoxicity Assessment of SR9AgNPs
4.10. Plant Experiments Using SR9AgNPs as Nanofertilizer
4.11. Physiological Capacities of SR9AgNPs Treated Wheat Plants
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers Volume 2; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Rahman, K.A.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-fertilizers and their smart delivery system. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 81–101. [Google Scholar] [CrossRef]
- Suhag, M. Potential of biofertilizers to replace chemical fertilizers. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 3, 163–167. [Google Scholar]
- Heffer, P.; Prud’homme, M. Fertilizer outlook 2012–2016. In Proceedings of the 80th IFA Annual Conference, Doha, Qatar, 24 May 2012; pp. 21–23. [Google Scholar]
- Abbey, L.; Abbey, J.; Leke-Aladekoba, A.; Iheshiulo, E.M.A.; Ijenyo, M. Biopesticides and biofertilizers: Types, production, benefits, and utilization. Byprod. Agri. Fisher 2019, 20, 479–500. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.; Dhaliwal, H.S.; Saxena, A.K. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocat. Agric. Biotechnol. 2020, 23, 101487. [Google Scholar] [CrossRef]
- García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. Aims Bioeng. 2015, 2, 183–205. [Google Scholar] [CrossRef]
- Tsukanova, K.A.; Meyer, J.J.M.; Bibikova, T.N. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Anum, W.; Samreen, T.; Sarfraz, M.; Nazir, M.Z. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In Microbiota and Biofertilizers; Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A., Eds.; Springer: Cham, Switzerland, 2021; pp. 181–196. [Google Scholar] [CrossRef]
- Asanova, A.A.; Yashin, S.E.; Trofimova, T.V.; Polonskiy, V.I. Application of silver nanoparticles to improve wheat seedlings growth. IOP Conf. Ser. Earth Environ. Sci. 2019, 315, 052041. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hossain, M.S.; Akter, M. Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physio. Mol. Plant Pathol. 2023, 126, 102029. [Google Scholar] [CrossRef]
- Ricci, E.; Schwinghamer, T.; Fan, D.; Smith, D.L.; Gravel, V. Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Appl. Soil. Ecol. 2019, 138, 61–68. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Hasan, M.R.; Ahommed, M.S.; Bacchu, M.S.; Ali, M.R.; Khan, M.Z.H. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov. 2021, 23, 101658. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, S.B.; Biradar, D.P.; Aladakatti, Y.R. Nanotechnology and its applications in agriculture: A review. J. Farm. Sci. 2016, 29, 1–13. [Google Scholar]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Zhigaltsev, I.V.; Belliveau, N.; Hafez, I.; Leung, A.K.; Huft, J.; Hansen, C.; Cullis, P.R. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 2012, 7, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Hosseingholian, A.; Gohari, S.D.; Feirahi, F.; Moammeri, F.; Mesbahian, G.; Moghaddam, Z.S.; Ren, Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023, 24, 100500. [Google Scholar] [CrossRef]
- Khanm, H.; Vaishnavi, B.; Shankar, A. Rise of nano-fertilizer era: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1861–1871. [Google Scholar] [CrossRef]
- Chokriwal, A.; Sharma, M.M.; Singh, A. Biological synthesis of nanoparticles using bacteria and their applications. Am. J. PharmTech Res. 2014, 4, 38–61. [Google Scholar]
- Dholwani, S.J.; Marwadi, S.G.; Patel, V.P.; Desai, V.P. Introduction of hydroponic system and its methods. Int. J. Recent. Technol. Eng. 2018, 3, 69–73. [Google Scholar]
- Francis, D.V.; Sood, N.; Gokhale, T. Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants 2022, 11, 2776. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Shanmugam, P.; Yun, K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf. B Biointerfaces 2010, 8, 358–362. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.K.; Muthukrishnan, S.; Rajalakshmi, R. Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Curr. Plant Biol. 2020, 23, 100158. [Google Scholar] [CrossRef]
- Gupta, S.; Dutta, A.; Agarwal, S.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Gurunathan, S.; Chung, I.M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 2015, 252, 1031–1046. [Google Scholar] [CrossRef]
- Khalofah, A.; Kilany, M.; Migdadi, H. Phytostimulatory influence of Comamonas testosteroni and silver nanoparticles on Linum usitatissimum L. under salinity stress. Plants 2021, 10, 790. [Google Scholar] [CrossRef]
- Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 2010, 93, 1037–1043. [Google Scholar] [CrossRef]
- Parveen, A.; Rao, S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J. Cluster Sci. 2015, 26, 693–701. [Google Scholar] [CrossRef]
- Lata, K.; Arvind, K.J.; Laxmana, N.; Rajan, S. Gold nanoparticles: Preparation, characterization and its stability in buffer. A J. Nanotechnol. App. 2014, 17, 1–10. [Google Scholar]
- Chen, W.; He, Z.L.; Yang, X.E.; Mishra, S.; Stoffella, P.J. Chlorine nutrition of higher plants: Progress and perspectives. J. Plant Nut. 2010, 33, 943–952. [Google Scholar] [CrossRef]
- de França Bettencourt, G.M.; Degenhardt, J.; Torres, L.A.Z.; de Andrade Tanobe, V.O.; Soccol, C.R. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822. [Google Scholar] [CrossRef]
- Repoila, F.; Le Bohec, F.; Guérin, C.; Lacoux, C.; Tiwari, S.; Jaiswal, A.K.; Santana, M.P.; Kennedy, S.P.; Quinquis, B.; Rainteau, D.; et al. Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids. Sci. Rep. 2022, 12, 8485. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.S.; Datta, S.; Chandrasekar, N.; Balaji, R.; Selvarajan, E.; Vuppala, S. Biogenic synthesis of iron oxide nanoparticles using Enterococcus faecalis: Adsorption of hexavalent chromium from aqueous solution and In vitro cytotoxicity analysis. Nanomaterials 2021, 11, 3290. [Google Scholar] [CrossRef] [PubMed]
- Jasim, B.; Thomas, R.; Mathew, J.; Radhakrishnan, E.K. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm. J. 2017, 25, 443–447. [Google Scholar] [CrossRef]
- Mahil, E.I.T.; Kumar, B.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm. Sci. 2019, 32, 239–249. [Google Scholar]
- Sadak, M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019, 38, 1–6. [Google Scholar] [CrossRef]
- Salachna, P.; Byczyńska, A.; Zawadzińska, A.; Piechocki, R.; Mizielińska, M. Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 2019, 9, 610. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, D.P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 733–741. [Google Scholar] [CrossRef]
- López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 2010, 58, 3689–3693. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Khan, A.A.; Hakeem, K.R. Impact of metal nanoparticles on the morphological and physiological changes in plants: A review. Nanotechnology 2016, 2, 179–183. [Google Scholar] [CrossRef]
- Ramkumar, S.; Thiruvengadam, M.; Pooja, T.; Thatchayani, G.S.; Alwin, J.D.; Harish, B.S.; Deva, S.; Keerdhana, R.; Chithraanjane, R.N.; Nile, S.H.; et al. Effects of nanoparticles on phytotoxicity, cytotoxicity, and genotoxicity in agricultural crops. In Nano-Enabled Agrochemicals in Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 325–344. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.K. Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing: Boca Raton, FL, USA, 2019; pp. 55–73. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani, Z.U.R.; Poczai, P. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Gislin, D.; Sudarsanam, D.; Raj, G.A.; Baskar, K. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J. Genet. Eng. Biotechnol. 2018, 2, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Reiner, K. Catalase test protocol. Am. Soc. Microbiol. 2010, 1, 1–6. [Google Scholar]
- Kumar, P.; Dubey, R.; Maheshwari, D. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 2012, 167, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, S.; Srivastava, P.; Rathore, P.; Pandey, A. Amylases: A prospective enzyme in the field of biotechnology. J. Appl. Biosci. 2015, 41, 1–18. [Google Scholar]
- Kumar, R.S.; Ayyadurai, N.; Pandiaraja, P.; Reddy, A.; Venkateswarlu, Y.; Prakash, O.; Sakthivel, N. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 2005, 98, 145–154. [Google Scholar] [CrossRef]
- Gupta, R.; Singal, R.; Shankar, A.; Kuhad, R.C.; Saxena, R.K. A modified plate assay for screening phosphate solubilizing microorganisms. The J. General Appl. Microbiol. 1994, 40, 255–260. [Google Scholar] [CrossRef]
- Sharma, S.K.M.P.; Ramesh, A.; Joshi, O.P. Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J. Microbiol. Biotechnol. 2011, 22, 352–359. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Guo, J. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 2006, 22, 983–990. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indole acetic acid. Plant Physiol. 1951, 26, 192. [Google Scholar] [CrossRef]
- Kahrilas, G.A.; Wendy, H.; Rebecca, L.; Read, L.M.; Wally, S.J.; Fredrick, M.H.; Amy, L.P.; Janel, E.O. Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain. Chem. Eng. 2014, 2, 590–598. [Google Scholar] [CrossRef]
- Tomita, R.J.; de Matos, R.A.; Vallim, M.A.; Courrol, L.C. A simple and effective method to synthesize fluorescent nanoparticles using tryptophan and light and their lethal effect against bacteria. J. Photochem. Photobiol. B Biol. 2014, 140, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Akanda, A.M.; Prova, A.; Islam, M.T.; Hossain, M.M. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front. Microbiol. 2016, 6, 1360. [Google Scholar] [CrossRef] [PubMed]
- Maresca, V.; Fedeli, R.; Vannini, A.; Munzi, S.; Corrêa, A.; Cruz, C.; Loppi, S. Wood distillate enhances seed germination of chickpea, lettuce, and basil. Appl. Sci. 2024, 14, 631. [Google Scholar] [CrossRef]
- Mehnaz, S.; Mirza, M.S.; Haurat, J.; Bally, R.; Normand, P.; Bano, A.; Malik, K.A. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Canadian J. Microbiol. 2001, 47, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.; Karobari, M.I.; Heboyan, A.; Mohamed, R.N.; Mustafa, M.; Basheer, S.N.; Desai, V.; Batool, S.; Ahmed, N.; Zeshan, B. Synthesis of silver nanoparticles from extracts of wild ginger (Zingiber zerumbet) with antibacterial activity against selective multidrug resistant oral bacteria. Molecules 2022, 27, 2007. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, J.; Zheng, Q.; Wang, D.; Wang, H.; He, Y.Z. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. New Phythol. 2023, 88, 1635–1660. [Google Scholar] [CrossRef]
- Arnon, D.I.; Hoagland, D.R. The investigation of plant nutrition by artificial culture methods. Biol. Rev. 1944, 19, 55–67. [Google Scholar] [CrossRef]
- Manolopoulou, E.; Varzakas, T.H.; Petsalaki, A. Chlorophyll determination in green pepper using two different extraction methods. Curr. Res. Nutr. Food Sci. J. 2016, 4, 52–60. [Google Scholar] [CrossRef]
- Mughal, T.A.; Saleem, M.Z.; Ali, S.; Anwar, K.K.; Bashir, M.M.; Babar, M.; Khan, M.A. Evaluation of hepatotoxicity of carbon tetrachloride and pharmacological intervention by vitamin E in Balb C mice. Pak. J. Zoo 2019, 51, 755–761. [Google Scholar] [CrossRef]
- Tefera, A.; Kebede, M.; Tadesse, K.; Getahun, T. Morphological, physiological, and biochemical characterization of drought-tolerant wheat (Triticum spp.) varieties. Int. J. Agron. 2021, 1, 8811749. [Google Scholar] [CrossRef]
- Abozed, S.S.; El-Kalyoubi, M.; Abdelrashid, A.; Salama, M.F. Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Ann. Agric. Sci. 2014, 59, 63–67. [Google Scholar] [CrossRef]
Sr. No. | Bacterial Isolates | Hydrolytic Enzymes | Mineral Solubilization | IAA Production | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lipase | Amylase | Protease | Catalase | Oxidase | Zinc | Potassium | Phosphate | ||||||
ZnSO4 | ZnCO3 | K2SO4 | KH2PO4 | PVK 1 | NBRIP 2 | ||||||||
1 | SR1 | +++ | ++ | +++ | + | + | - | + | ++ | ++ | ++ | ++ | - |
2 | SR2 | +++ | ++ | +++ | + | + | + | - | ++ | ++ | + | ++ | ++ |
3 | SR3 | +++ | +++ | ++ | + | + | - | ++ | ++ | ++ | - | ++ | +++ |
4 | SR4 | - | - | - | + | - | - | - | - | - | - | - | - |
5 | SR5 | ++ | - | ++ | - | - | - | - | - | ++ | + | + | ++ |
6 | SR6 | - | - | - | + | + | - | - | ++ | ++ | + | + | + |
7 | SR7 | - | ++ | - | - | + | + | ++ | ++ | ++ | - | - | + |
8 | SR8 | - | ++ | - | + | - | + | ++ | ++ | + | + | - | + |
9 | SR9 | +++ | +++ | +++ | + | + | + | +++ | ++ | ++ | ++ | ++ | +++ |
10 | SR10 | +++ | +++ | +++ | + | + | + | +++ | ++ | ++ | + | ++ | +++ |
11 | SR11 | +++ | +++ | +++ | + | + | - | - | ++ | ++ | + | ++ | + |
12 | SR12 | - | - | - | - | + | - | ++ | ++ | ++ | - | ++ | - |
Concentration of SR9AgNPs (ppm) | Germination (%) | Vigor Index |
---|---|---|
50 | 96 a | 6790 ± 671.06 a |
100 | 98 a | 8823 ± 850.95 b |
200 | 91 a | 5200 ± 336.85 c |
500 | 90 a | 4580 ± 473.63 c |
1000 | 79 b | 3500 ± 413.03 d |
Crops | Parameters | Control | SR9 | SR9AgNPs | SR9 + SR9AgNPs |
---|---|---|---|---|---|
Wheat | Germination % | 90 a | 97 b | 99 b | 99.9 b |
Vigor Index | 16,300 ± 774.11 a | 25,000 ± 663.04 b | 29,820 ± 504.9 b | 30,300 ± 309.11 c | |
Cucumber | Germination % | 70 a | 86.7 b | 90 b | 100 c |
Vigor Index | 10,240 ± 331.01 a | 13,111 ± 514.09 a | 17,130 ± 611.01 c | 18,640 ± 504.04 c | |
Tomato | Germination % | 80 a | 86 a | 90 b | 100 c |
Vigor Index | 6110 ± 313.16 a | 7637 ± 375.01 b | 8720 ± 374.07 c | 9890 ± 463.31 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, S.; Safdar, M.; Naseem, S.; Sami, A.; Saleem, R.S.Z.; Larrainzar, E.; Shahid, I. A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.). Plants 2024, 13, 2875. https://doi.org/10.3390/plants13202875
Batool S, Safdar M, Naseem S, Sami A, Saleem RSZ, Larrainzar E, Shahid I. A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.). Plants. 2024; 13(20):2875. https://doi.org/10.3390/plants13202875
Chicago/Turabian StyleBatool, Salma, Maryam Safdar, Saira Naseem, Abdul Sami, Rahman Shah Zaib Saleem, Estíbaliz Larrainzar, and Izzah Shahid. 2024. "A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.)" Plants 13, no. 20: 2875. https://doi.org/10.3390/plants13202875
APA StyleBatool, S., Safdar, M., Naseem, S., Sami, A., Saleem, R. S. Z., Larrainzar, E., & Shahid, I. (2024). A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat (Triticum aestivum L.). Plants, 13(20), 2875. https://doi.org/10.3390/plants13202875